Displaying publications 81 - 100 of 307 in total

Abstract:
Sort:
  1. Gan S, Zakaria S, Chia CH, Kaco H, Padzil FN
    Carbohydr Polym, 2014 Jun 15;106:160-5.
    PMID: 24721064 DOI: 10.1016/j.carbpol.2014.01.076
    Cellulose carbamate (CCs) was produced from kenaf core pulp (KCP) using microwave reactor-assisted method. The effects of urea concentration and reaction time on the formation of nitrogen content in CCs were investigated. The CCs' solubility in LiOH/urea system was determined and its membranes were characterized. As the urea content and reaction time increased, the nitrogen content form in CCs increased which enhanced the CCs' solubility. The formation of CCs was confirmed by Fourier transform infrared spectroscopy (FT-IR) and nitrogen content analysis. The CCs' morphology was examined using Scanning electron microscopy (SEM). The cellulose II and crystallinity index of the membranes were confirmed by X-ray diffraction (XRD). The pore size of the membrane displayed upward trend with respect to the urea content observed under Field emission scanning electron microscope (FESEM). This investigation provides a simple and efficient procedure of CCs determination which is useful in producing environmental friendly regenerated CCs.
    Matched MeSH terms: Microwaves*
  2. Islam SS, Faruque MRI, Islam MT
    Materials (Basel), 2014 Jul 02;7(7):4994-5011.
    PMID: 28788116 DOI: 10.3390/ma7074994
    This paper presents the design and analysis of a novel split-H-shaped metamaterial unit cell structure that is applicable in a multi-band frequency range and that exhibits negative permeability and permittivity in those frequency bands. In the basic design, the separate split-square resonators are joined by a metal link to form an H-shaped unit structure. Moreover, an analysis and a comparison of the 1 × 1 array and 2 × 2 array structures and the 1 × 1 and 2 × 2 unit cell configurations were performed. All of these configurations demonstrate multi-band operating frequencies (S-band, C-band, X-band and Ku-band) with double-negative characteristics. The equivalent circuit model and measured result for each unit cell are presented to validate the resonant behavior. The commercially available finite-difference time-domain (FDTD)-based simulation software, Computer Simulation Technology (CST) Microwave Studio, was used to obtain the reflection and transmission parameters of each unit cell. This is a novel and promising design in the electromagnetic paradigm for its simplicity, scalability, double-negative characteristics and multi-band operation.
    Matched MeSH terms: Microwaves
  3. Rusni IM, Ismail A, Alhawari AR, Hamidon MN, Yusof NA
    Sensors (Basel), 2014 Jul 21;14(7):13134-48.
    PMID: 25051036 DOI: 10.3390/s140713134
    This paper presents the design and development of a planar Aligned-Gap and Centered-Gap Rectangular Multiple Split Ring Resonator (SRR) for microwave sensors that operates at a resonance frequency around 5 GHz. The sensor consists of a microstrip transmission line loaded with two elements of rectangular SRR on both sides. The proposed metamaterial sensors were designed and fabricated on Rogers RT5880 substrate having dielectric constant of 2.2 and thickness of 0.787 mm. The final dimension of the proposed sensor was measured at 35 × 14 mm2. Measured results show good agreement with simulated ones as well as exhibiting high Q-factor for use in sensing application. A remarkably shift of resonance frequency is observed upon introduction of several sample with different dielectric value.
    Matched MeSH terms: Microwaves
  4. Kutty MG, De A, Bhaduri SB, Yaghoubi A
    ACS Appl Mater Interfaces, 2014 Aug 27;6(16):13587-93.
