Displaying publications 81 - 100 of 633 in total

Abstract:
Sort:
  1. Ahmed MJ, Theydan SK
    Ecotoxicol Environ Saf, 2012 Oct;84:39-45.
    PMID: 22795888 DOI: 10.1016/j.ecoenv.2012.06.019
    Adsorption capacity of an agricultural waste, palm-tree fruit stones (date stones), for phenolic compounds such as phenol (Ph) and p-nitro phenol (PNPh) at different temperatures was investigated. The characteristics of such waste biomass were determined and found to have a surface area and iodine number of 495.71 m2/g and 475.88 mg/g, respectively. The effects of pH (2-12), adsorbent dose (0.6-0.8 g/L) and contact time (0-150 min) on the adsorptive removal process were studied. Maximum removal percentages of 89.95% and 92.11% were achieved for Ph and PNPh, respectively. Experimental equilibrium data for adsorption of both components were analyzed by the Langmuir, Freundlich and Tempkin isotherm models. The results show that the best fit was achieved with the Langmuir isotherm equation with maximum adsorption capacities of 132.37 and 161.44 mg/g for Ph and PNPh, respectively. The kinetic data were fitted to pseudo-first order, pseudo-second order and intraparticle diffusion models, and was found to follow closely the pseudo-second order model for both components. The calculated thermodynamic parameters, namely ΔG, ΔH, and ΔS showed that adsorption of Ph and PNPh was spontaneous and endothermic under examined conditions.
    Matched MeSH terms: Phenols/metabolism*
  2. Chan KW, Khong NM, Iqbal S, Ismail M
    Int J Mol Sci, 2012;13(6):7496-507.
    PMID: 22837707 DOI: 10.3390/ijms13067496
    The present study was conducted to evaluate the antioxidant properties of wheat and rice flours under simulated gastrointestinal pH condition. After subjecting the wheat and rice flour slurries to simulated gastrointestinal pH condition, both slurries were centrifuged to obtain the crude phenolic extracts for further analyses. Extraction yield, total contents of phenolic and flavonoids were determined as such (untreated) and under simulated gastrointestinal pH condition (treated). 1,1-diphenyl-2-picrylhydrazyl radical (DPPH(•)) scavenging activity, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) radical cation (ABTS(•+)) scavenging activity, ferric reducing antioxidant power (FRAP), beta-carotene bleaching (BCB) and iron chelating activity assays were employed for the determination of antioxidant activity of the tested samples. In almost all of the assays performed, significant improvements in antioxidant properties (p < 0.05) were observed in both flours after treatment, suggesting that wheat and rice flours contain considerably heavy amounts of bound phenolics, and that their antioxidant properties might be improved under gastrointestinal digestive conditions.
    Matched MeSH terms: Phenols/chemistry
  3. Hossain MA, Shah MD, Gnanaraj C, Iqbal M
    Asian Pac J Trop Med, 2011 Sep;4(9):717-21.
    PMID: 21967695 DOI: 10.1016/S1995-7645(11)60180-6
    OBJECTIVE: To detect the in vitro total phenolics, flavonoids contents and antioxidant activity of essential oil, various organic extracts from the leaves of tropical medicinal plant Tetrastigma from Sabah.

    METHODS: The dry powder leaves of Tetrastigma were extracted with different organic solvent such as hexane, ethyl acetate, chloroform, butanol and aqueous methanol. The total phenolic and total flavonoids contents of the essential oil and various organic extracts such as hexane, ethyl acetate, chloroform, butanol and aqueous ethanol were determined by Folin - Ciocalteu method and the assayed antioxidant activity was determined in vitro models such as antioxidant capacity by radical scavenging activity using α, α-diphenyl- β-picrylhydrazyl (DPPH) method.

