Displaying publications 81 - 100 of 116 in total

Abstract:
Sort:
  1. Hani AF, Kumar D, Malik AS, Razak R
    Magn Reson Imaging, 2013 Sep;31(7):1059-67.
    PMID: 23731535 DOI: 10.1016/j.mri.2013.01.007
    Osteoarthritis is a common joint disorder that is most prevalent in the knee joint. Knee osteoarthritis (OA) can be characterized by the gradual loss of articular cartilage (AC). Formation of lesion, fissures and cracks on the cartilage surface has been associated with degenerative AC and can be measured by morphological assessment. In addition, loss of proteoglycan from extracellular matrix of the AC can be measured at early stage of cartilage degradation by physiological assessment. In this case, a biochemical phenomenon of cartilage is used to assess the changes at early degeneration of AC. In this paper, a method to measure local sodium concentration in AC due to proteoglycan has been investigated. A clinical 1.5-T magnetic resonance imaging (MRI) with multinuclear spectroscopic facility is used to acquire sodium images and quantify local sodium content of AC. An optimised 3D gradient-echo sequence with low echo time has been used for MR scan. The estimated sodium concentration in AC region from four different data sets is found to be ~225±19mmol/l, which matches the values that has been reported for the normal AC. This study shows that sodium images acquired at clinical 1.5-T MRI system can generate an adequate quantitative data that enable the estimation of sodium concentration in AC. We conclude that this method is potentially suitable for non-invasive physiological (sodium content) measurement of articular cartilage.
    Matched MeSH terms: Magnetic Resonance Imaging/methods*
  2. Choo WS, Steeds RP
    Br J Radiol, 2011 Dec;84 Spec No 3:S245-57.
    PMID: 22723532 DOI: 10.1259/bjr/54030257
    The aim of this article is to provide a perspective on the relative importance and contribution of different imaging modalities in patients with valvular heart disease. Valvular heart disease is increasing in prevalence across Europe, at a time when the clinical ability of physicians to diagnose and assess severity is declining. Increasing reliance is placed on echocardiography, which is the mainstay of cardiac imaging in valvular heart disease. This article outlines the techniques used in this context and their limitations, identifying areas in which dynamic imaging with cardiovascular magnetic resonance and multislice CT are expanding.
    Matched MeSH terms: Magnetic Resonance Imaging/methods
  3. Kew TY, Abdullah A
    J Laryngol Otol, 2012 Jan;126(1):66-71.
    PMID: 21867589 DOI: 10.1017/S0022215111002258
    We report an extremely rare case of duplication of the internal auditory canal associated with dysfunction of both the facial and vestibulocochlear nerves. We also review the literature regarding the integrity of the facial and vestibulocochlear nerves in such cases.
    Matched MeSH terms: Magnetic Resonance Imaging/methods
  4. Norlinah MI, Shahizon AM
    Med J Malaysia, 2008 Dec;63(5):410-2.
    PMID: 19803303 MyJurnal
    Secondary paroxysmal dyskinesias (PxD) have been previously reported in patients with multiple sclerosis, lacunar infarcts, head trauma, metabolic disorders such as hyperglycaemia, hypocalcaemia, migraine and central nervous system (CNS) infections. The causative lesions typically involve the basal ganglia structures, medulla and rarely the spinal cord. We report two patients who presented with paroxysmal dyskinesias as the only manifestation of subcortical white-matter ischaemia. Patient 1 presented with 3-year history of paroxysmal kinesigenic dyskinesia (PKD) and patient 2 with 6-month history of paroxysmal nonkinesigenic dyskinesia (PNKD). All investigations, including CSF oligoclonal bands were negative, except for a brain MRI which showed multiple, non-enhancing subcortical white matter lacunar infarcts. Therefore, subcortical white matter ischaemia should also be included in the differential diagnosis of PxD.
    Matched MeSH terms: Magnetic Resonance Imaging/methods
  5. Nair SR, Tan LK, Mohd Ramli N, Lim SY, Rahmat K, Mohd Nor H
    Eur Radiol, 2013 Jun;23(6):1459-66.
    PMID: 23300042 DOI: 10.1007/s00330-012-2759-9
    OBJECTIVE: To develop a decision tree based on standard magnetic resonance imaging (MRI) and diffusion tensor imaging to differentiate multiple system atrophy (MSA) from Parkinson's disease (PD).