    PMID: 25095907 DOI: 10.1021/am502967n
    Morphological surface modifications have been reported to enhance the performance of biomedical implants. However, current methods of introducing graded porosity involves postprocessing techniques that lead to formation of microcracks, delamination, loss of fatigue strength, and, overall, poor mechanical properties. To address these issues, we developed a microwave sintering procedure whereby pure titanium powder can be readily densified into implants with graded porosity in a single step. Using this approach, surface topography of implants can be closely controlled to have a distinctive combination of surface area, pore size, and surface roughness. In this study, the effect of various surface topographies on in vitro response of neonatal rat calvarial osteoblast in terms of attachment and proliferation is studied. Certain graded surfaces nearly double the chance of cell viability in early stages (∼one month) and are therefore expected to improve the rate of healing. On the other hand, while the osteoblast morphology significantly differs in each sample at different periods, there is no straightforward correlation between early proliferation and quantitative surface parameters such as average roughness or surface area. This indicates that the nature of cell-surface interactions likely depends on other factors, including spatial parameters.
    Matched MeSH terms: Microwaves*
  5. Khan N, Choi JY, Nho EY, Jamila N, Habte G, Hong JH, et al.
    Food Chem, 2014 Sep 1;158:200-6.
    PMID: 24731332 DOI: 10.1016/j.foodchem.2014.02.103
    This study aimed at analyzing the concentrations of 23 minor and trace elements in aromatic spices by inductively coupled plasma-mass spectrometry (ICP-MS), after wet digestion by microwave system. The analytical method was validated by linearity, detection limits, precision, accuracy and recovery experiments, obtaining satisfactory values in all cases. Results indicated the presence of variable amounts of both minor and trace elements in the selected aromatic spices. Manganese was high in cinnamon (879.8 μg/g) followed by cardamom (758.1 μg/g) and clove (649.9 μg/g), strontium and zinc were high in ajwain (489.9 μg/g and 84.95 μg/g, respectively), while copper was high in mango powder (77.68 μg/g). On the whole some of the minor and essential trace elements were found to have good nutritional contribution in accordance to RDA. The levels of toxic trace elements, including As, Cd, and Pb were very low and did not found to pose any threat to consumers.
    Matched MeSH terms: Microwaves/therapeutic use*
  6. Teo CL, Idris A
    Bioresour Technol, 2014 Nov;171:477-81.
    PMID: 25201293 DOI: 10.1016/j.biortech.2014.08.024
    The types of microalgae strains and the method used in lipid extraction have become crucial factors which influence the productivity of crude oil. In this paper, Nannochloropsis sp. and Tetraselmis sp. were chosen as the strains and four different methods were used to extract the lipids: Hara and Radin, Folch, Chen and Bligh and Dyer. These methods were performed by using conventional heating and microwave irradiation methods. Results revealed that highest lipid yield from the different species was obtained using different extraction methods; both under microwave irradiation. The lipid yield for Tetraselmis sp. and Nannochloropsis sp. was highest when Hara and Radin (8.19%), and Folch (8.47%) methods were used respectively under microwave irradiation. The lipids extracted were then transesterified to biodiesel and the quality of the biodiesel was analyzed using the gas chromatography.
    Matched MeSH terms: Microwaves*
  7. Zain NM, Stapley AG, Shama G
    Carbohydr Polym, 2014 Nov 4;112:195-202.
    PMID: 25129735 DOI: 10.1016/j.carbpol.2014.05.081
    Silver and copper nanoparticles were produced by chemical reduction of their respective nitrates by ascorbic acid in the presence of chitosan using microwave heating. Particle size was shown to increase by increasing the concentration of nitrate and reducing the chitosan concentration. Surface zeta potentials were positive for all nanoparticles produced and these varied from 27.8 to 33.8 mV. Antibacterial activities of Ag, Cu, mixtures of Ag and Cu, and Ag/Cu bimetallic nanoparticles were tested using Bacillus subtilis and Escherichia coli. Of the two, B. subtilis proved more susceptible under all conditions investigated. Silver nanoparticles displayed higher activity than copper nanoparticles and mixtures of nanoparticles of the same mean particle size. However when compared on an equal concentration basis Cu nanoparticles proved more lethal to the bacteria due to a higher surface area. The highest antibacterial activity was obtained with bimetallic Ag/Cu nanoparticles with minimum inhibitory concentrations (MIC) of 0.054 and 0.076 mg/L against B. subtilis and E. coli, respectively.