    RESULTS: The total phenolic contents of the essential oil and different extracts as gallic acid equivalents were found to be highest in methanol extract (386.22 mg/g) followed by ethyl acetate (190.89 mg/g), chloroform (175.89 mg/g), hexane (173.44 mg/g), and butanol extract (131.72 mg/g) and the phenolic contents not detected in essential oil. The antioxidant capacity of the essential oil and different extracts as ascorbic acid standard was in the order of methanol extract > ethyl acetate extract >chloroform> butanol > hexane extract also the antioxidant activity was not detected in essential oil.

    CONCLUSIONS: The findings show that the extent of antioxidant activity of the essential oil and all extracts are in accordance with the amount of phenolics present in that extract. Leaves of Tetrastigma being rich in phenolics may provide a good source of antioxidant.

    Matched MeSH terms: Phenols/analysis*
  4. Ibrahim MH, Jaafar HZ, Rahmat A, Rahman ZA
    Molecules, 2010 Dec 29;16(1):162-74.
    PMID: 21191319 DOI: 10.3390/molecules16010162
    A factorial split plot 4 × 3 experiment was designed to examine and characterize the relationship among production of secondary metabolites (total phenolics, TP; total flavonoids, TF), carbohydrate content and photosynthesis of three varieties of the Malaysian medicinal herb Labisia pumila Benth. namely the varieties alata, pumila and lanceolata under CO(2) enrichment (1,200 µmol mol(-1)) combined with four levels of nitrogen fertilization (0, 90, 180 and 270 kg N ha(-1)). No varietal differences were observed, however, as the levels of nitrogen increased from 0 to 270 kg N ha(-1), the production of TP and TF decreased in the order leaves>roots>stems. The production of TP and TF was related to increased total non structural carbohydrate (TNC), where the increase in starch content was larger than that in sugar concentration. Nevertheless, the regression analysis exhibited a higher influence of soluble sugar concentration (r(2) = 0.88) than starch on TP and TF biosynthesis. Photosynthesis, on the other hand, displayed a significant negative relationship with TP and TF production (r(2) = -0.87). A decrease in photosynthetic rate with increasing secondary metabolites might be due to an increase in the shikimic acid pathway that results in enhanced production of TP and TF. Chlorophyll content exhibited very significant negative relationships with total soluble sugar, starch and total non structural carbohydrate.
    Matched MeSH terms: Phenols/metabolism*
  5. Osman H, Rahim AA, Isa NM, Bakhir NM
    Molecules, 2009;14(3):970-8.
    PMID: 19305354 DOI: 10.3390/molecules14030970
    The antioxidant activity of fresh and dried plant extracts of Paederia foetida and Syzygium aqueum were studied using beta-carotene bleaching and the 2,2'-azinobis(3-ethyl-benzothiazoline-6-sulfonic acid) (ABTS) radical cation assay. The percentage of antioxidant activity for all extract samples using both assays was between 58 and 80%. The fresh samples of both plants had higher antioxidant activity than the dried samples. The results of the beta-carotene bleaching assay were correlated (R(2) = 0.9849) with those of the ABTS assay.
    Matched MeSH terms: Phenols/analysis*
  6. Hameed BH, Rahman AA
    J Hazard Mater, 2008 Dec 30;160(2-3):576-81.
    PMID: 18434009 DOI: 10.1016/j.jhazmat.2008.03.028
    Activated carbon derived from rattan sawdust (ACR) was evaluated for its ability to remove phenol from an aqueous solution in a batch process. Equilibrium studies were conducted in the range of 25-200mg/L initial phenol concentrations, 3-10 solution pH and at temperature of 30 degrees C. The experimental data were analyzed by the Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherm models. Equilibrium data fitted well to the Langmuir model with a maximum adsorption capacity of 149.25mg/g. The dimensionless separation factor RL revealed the favorable nature of the isotherm of the phenol-activated carbon system. The pseudo-second-order kinetic model best described the adsorption process. The results proved that the prepared activated carbon was an effective adsorbent for removal of phenol from aqueous solution.