    METHODS: 3-T brain MRI and DTI (diffusion tensor imaging) were performed on 26 PD and 13 MSA patients. Regions of interest (ROIs) were the putamen, substantia nigra, pons, middle cerebellar peduncles (MCP) and cerebellum. Linear, volumetry and DTI (fractional anisotropy and mean diffusivity) were measured. A three-node decision tree was formulated, with design goals being 100 % specificity at node 1, 100 % sensitivity at node 2 and highest combined sensitivity and specificity at node 3.

    RESULTS: Nine parameters (mean width, fractional anisotropy (FA) and mean diffusivity (MD) of MCP; anteroposterior diameter of pons; cerebellar FA and volume; pons and mean putamen volume; mean FA substantia nigra compacta-rostral) showed statistically significant (P < 0.05) differences between MSA and PD with mean MCP width, anteroposterior diameter of pons and mean FA MCP chosen for the decision tree. Threshold values were 14.6 mm, 21.8 mm and 0.55, respectively. Overall performance of the decision tree was 92 % sensitivity, 96 % specificity, 92 % PPV and 96 % NPV. Twelve out of 13 MSA patients were accurately classified.

    CONCLUSION: Formation of the decision tree using these parameters was both descriptive and predictive in differentiating between MSA and PD.

    KEY POINTS: • Parkinson's disease and multiple system atrophy can be distinguished on MR imaging. • Combined conventional MRI and diffusion tensor imaging improves the accuracy of diagnosis. • A decision tree is descriptive and predictive in differentiating between clinical entities. • A decision tree can reliably differentiate Parkinson's disease from multiple system atrophy.

    Matched MeSH terms: Magnetic Resonance Imaging/methods*
  6. Ramli N, Khairy AM, Seow P, Tan LK, Wong JH, Ganesan D, et al.
    Eur Radiol, 2016 Jul;26(7):2019-29.
    PMID: 26560718 DOI: 10.1007/s00330-015-4045-0
    OBJECTIVES: We evaluated the feasibility of using chemical shift gradient-echo (GE) in- and opposed-phase (IOP) imaging to grade glioma.

    METHODS: A phantom study was performed to investigate the correlation of (1)H MRS-visible lipids with the signal loss ratio (SLR) obtained using IOP imaging. A cross-sectional study approved by the institutional review board was carried out in 22 patients with different glioma grades. The patients underwent scanning using IOP imaging and single-voxel spectroscopy (SVS) using 3T MRI. The brain spectra acquisitions from solid and cystic components were obtained and correlated with the SLR for different grades.

    RESULTS: The phantom study showed a positive linear correlation between lipid quantification at 0.9 parts per million (ppm) and 1.3 ppm with SLR (r = 0.79-0.99, p 