    Matched MeSH terms: Microwaves
  8. Wong TW
    J Control Release, 2014 Nov 10;193:257-69.
    PMID: 24801250 DOI: 10.1016/j.jconrel.2014.04.045
    Transdermal drug delivery is hindered by the barrier property of the stratum corneum. It limits the route to transport of drugs with a log octanol-water partition coefficient of 1 to 3, molecular weight of less than 500Da and melting point of less than 200°C. Active methods such as iontophoresis, electroporation, sonophoresis, magnetophoresis and laser techniques have been investigated for the past decades on their ability, mechanisms and limitations in modifying the skin microenvironment to promote drug diffusion and partition. Microwave, an electromagnetic wave characterized by frequencies range between 300MHz and 300GHz, has recently been reported as the potential skin permeation enhancer. Microwave has received a widespread application in food, engineering and medical sectors. Its potential use to facilitate transdermal drug transport is still in its infancy stage of evaluation. This review provides an overview and update on active methods utilizing electrical, magnetic, photomechanical and cavitational waves to overcome the skin barrier for transdermal drug administration with insights into mechanisms and future perspectives of the latest microwave technique described.
    Matched MeSH terms: Microwaves
  9. Chee Loong T, Idris A
    Bioresour Technol, 2014 Dec;174:311-5.
    PMID: 25443622 DOI: 10.1016/j.biortech.2014.10.015
    Biodiesel with improved yield was produced from microalgae biomass under simultaneous cooling and microwave heating (SCMH). Nannochloropsis sp. and Tetraselmis sp. which were known to contain higher lipid species were used. The yield obtained using this novel technique was compared with the conventional heating (CH) and microwave heating (MWH) as the control method. The results revealed that the yields obtained using the novel SCMH were higher; Nannochloropsis sp. (83.33%) and Tetraselmis sp. (77.14%) than the control methods. Maximum yields were obtained using SCMH when the microwave was set at 50°C, 800W, 16h of reaction with simultaneous cooling at 15°C; and water content and lipid to methanol ratio in reaction mixture was kept to 0 and 1:12 respectively. GC analysis depicted that the biodiesel produced from this technique has lower carbon components (<19 C) and has both reasonable CN and IV reflecting good ignition and lubricating properties.
    Matched MeSH terms: Microwaves*
  10. Teo CL, Idris A
    Bioresour Technol, 2014 Dec;174:281-6.
    PMID: 25463809 DOI: 10.1016/j.biortech.2014.10.035
    Nannochloropsis sp. wet biomass was directly transesterified under microwave (MW) irradiation in the presence of methanol and various alkali and acid catalyst. Two different types of direct transesterification (DT) were used; one step and two step transesterification. The biodiesel yield obtained from the MWDT was compared with that obtained using conventional method (lipid extraction followed by transesterification) and water bath heating DT method. Findings revealed that MWDT efficiencies were higher compared to water bath heating DT by at least 14.34% and can achieve a maximum of 43.37% with proper selection of catalysts. The use of combined catalyst (NaOH and H2SO4) increased the yield obtained by 2.3-folds (water bath heating DT) and 2.87-folds (MWDT) compared with the one step single alkaline catalyst respectively. The property of biodiesel produced by MWDT has high lubricating property, good cetane number and short carbon chain FAME's compared with water bath heating DT.
    Matched MeSH terms: Microwaves*
  11. Hossain MI, Faruque MRI, Islam MT, Ullah MH
    Materials (Basel), 2014 Dec 25;8(1):57-71.