    Matched MeSH terms: Phenols/isolation & purification*
  7. Goh TB, Koh RY, Yam MF, Azhar ME, Mordi MN, Mansor SM
    Food Chem, 2015 Sep 15;183:208-16.
    PMID: 25863630 DOI: 10.1016/j.foodchem.2015.03.044
    Various 6-methoxytetrahydro-β-carboline derivatives, namely BEN (6-methoxy-1-phenyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole), ANI (6-methoxy-1-(4-methoxyphenyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole), ACE (6-methoxy-1-methyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole) and VAN (2-methoxy-4-(6-methoxy-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-1-l)phenol), were prepared via the Maillard reaction using food flavours and 5-methoxytryptamine in aqueous medium and were investigated for their in vitro antioxidant and cytotoxicity properties. These derivatives were found to exhibit moderate antioxidant properties, based on a combination of DPPH, ABTS and FRAP assays. The results suggested that the Maillard reaction could be used to generate β-carboline antioxidants. It was beneficial that VAN showed the highest antioxidant activity but the least cytotoxic activities on non-tumourous cell lines of NIH/3T3, CCD18-Co and B98-5 using MTT assay. ACE, ANI and BEN showed mild toxicity at effective antioxidative concentrations derived from DPPH and ABTS assays. Furthermore, they are safer compared to 5-fluorouracil, cisplatin and betulinic acid on NIH/3T3, CCD18-Co and B98-5 cells. In conclusion, the antioxidant and cytotoxicity properties of 6-methoxytetrahydro-β-carbolines were demonstrated for the first time.
    Matched MeSH terms: Phenols/chemistry*
  8. Tan BL, Mustafa AM
    Asia Pac J Public Health, 2003;15(2):118-23.
    PMID: 15038686
    Bisphenol A is the monomer used in the manufacture of polycarbonate. Bisphenol A is also known to mimic the female hormone estrogen. In this study, the possibility of the leaching of bisphenol A from polycarbonate babies' bottles and feeding teats was investigated. Bisphenol A was extracted from water samples exposed to the bottles and teats using liquid-liquid extraction. Bisphenol A was analysed by gas chromatograph-mass spectrometer with quadrapole detector in selected ion monitoring mode. Mean leaching of bisphenol A from 100 used babies' bottles when filled with water at 25 degrees C and 80 degrees C were 0.71 +/- 1.65 ng/cm2 (mean +/- standard deviation) and 3.37 +/- 5.68 ng/cm2 respectively. Mean leaching of bisphenol A from 30 new babies' bottles when filled with water at 25 degrees C and 80 degrees C were 0.03 +/- 0.02 ng/cm2 and 0.18 degrees 0.30 ng/cm2 respectively. Bisphenol A was observed to have leached from babies' feeding teats into 37 degrees C water ranged from non-detectable to 22.86 ng/g. The technique employed in this study is fast, reliable and economical.
    Matched MeSH terms: Phenols/isolation & purification*
  9. Tsuji Y, Vanholme R, Tobimatsu Y, Ishikawa Y, Foster CE, Kamimura N, et al.
    Plant Biotechnol J, 2015 Aug;13(6):821-32.
    PMID: 25580543 DOI: 10.1111/pbi.12316
    Bacteria-derived enzymes that can modify specific lignin substructures are potential targets to engineer plants for better biomass processability. The Gram-negative bacterium Sphingobium sp. SYK-6 possesses a Cα-dehydrogenase (LigD) enzyme that has been shown to oxidize the α-hydroxy functionalities in β-O-4-linked dimers into α-keto analogues that are more chemically labile. Here, we show that recombinant LigD can oxidize an even wider range of β-O-4-linked dimers and oligomers, including the genuine dilignols, guaiacylglycerol-β-coniferyl alcohol ether and syringylglycerol-β-sinapyl alcohol ether. We explored the possibility of using LigD for biosynthetically engineering lignin by expressing the codon-optimized ligD gene in Arabidopsis thaliana. The ligD cDNA, with or without a