    Matched MeSH terms: Magnetic Resonance Imaging/methods*
  7. Balasingam S, Azman RR, Nazri M
    QJM, 2016 Feb;109(2):121-2.
    PMID: 26101228 DOI: 10.1093/qjmed/hcv121
    Matched MeSH terms: Magnetic Resonance Imaging/methods
  8. Siddiqui MF, Reza AW, Kanesan J
    PLoS One, 2015;10(8):e0135875.
    PMID: 26280918 DOI: 10.1371/journal.pone.0135875
    A wide interest has been observed in the medical health care applications that interpret neuroimaging scans by machine learning systems. This research proposes an intelligent, automatic, accurate, and robust classification technique to classify the human brain magnetic resonance image (MRI) as normal or abnormal, to cater down the human error during identifying the diseases in brain MRIs. In this study, fast discrete wavelet transform (DWT), principal component analysis (PCA), and least squares support vector machine (LS-SVM) are used as basic components. Firstly, fast DWT is employed to extract the salient features of brain MRI, followed by PCA, which reduces the dimensions of the features. These reduced feature vectors also shrink the memory storage consumption by 99.5%. At last, an advanced classification technique based on LS-SVM is applied to brain MR image classification using reduced features. For improving the efficiency, LS-SVM is used with non-linear radial basis function (RBF) kernel. The proposed algorithm intelligently determines the optimized values of the hyper-parameters of the RBF kernel and also applied k-fold stratified cross validation to enhance the generalization of the system. The method was tested by 340 patients' benchmark datasets of T1-weighted and T2-weighted scans. From the analysis of experimental results and performance comparisons, it is observed that the proposed medical decision support system outperformed all other modern classifiers and achieves 100% accuracy rate (specificity/sensitivity 100%/100%). Furthermore, in terms of computation time, the proposed technique is significantly faster than the recent well-known methods, and it improves the efficiency by 71%, 3%, and 4% on feature extraction stage, feature reduction stage, and classification stage, respectively. These results indicate that the proposed well-trained machine learning system has the potential to make accurate predictions about brain abnormalities from the individual subjects, therefore, it can be used as a significant tool in clinical practice.
    Matched MeSH terms: Magnetic Resonance Imaging/methods
  9. Hamoud Al-Tamimi MS, Sulong G, Shuaib IL
    Magn Reson Imaging, 2015 Jul;33(6):787-803.
    PMID: 25865822 DOI: 10.1016/j.mri.2015.03.008
    Resection of brain tumors is a tricky task in surgery due to its direct influence on the patients' survival rate. Determining the tumor resection extent for its complete information via-à-vis volume and dimensions in pre- and post-operative Magnetic Resonance Images (MRI) requires accurate estimation and comparison. The active contour segmentation technique is used to segment brain tumors on pre-operative MR images using self-developed software. Tumor volume is acquired from its contours via alpha shape theory. The graphical user interface is developed for rendering, visualizing and estimating the volume of a brain tumor. Internet Brain Segmentation Repository dataset (IBSR) is employed to analyze and determine the repeatability and reproducibility of tumor volume. Accuracy of the method is validated by comparing the estimated volume using the proposed method with that of gold-standard. Segmentation by active contour technique is found to be capable of detecting the brain tumor boundaries. Furthermore, the volume description and visualization enable an interactive examination of tumor tissue and its surrounding. Admirable features of our results demonstrate that alpha shape theory in comparison to other existing standard methods is superior for precise volumetric measurement of tumor.
    Matched MeSH terms: Magnetic Resonance Imaging/methods*
  10. Chung WH, Chiu CK, Wei Chan CY, Kwan MK
    Acta Orthop Traumatol Turc, 2020 Sep;54(5):561-564.
    PMID: 33155569 DOI: 10.5152/j.aott.2020.19144
    Growth hormone secreting pituitary tumor or gigantism has not been previously reported to be associated with rapid progression of scoliosis in the literature. However, there are some reports indicating scoliosis can be worsened by growth hormone therapy in children and adolescents. A 19-year-old boy was referred to our institution for the treatment of a right thoracolumbar scoliosis. The Cobb angle had worsened from 29° to 83° over two years' duration. He attained puberty at the age of 13. He had a previous history of slipped upper femoral epiphysis (SUFE), which was operated in 2015, with no clinical features of gigantism. Preoperative assessment was performed. He was diagnosed with growth hormone secreting pituitary macroadenoma by magnetic resonance imaging with a high serum level of insulin-like growth factor-I (IGF-I). Computed tomography (CT) of the pancreas showed a pancreatic endocrine tumor. The patient was later diagnosed with multiple endocrine neoplasia type 1 (MEN 1). He underwent endoscopic endonasal excision of the pituitary mass and distal pancreatectomy. This case indicates that growth hormone secreting pituitary macroadenoma could result in rapid progression of scoliosis.
    Matched MeSH terms: Magnetic Resonance Imaging/methods
  11. Koh KL, Sonny Teo KS, Halim SA, Wan Hitam WH
    Can J Ophthalmol, 2019 04;54(2):e66-e69.
    PMID: 30975364 DOI: 10.1016/j.jcjo.2018.06.022
    Matched MeSH terms: Magnetic Resonance Imaging/methods
  12. Yanagisawa D, Ibrahim NF, Taguchi H, Morikawa S, Tomiyama T, Tooyama I
    Molecules, 2021 Mar 04;26(5).
    PMID: 33806326 DOI: 10.3390/molecules26051362
    Recent evidence suggests that the formation of soluble amyloid β (Aβ) aggregates with high toxicity, such as oligomers and protofibrils, is a key event that causes Alzheimer's disease (AD). However, understanding the pathophysiological role of such soluble Aβ aggregates in the brain in vivo could be difficult due to the lack of a clinically available method to detect, visualize, and quantify soluble Aβ aggregates in the brain. We had synthesized a novel fluorinated curcumin derivative with a fixed keto form, named as Shiga-Y51, which exhibited high selectivity to Aβ oligomers in vitro. In this study, we investigated the in vivo detection of Aβ oligomers by fluorine-19 (19F) magnetic resonance imaging (MRI) using Shiga-Y51 in an APP/PS1 double transgenic mouse model of AD. Significantly high levels of 19F signals were detected in the upper forebrain region of APP/PS1 mice compared with wild-type mice. Moreover, the highest levels of Aβ oligomers were detected in the upper forebrain region of APP/PS1 mice in enzyme-linked immunosorbent assay. These findings suggested that 19F-MRI using Shiga-Y51 detected Aβ oligomers in the in vivo brain. Therefore, 19F-MRI using Shiga-Y51 with a 7 T MR scanner could be a powerful tool for imaging Aβ oligomers in the brain.
    Matched MeSH terms: Fluorine-19 Magnetic Resonance Imaging/methods*
  13. Yanagisawa D, Ibrahim NF, Taguchi H, Morikawa S, Kato T, Hirao K, et al.
    J Neurosci Res, 2018 05;96(5):841-851.
    PMID: 29063641 DOI: 10.1002/jnr.24188
    Aggregation of tau into neurofibrillary tangles (NFTs) is characteristic of tauopathies, including Alzheimer's disease. Recent advances in tau imaging have attracted much attention because of its potential contributions to early diagnosis and monitoring of disease progress. Fluorine-19 magnetic resonance imaging (19 F-MRI) may be extremely useful for tau imaging once a high-quality probe has been formulated. In this investigation, a novel fluorine-19-labeling compound has been developed as a probe for tau imaging using 19 F-MRI. This compound is a buta-1,3-diene derivative with a polyethylene glycol side chain bearing a CF3 group and is known as Shiga-X35. Female rTg4510 mice (a mouse model of tauopathy) and wild-type mice were intravenously injected with Shiga-X35, and magnetic resonance imaging of each mouse's head was conducted in a 7.0-T horizontal-bore magnetic resonance scanner. The 19 F-MRI in rTg4510 mice showed an intense signal in the forebrain region. Analysis of the signal intensity in the forebrain region revealed a significant accumulation of fluorine-19 magnetic resonance signal in the rTg4510 mice compared with the wild-type mice. Histological analysis showed fluorescent signals of Shiga-X35 binding to the NFTs in the brain sections of rTg4510 mice. Data collected as part of this investigation indicate that 19 F-MRI using Shiga-X35 could be a promising tool to evaluate tau pathology in the brain.
    Matched MeSH terms: Fluorine-19 Magnetic Resonance Imaging/methods*
  14. Tee TY, Khoo CS, Ibrahim NM, Osman SS
    Neurol India, 2019 3 13;67(1):297-299.
    PMID: 30860142 DOI: 10.4103/0028-3886.253620
    Matched MeSH terms: Magnetic Resonance Imaging/methods
  15. Javed E, Faye I, Malik AS, Abdullah JM
    J Neurosci Methods, 2017 11 01;291:150-165.
    PMID: 28842191 DOI: 10.1016/j.jneumeth.2017.08.020
    BACKGROUND: Simultaneous electroencephalography (EEG) and functional magnetic resonance image (fMRI) acquisitions provide better insight into brain dynamics. Some artefacts due to simultaneous acquisition pose a threat to the quality of the data. One such problematic artefact is the ballistocardiogram (BCG) artefact.