    PMID: 28787924 DOI: 10.3390/ma8010057
    A new design and analysis of a wide-band double-negative metamaterial, considering a frequency range of 0.5 to 7 GHz, is presented in this paper. Four different unit cells with varying design parameters are analyzed to evaluate the effects of the unit-cell size on the resonance frequencies of the metamaterial. Moreover, open and interconnected 2 × 2 array structures of unit cells are analyzed. The finite-difference time-domain (FDTD) method, based on the Computer Simulation Technology (CST) Microwave Studio, is utilized in the majority of this investigation. The experimental portion of the study was performed in a semi-anechoic chamber. Good agreement is observed between the simulated and measured S parameters of the developed unit cell and array. The designed unit cell exhibits negative permittivity and permeability simultaneously at S-band (2.95 GHz to 4.00 GHz) microwave frequencies. In addition, the designed unit cell can also operate as a double-negative medium throughout the C band (4.00 GHz to 4.95 GHz and 5.00 GHz to 5.57 GHz). At a number of other frequencies, it exhibits a single negative value. The two array configurations cause a slight shift in the resonance frequencies of the metamaterial and hence lead to a slight shift of the single- and double-negative frequency ranges of the metamaterial.
    Matched MeSH terms: Microwaves
  12. Sajahan NA, Wan Ibrahim WM
    ScientificWorldJournal, 2014;2014:275984.
    PMID: 25383364 DOI: 10.1155/2014/275984
    Due to similarity in composition to the mineral component of bones and human hard tissues, hydroxyapatite with chemical formula Ca10(PO4)6(OH)2 has been widely used in medical field. Both chicken and duck eggshells are mainly composed of calcium carbonate. An attempt has been made to fabricate nanohydroxyapatite (nHA) by chicken (CES) and duck eggshells (DES) as calcium carbonate source (CaCO3). CES and DES were reacted with diammonium hydrogen [(NH4)2HPO4] solution and subjected to microwave heating at 15 mins. Under the effect of microwave irradiation, nHA was produced directly in the solution and involved in crystallographic transformation. Sample characterization was done using by X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM).
    Matched MeSH terms: Microwaves
  13. Noroozi M, Radiman S, Zakaria A, Soltaninejad S
    Nanoscale Res Lett, 2014;9(1):645.
    PMID: 25489293 DOI: 10.1186/1556-276X-9-645
    Silver nanoparticles were successfully prepared in two different solvents using a microwave heating technique, with various irradiation times. The silver nanoparticles were dispersed in polar liquids (distilled water and ethylene glycol) without any other reducing agent, in the presence of the stabilizer polyvinylpyrrolidone (PVP). The optical properties, thermal properties, and morphology of the synthesized silver particles were characterized using ultraviolet-visible spectroscopy, photopyroelectric technique, and transmission electron microscopy. It was found that for the both solvents, the effect of microwave irradiation was mainly on the particles distribution, rather than the size, which enabled to make stable and homogeneous silver nanofluids. The individual spherical nanostructure of self-assembled nanoparticles has been formed during microwave irradiation. Ethylene glycol solution, due to its special properties, such as high dielectric loss, high molecular weight, and high boiling point, can serve as a good solvent for microwave heating and is found to be a more suitable medium than the distilled water. A photopyroelectric technique was carried out to measure thermal diffusivity of the samples. The precision and accuracy of this technique was established by comparing the measured thermal diffusivity of the distilled water and ethylene glycol with values reported in the literature. The thermal diffusivity ratio of the silver nanofluids increased up to 1.15 and 1.25 for distilled water and ethylene glycol, respectively.
    Matched MeSH terms: Microwaves
  14. Hindia MN, Reza AW, Noordin KA
    ScientificWorldJournal, 2014;2014:246206.