signal peptide for apoplast targeting, has been successfully expressed, and LigD activity could be detected in the extracts of the transgenic plants. UPLC-MS/MS-based metabolite profiling indicated that levels of oxidized guaiacyl (G) β-O-4-coupled dilignols and analogues were significantly elevated in the LigD transgenic plants regardless of the signal peptide attachment to LigD. In parallel, 2D NMR analysis revealed a 2.1- to 2.8-fold increased level of G-type α-keto-β-O-4 linkages in cellulolytic enzyme lignins isolated from the stem cell walls of the LigD transgenic plants, indicating that the transformation was capable of altering lignin structure in the desired manner.
    Matched MeSH terms: Phenols/metabolism
  10. Zawawi N, Chong PJ, Mohd Tom NN, Saiful Anuar NS, Mohammad SM, Ismail N, et al.
    Molecules, 2021 Jul 21;26(15).
    PMID: 34361551 DOI: 10.3390/molecules26154399
    Honey is a well-known natural sweetener and is rich in natural antioxidants that prevent the occurrence of oxidative stress, which is responsible for many human diseases. Some of the biochemical compounds in honey that contribute to this property are vitamins and phenolic compounds such as phenolic acids and flavonoids. However, the extent to which these molecules contribute towards the antioxidant capacity in vitro is inconsistently reported, especially with the different analytical methods used, as well as other extrinsic factors that influence these molecules' availability. Therefore, by reviewing recently published works correlating the vitamin, total phenolic, and flavonoid content in honey with its antioxidant activities in vitro, this paper will establish a relationship between these parameters. Based on the literature, vitamins do not contribute to honey's antioxidant capacity; however, the content of phenolic acids and flavonoids has an impact on honey's antioxidant activity.
    Matched MeSH terms: Phenols/analysis*
  11. Myint S, Daud WR, Mohamad AB, Kadhum AA
    J Chromatogr B Biomed Appl, 1996 Apr 26;679(1-2):193-5.
    PMID: 8998560
    An ethanolic extract of cloves was analyzed by gas chromatography directly to identify eugenol and other major phenolic compounds without previous separation of other components. Separation was performed on a fused-silica capillary column of 30 m x 0.53 mm I.D., 0.53 microns film thickness. The detector was a flame ionization detector. Helium gas at a flow-rate of 3 ml/min was used as a carrier gas. The analysis were performed with linear temperature programming. Nine components were detected and special attention was given to the major phenolic compound, eugenol.
    Matched MeSH terms: Phenols/analysis
  12. Chan EWC, Wong SK, Tangah J, Inoue T, Chan HT
    J Integr Med, 2020 May;18(3):189-195.
    PMID: 32115383 DOI: 10.1016/j.joim.2020.02.006
    Flavonoids are by far the most dominant class of phenolic compounds isolated from Morus alba leaves (MAL). Other classes of compounds are benzofurans, phenolic acids, alkaloids, coumarins, chalcones and stilbenes. Major flavonoids are kuwanons, moracinflavans, moragrols and morkotins. Other major compounds include moracins (benzofurans), caffeoylquinic acids (phenolic acids) and morachalcones (chalcones). Research on the anticancer properties of MAL entailed in vitro and in vivo cytotoxicity of extracts or isolated compounds. Flavonoids, benzofurans, chalcones and alkaloids are classes of compounds from MAL that have been found to be cytotoxic towards human cancer cell lines. Further studies on the phytochemistry and anticancer of MAL are suggested. Sources of information were PubMed, PubMed Central, ScienceDirect, Google, Google Scholar, J-Stage, PubChem and China National Knowledge Infrastructure.
    Matched MeSH terms: Phenols/pharmacology*
  13. Shori AB, Muniandy P, Baba AS
    Recent Pat Food Nutr Agric, 2021;12(1):36-44.
    PMID: 33231153 DOI: 10.2174/2212798411999201123205022
    BACKGROUND: Green, white, and black tea water extracts are rich in phenolic compounds.