    METHODS: We developed a hybrid algorithm that combines features of empirical mode decomposition (EMD) with principal component analysis (PCA) to reduce the BCG artefact. The algorithm does not require extra electrocardiogram (ECG) or electrooculogram (EOG) recordings to extract the BCG artefact.

    RESULTS: The method was tested with both simulated and real EEG data of 11 participants. From the simulated data, the similarity index between the extracted BCG and the simulated BCG showed the effectiveness of the proposed method in BCG removal. On the other hand, real data were recorded with two conditions, i.e. resting state (eyes closed dataset) and task influenced (event-related potentials (ERPs) dataset). Using qualitative (visual inspection) and quantitative (similarity index, improved normalized power spectrum (INPS) ratio, power spectrum, sample entropy (SE)) evaluation parameters, the assessment results showed that the proposed method can efficiently reduce the BCG artefact while preserving the neuronal signals.

    COMPARISON WITH EXISTING METHODS: Compared with conventional methods, namely, average artefact subtraction (AAS), optimal basis set (OBS) and combined independent component analysis and principal component analysis (ICA-PCA), the statistical analyses of the results showed that the proposed method has better performance, and the differences were significant for all quantitative parameters except for the power and sample entropy.

    CONCLUSIONS: The proposed method does not require any reference signal, prior information or assumption to extract the BCG artefact. It will be very useful in circumstances where the reference signal is not available.