    PMID: 25379524 DOI: 10.1155/2014/246206
    Nowadays, one of the most important challenges in heterogeneous networks is the connection consistency between the mobile station and the base stations. Furthermore, along the roaming process between the mobile station and the base station, the system performance degrades significantly due to the interferences from neighboring base stations, handovers to inaccurate base station and inappropriate technology selection. In this paper, several algorithms are proposed to improve mobile station performance and seamless mobility across the long-term evolution (LTE) and Worldwide Interoperability for Microwave Access (WiMAX) technologies, along with a minimum number of redundant handovers. Firstly, the enhanced global positioning system (GPS) and the novel received signal strength (RSS) prediction approaches are suggested to predict the target base station accurately. Then, the multiple criteria with two thresholds algorithm is proposed to prioritize the selection between LTE and WiMAX as the target technology. In addition, this study also covers the intercell and cochannel interference reduction by adjusting the frequency reuse ratio 3 (FRR3) to work with LTE and WiMAX. The obtained results demonstrate high next base station prediction efficiency and high accuracy for both horizontal and vertical handovers. Moreover, the received signal strength is kept at levels higher than the threshold, while maintaining low connection cost and delay within acceptable levels. In order to highlight the combination of the proposed algorithms' performance, it is compared with the existing RSS and multiple criteria handover decision algorithms.
    Matched MeSH terms: Microwaves
  15. Azim R, Islam MT, Misran N, Yatim B, Arshad H
    ScientificWorldJournal, 2014;2014:563830.
    PMID: 25133245 DOI: 10.1155/2014/563830
    A small antenna with single notch band at 3.5 GHz is designed for ultrawideband (UWB) communication applications. The fabricated antenna comprises a radiating monopole element and a perfectly conducting ground plane with a wide slot. To achieve a notch band at 3.5 GHz, a parasitic element has been inserted in the same plane of the substrate along with the radiating patch. Experimental results shows that, by properly adjusting the position of the parasitic element, the designed antenna can achieve an ultrawide operating band of 3.04 to 11 GHz with a notched band operating at 3.31-3.84 GHz. Moreover, the proposed antenna achieved a good gain except at the notched band and exhibits symmetric radiation patterns throughout the operating band. The prototype of the proposed antenna possesses a very compact size and uses simple structures to attain the stop band characteristic with an aim to lessen the interference between UWB and worldwide interoperability for microwave access (WiMAX) band.
    Matched MeSH terms: Microwaves*
  16. Lokman IM, Rashid U, Zainal Z, Yunus R, Taufiq-Yap YH
    J Oleo Sci, 2014;63(9):849-55.
    PMID: 25099911
    In the current research work, effect of microwave irradiation energy on the esterification of palm fatty acid distillate (PFAD) to produce PFAD methyl ester / biodiesel was intensively appraised. The PFAD is a by-product from refinery of crude palm oil consisting >85% of free fatty acid (FFA). The esterification reaction process with acid catalyst is needed to convert the FFA into fatty acid methyl ester or known as biodiesel. In this work, fabricated microwave-pulse width modulation (MPWM) reactor with controlled temperature was designed to be capable to increase the PFAD biodiesel production rate. The classical optimization technique was used in order to study the relationship and the optimum condition of variables involved. Consequently, by using MPWM reactor, mixture of methanol-to-PFAD molar ratio of 9:1, 1 wt.% of sulfuric acid catalyst, at 55°C reaction temperature within 15 min reaction time gave 99.5% of FFA conversion. The quality assessment and properties of the product were analyzed according to the American Society for Testing and Materials (ASTM), European (EN) standard methods and all results were in agreement with the standard requirements. It revealed that the use of fabricated MPWM with controlled temperature was significantly affecting the rate of esterification reaction and also increased the production yield of PFAD methyl ester.
    Matched MeSH terms: Microwaves*
  17. Liew KH, Loh PL, Juan JC, Yarmo MA, Yusop RM
    ScientificWorldJournal, 2014;2014:796196.