    OBJECTIVE: The changes in phenolic compound profiles of green, white, and black tea (GT, WT, & BT respectively) water extracts and their respective yogurt were investigated.

    METHODS: Three types of yogurt with tea water extracts were prepared, and the phenolic compound profiles were analyzed using the liquid chromatography-mass spectrometry (LC-MS) method.

    RESULTS: The present data found that flavonol glycosides such as kaempferol-3-rutinoside and quercetin-rhamnosylgalactoside or rutinoside were present in WT extract, whereas catechin derivatives such as gallocatechin (GC) and epigallocatechin (EGC) were present in GT extract. Moreover, theaflavin-3-O-gallate was observed in BT extract. Many of the catechin and its derivatives detected in the tea extracts were not identified in the tea yogurt samples. However, new phenolic compounds were present in GT-yogurt (i.e., kaempferol-3-rutinoside and quinic acid conjugate) but absent in GT extract.

    CONCLUSION: GT, WT, & BT extracts could be used to enriched-yogurt with phenolic compounds, which may have antioxidant properties.

    Matched MeSH terms: Phenols/chemistry*
  14. Lee SY, Mediani A, Maulidiani M, Khatib A, Ismail IS, Zawawi N, et al.
    J Sci Food Agric, 2018 Jan;98(1):240-252.
    PMID: 28580581 DOI: 10.1002/jsfa.8462
    BACKGROUND: Neptunia oleracea is a plant consumed as a vegetable and which has been used as a folk remedy for several diseases. Herein, two regression models (partial least squares, PLS; and random forest, RF) in a metabolomics approach were compared and applied to the evaluation of the relationship between phenolics and bioactivities of N. oleracea. In addition, the effects of different extraction conditions on the phenolic constituents were assessed by pattern recognition analysis.

    RESULTS: Comparison of the PLS and RF showed that RF exhibited poorer generalization and hence poorer predictive performance. Both the regression coefficient of PLS and the variable importance of RF revealed that quercetin and kaempferol derivatives, caffeic acid and vitexin-2-O-rhamnoside were significant towards the tested bioactivities. Furthermore, principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) results showed that sonication and absolute ethanol are the preferable extraction method and ethanol ratio, respectively, to produce N. oleracea extracts with high phenolic levels and therefore high DPPH scavenging and α-glucosidase inhibitory activities.

    CONCLUSION: Both PLS and RF are useful regression models in metabolomics studies. This work provides insight into the performance of different multivariate data analysis tools and the effects of different extraction conditions on the extraction of desired phenolics from plants. © 2017 Society of Chemical Industry.