    Matched MeSH terms: Magnetic Resonance Imaging/methods*
  16. Ragu R, Blanchard C, Meurette G
    J Visc Surg, 2017 09;154(4):297-299.
    PMID: 28802708 DOI: 10.1016/j.jviscsurg.2017.05.003
    Matched MeSH terms: Magnetic Resonance Imaging/methods
  17. Retrouvey H, Silvanathan J, Bleakney RR, Anastakis DJ
    J Foot Ankle Surg, 2018 01 05;57(3):587-592.
    PMID: 29307741 DOI: 10.1053/j.jfas.2017.10.004
    We report the first case of distal posterior tibial nerve injury after arthroscopic calcaneoplasty. A 59-year-old male had undergone right arthroscopic calcaneoplasty to treat retrocalcaneal bursitis secondary to a Haglund's deformity. The patient complained of numbness in his right foot immediately after the procedure. Two years later and after numerous assessments and investigations, a lateral plantar nerve and medial calcaneal nerve lesion was diagnosed. In the operating room, the presence of an iatrogenic lesion to the distal right lateral plantar nerve (neuroma incontinuity involving 20% of the nerve) and the medial calcaneal nerve (complete avulsion) was confirmed. The tarsal tunnel was decompressed, and both the medial and the lateral plantar nerve were neurolyzed under magnification. To the best of our knowledge, our case report is the first to describe iatrogenic posterior tibial nerve injury after arthroscopic calcaneoplasty. It is significant because this complication can hopefully be avoided in the future with careful planning and creation of arthroscopic ports and treated appropriately with early referral to a nerve specialist if the patient's symptoms do not improve within 3 months.
    Matched MeSH terms: Magnetic Resonance Imaging/methods
  18. Chew YK, Noorizan Y, Khir A, Brito-Mutunayagam S, Prepageran N
    Singapore Med J, 2009 Nov;50(11):e374-5.
    PMID: 19960147
    The incidence of mucocoeles associated with a non-surgically treated nasal polyposis is rare. We report a rare case of nasal polyposis with asymptomatic frontal mucocoeles in a 28-year-old Malay man who presented with bilateral nasal obstruction with anosmia. Physical examination revealed bilateral grade III nasal polyps causing obstruction. Computed tomography revealed paranasal polyposis with a large polyp extending and expanding the posterior table of the frontal sinus causing erosion and thinning of its wall. Marsupialisation of the mucocoele and nasal polypectomy were done. Endoscopic sinus surgery and marsupialisation should be the treatment of choice for asymptomatic frontal mucocoele.
    Matched MeSH terms: Magnetic Resonance Imaging/methods
  19. Al-Faris AQ, Ngah UK, Isa NA, Shuaib IL
    J Digit Imaging, 2014 Feb;27(1):133-44.
    PMID: 24100762 DOI: 10.1007/s10278-013-9640-5
    In this paper, an automatic computer-aided detection system for breast magnetic resonance imaging (MRI) tumour segmentation will be presented. The study is focused on tumour segmentation using the modified automatic seeded region growing algorithm with a variation of the automated initial seed and threshold selection methodologies. Prior to that, some pre-processing methodologies are involved. Breast skin is detected and deleted using the integration of two algorithms, namely the level set active contour and morphological thinning. The system is applied and tested on 40 test images from the RIDER breast MRI dataset, the results are evaluated and presented in comparison to the ground truths of the dataset. The analysis of variance (ANOVA) test shows that there is a statistically significance in the performance compared to the previous segmentation approaches that have been tested on the same dataset where ANOVA p values for the evaluation measures' results are less than 0.05, such as: relative overlap (p = 0.0002), misclassification rate (p = 0.045), true negative fraction (p = 0.0001) and sum of true volume fraction (p = 0.0001).
    Matched MeSH terms: Magnetic Resonance Imaging/methods*
  20. Suppiah S, Rahmat K, Mohd-Shah MN, Azlan CA, Tan LK, Aziz YF, et al.
    Clin Radiol, 2013 Sep;68(9):e502-10.
    PMID: 23706826 DOI: 10.1016/j.crad.2013.04.002
    To investigate the diagnostic accuracy of single-voxel proton magnetic resonance spectroscopy (SV (1)H MRS) by quantifying total choline-containing compounds (tCho) in differentiating malignant from benign lesions, and subsequently, to analyse the relationship of tCho levels in malignant breast lesions with their histopathological subtypes.
    Matched MeSH terms: Magnetic Resonance Imaging/methods
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links