    PMID: 25054185 DOI: 10.1155/2014/796196
    Cross-linked resin-captured palladium (XL-QPPd) was readily prepared by simple physical adsorption onto the high loading QuadraPure macroporous resin and a subsequent reduction process. To enhance the mechanical stability, entrapped palladium nanocatalysts were cross-linked with succinyl chloride. Both transmission electron microscopy images and X-ray diffraction analysis revealed that the palladium nanoparticles were well dispersed with diameters ranging in 4-10 nm. The catalyst performed good catalytic activity in microwave-promoted Suzuki cross-coupling reactions in water under aerobic condition with mild condition by using various aryl halides and phenylboronic acid. In addition, the catalyst showed an excellent recyclability without significant loss of catalytic activity.
    Matched MeSH terms: Microwaves
  18. Uthirajoo E, Ramiah H, Kanesan J, Reza AW
    PLoS One, 2014;9(7):e101862.
    PMID: 25033049 DOI: 10.1371/journal.pone.0101862
    For the first time, a new circuit to extend the linear operation bandwidth of a LTE (Long Term Evolution) power amplifier, while delivering a high efficiency is implemented in less than 1 mm2 chip area. The 950 µm × 900 µm monolithic microwave integrated circuit (MMIC) power amplifier (PA) is fabricated in a 2 µm InGaP/GaAs process. An on-chip analog pre-distorter (APD) is designed to improve the linearity of the PA, up to 20 MHz channel bandwidth. Intended for 1.95 GHz Band 1 LTE application, the PA satisfies adjacent channel leakage ratio (ACLR) and error vector magnitude (EVM) specifications for a wide LTE channel bandwidth of 20 MHz at a linear output power of 28 dBm with corresponding power added efficiency (PAE) of 52.3%. With a respective input and output return loss of 30 dB and 14 dB, the PA's power gain is measured to be 32.5 dB while exhibiting an unconditional stability characteristic from DC up to 5 GHz. The proposed APD technique serves to be a good solution to improve linearity of a PA without sacrificing other critical performance metrics.
    Matched MeSH terms: Microwaves
  19. Chew KM, Seman N, Sudirman R, Yong CY
    Biomed Mater Eng, 2014;24(6):2161-7.
    PMID: 25226914 DOI: 10.3233/BME-141027
    The development of human-like brain phantom is important for data acquisition in microwave imaging. The characteristics of the phantom should be based on the real human body dielectric properties such as relative permittivity. The development of phantom includes the greymatter and whitematter regions, each with a relative permittivity of 38 and 28 respectively at 10 GHz frequency. Results were compared with the value obtained from the standard library of Computer Simulation Technology (CST) simulation application and the existing research by Fernandez and Gabriel. Our experimental results show a positive outcome, in which the proposed mixture was adequate to represent real human brain for data acquisition.
    Matched MeSH terms: Microwaves*
  20. Zaman MR, Islam MT, Misran N, Yatim B
    ScientificWorldJournal, 2014;2014:831435.
    PMID: 24977230 DOI: 10.1155/2014/831435
    A radio frequency (RF) resonator using glass-reinforced epoxy material for C and X band is proposed in this paper. Microstrip line technology for RF over glass-reinforced epoxy material is analyzed. Coupling mechanism over RF material and parasitic coupling performance is explained utilizing even and odd mode impedance with relevant equivalent circuit. Babinet's principle is deployed to explicate the circular slot ground plane of the proposed resonator. The resonator is designed over four materials from different backgrounds which are glass-reinforced epoxy, polyester, gallium arsenide (GaAs), and rogers RO 4350B. Parametric studies and optimization algorithm are applied over the geometry of the microstrip resonator to achieve dual band response for C and X band. Resonator behaviors for different materials are concluded and compared for the same structure. The final design is fabricated over glass-reinforced epoxy material. The fabricated resonator shows a maximum directivity of 5.65 dBi and 6.62 dBi at 5.84 GHz and 8.16 GHz, respectively. The lowest resonance response is less than -20 dB for C band and -34 dB for X band. The resonator is prototyped using LPKF (S63) drilling machine to study the material behavior.
    Matched MeSH terms: Microwaves
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links