    Matched MeSH terms: Phenols/analysis*
  15. Daud MNH, Wibowo A, Abdullah N, Ahmad R
    Food Chem, 2018 Nov 15;266:200-214.
    PMID: 30381177 DOI: 10.1016/j.foodchem.2018.05.120
    We have previously reported on the antioxidant potential of Artocarpus heterophyllus J33 (AhJ33) variety fruit waste from different extraction methods. In the study, the rind maceration extract (RDM) exhibited the highest phenolic and polyphenolic contents and strongest antioxidant potential measured by the DPPH assay (R2 = 0.99). In this paper, we now report on the bioassay-guided fractionation of the active ethyl acetate (EtOAC) fraction of RDM and its TOF-LCMS analysis. Seven sub-fractions resulting from the chromatographic separation of the EtOAC fraction showed radical scavenging activities between 80 and 94% inhibition. Subsequent LCMS analysis led to the identification of fifteen compounds comprising 5 phenolics and 10 non-phenolic compounds, 11 of which are reported for the first time from AhJ33 variety. Most of the identified compounds have been reported to possess antioxidant activity in many previous studies. This indicates that AhJ33 is a promising source of antioxidants for the development of food and nutraceutical products.
    Matched MeSH terms: Phenols/analysis; Polyphenols/analysis*
  16. Tao Y, Han Y, Liu W, Peng L, Wang Y, Kadam S, et al.
    Ultrason Sonochem, 2019 Apr;52:193-204.
    PMID: 30514598 DOI: 10.1016/j.ultsonch.2018.11.018
    In this work, sonication (20-kHz) was conducted to assist the biosorption of phenolics from blueberry pomace extracts by brewery waste yeast biomass. The adsorption capacity of yeast increased markedly under ultrasonic fields. After sonication at 394.2 W/L and 40 °C for 120 min, the adsorption capacity was increased by 62.7% compared with that under reciprocating shaking. An artificial neural network was used to model and visualize the effects of different parameters on yeast biosorption capacity. Both biosorption time and acoustic energy density had positive influences on yeast biosorption capacity, whereas no clear influence of temperature on biosorption process was observed. Regarding the mechanism of ultrasound-enhanced biosorption process, the amino and carboxyl groups in yeast were considered to be associated with the yeast biosorption property. Meanwhile, ultrasound promoted the decline of the structure order of yeast cells induced by phenolic uptake. The interactions between yeast cells and phenolics were also affected by the structures of phenolics. Moreover, the mass transfer process was simulated by a surface diffusional model considering the ultrasound-induced yeast cell disruption. The modeling results showed that the external mass transfer coefficient in liquid phase and the surface diffusion coefficient under sonication at 394.2 W/L and 40 °C were 128.5% and 74.3% higher than that under reciprocating shaking, respectively.
    Matched MeSH terms: Phenols/chemistry*
  17. Al Balawi AN, Yusof NA, Kamaruzaman S, Mohammad F, Wasoh H, Al Abbosh KF, et al.
    Biomed Res Int, 2019;2019:7064073.
    PMID: 30868072 DOI: 10.1155/2019/7064073
    The present study has synthesized poly(4,4'-cyclohexylidene bisphenol oxalate) by the condensation of oxalyl chloride with 4,4'-cyclohexylidene bisphenol, where its efficacy was tested for the solid-phase extraction of DNA. The synthesized polymer in the form of a white powder was characterized by FTIR, TGA-DTG, SEM, and BET analysis. The study utilized solid-phase application of the resulting polymer to extract DNA. The analysis of results provided the information that the extraction efficiency is a strong dependent of polymer amount and binding buffer type. Among the three types of buffers tested, the GuHCl buffer produced the most satisfactory results in terms of yield and efficiency of extraction. Moreover, the absorbance ratio of A260/A280 in all of the samples varied from 1.682 to 1.491, thereby confirming the capability of poly(4,4'-cyclohexylidene bisphenol oxalate) to elute pure DNA. The results demonstrated an increased DNA binding capacity with respect to increased percentage of the polymer. The study has concluded that poly(bisphenol Z oxalate) can be applied as one of the potential candidates for the high efficiency extraction of DNA by means of a simple, cost-effective, and environmentally friendly approach compared to the other traditional solid-phase methods.
    Matched MeSH terms: Phenols/chemistry
  18. Ng WJ, Sit NW, Ooi PA, Ee KY, Lim TM
    Molecules, 2021 Dec 16;26(24).
    PMID: 34946710 DOI: 10.3390/molecules26247628
    Stingless bee honey, specifically honeydew honey, is generally valued for its better health benefits than those of most blossom types. However, scientific studies about the differentiation of stingless bee honey based on honeydew and blossom origins are very limited. In this study, 13C NMR spectroscopy was employed to quantify the seven major sugar tautomers in stingless bee honey samples, and the major sugar compositions of both honeydew and blossom types were found not significantly different. However, several physicochemical properties of honeydew honey including moisture content, free acidity, electrical conductivity, ash content, acetic acid, diastase, hydrogen peroxide, and mineral elements levels were significantly higher; while total soluble solid, proline, and hydroxymethylfurfural were significantly lower than blossom honey. Greater antioxidant capacity in honeydew honey was proven with higher total phenolic compounds, ABTS, DPPH, superoxide radical scavenging activities, peroxyl radical inhibition, iron chelation, and ferric reducing power. Using principal component analysis (PCA), two clusters of stingless bee honey from the honeydew and blossom origin were observed. PCA also revealed that the differentiation between honeydew and blossom origin of stingless bee honey is possible with certain physicochemical and antioxidant parameters. The combination of NMR spectroscopy and chemometrics are suggested to be useful to determine the authenticity and botanical origin of stingless bee honey.
    Matched MeSH terms: Phenols/chemistry*
  19. Eseyin OA, Sattar MA, Rathore HA, Aigbe F, Afzal S, Ahmad A, et al.
    Pak J Pharm Sci, 2018 Jan;31(1):45-50.
    PMID: 29348083
    Telfairia occidentalis possesses high antioxidant activity. However, the antioxidant components of the plant have not yet been identified. This study was undertaken to identify the phenolics in the leaf of the plant. Extract and fractions of the leaf of the plant were analysed using the HPLC and GCMS. HPLC analysis revealed the presence of gallic acid (22.19μg/mg), catechin (29.17μg/mg), caffeic acid (9.17μg/mg), ferulic acid (0.94μg/mg), sinapic acid (1.91 μg/mg) and 4-hydroxy benzoic acid (43.86 μg/mg) in the aqueous extract. Phenolics fraction contained gallic acid (0.88 μg/mg), catechin (2.70μg/mg), caffeic acid (7.92μg/mg), ferulic acid (2.72μg/mg), benzoic acid (6.36μg/mg), p-coumaric acid (1.48μg/mg), quercetin (12.00μg/mg). Only caffeic acid (2.50μg/mg), ferulic acid (0.44μg/mg) and quercetin (8.50μg/mg) were detected in the flavonoid fraction. While GCMS analysis showed the presence of methylparaben; ethylparaben; benzoic acid; 4-hydroxy-2-methoxy-3,5,6-trimethyl-, methyl ester; 4-hydroxy-3-methoxy; phenol, 5-methoxy-2-(methoxymethyl)-; phenol, 5-methoxy-2, 3- dimethyl; and phenol, 2-(2-benzothiazolyl)-. This study is the first to reveal the identity of some phenolics components of the leaf of Telfairia occidentalis.
    Matched MeSH terms: Phenols/isolation & purification*
  20. Lim PF, Leong KH, Sim LC, Abd Aziz A, Saravanan P
    Environ Sci Pollut Res Int, 2019 Feb;26(4):3455-3464.
    PMID: 30515688 DOI: 10.1007/s11356-018-3821-1
    In this work, a sunlight-sensitive photocatalyst of nanocubic-like titanium dioxide (TiO2) and N-doped graphene quantum dots (N-GQDs) is developed through a simple hydrothermal and physical mixing method. The successful amalgamation composite photocatalyst characteristics were comprehensively scrutinized through various physical and chemical analyses. A complete removal of bisphenol A (BPA) is attained by a synthesized composite after 30 min of sunlight irradiation as compared to pure TiO2. This clearly proved the unique contribution of N-GQDs that enhanced the ability of light harvesting especially under visible light and near-infrared region. This superior characteristic enables it to maximize the absorbance in the entire solar spectrum. However, the increase of N-GQDs weight percentage has created massive oxygen vacancies that suppress the generation of active radicals. This resulted in a longer duration for a complete removal of BPA as compared to lower weight percentage of N-GQDs. Hence, this finding can offer a new insight in developing effective sunlight-sensitive photocatalysts for various complex organic pollutants degradation.
    Matched MeSH terms: Phenols/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links