Displaying publications 81 - 100 of 490 in total

Abstract:
Sort:
  1. Chang YHR
    Chem Commun (Camb), 2020 Sep 17;56(74):10962-10965.
    PMID: 32789397 DOI: 10.1039/d0cc04123h
    While lab-scale synthesis of trigonal-Zr2N2S, hexagonal-Zr2N2S and hexagonal-Zr2N2Se has been reported, meaningful data on the photophysical properties of IV-nitride chalcogenides in general are scarcely available. The first-principles calculations and genetic algorithm modeling in our work reveal the existence of remarkably stable, indirect gap trigonal-Zr2N2Se and trigonal-Hf2N2Se phases, which progress to direct gap, monoclinic materials in monolayer form. These structures display the desired optoelectronic properties, such as exceptionally high visible-UV absorption spectra (105-106 cm-1) and exciton binding energy below 0.02 eV. Strong hybridization between the Zr-d, N-p and Se-p orbitals is accounted for by the polysilicon comparable Vickers hardness (10.64-12.77 GPa), while retaining ductile nature.
    Matched MeSH terms: Physical Phenomena
  2. Chatrchyan S, Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Bergauer T, et al.
    Phys Rev Lett, 2014 Apr 25;112(16):161802.
    PMID: 24815637
    Results are presented of a search for a "natural" supersymmetry scenario with gauge mediated symmetry breaking. It is assumed that only the supersymmetric partners of the top quark (the top squark) and the Higgs boson (Higgsino) are accessible. Events are examined in which there are two photons forming a Higgs boson candidate, and at least two b-quark jets. In 19.7  fb-1 of proton-proton collision data at s=8  TeV, recorded in the CMS experiment, no evidence of a signal is found and lower limits at the 95% confidence level are set, excluding the top squark mass below 360 to 410 GeV, depending on the Higgsino mass.
    Matched MeSH terms: Physical Phenomena
  3. Chaudhry AR, Armed R, Irfan A, Shaari A, Maarof H, Abdullah GAS
    Sains Malaysiana, 2014;43:867-875.
    We have designed new derivatives of naphtha [2 ,1-b:6 ,5-13V difuran as DPNDF-CN1 and DPNDF-CN2. The molecular structures of DPNDF, its derivatives DPNDF-CN1 and DPNDF-CN2 have been optimized at the ground (So) and first excited (S1) states using density functional theory (DFT) and time-dependent density functional theory (TD-DFT), respectively. Then the highest occupied molecular orbitals (HOMOs), the lowest unoccupied molecular orbitals (Lumos), photoluminescence properties, electron affinities (EELS), reorganization energies (.1.$) and ionization potentials (iPs) have been investigated. The balanced A(h) and A(e) showed that DPNDF, DPNDF-CN1 and DPNDF-CN2 would be better charge transport materials for both hole and electron. The effect of attached acceptors on the geometrical parameters, electronic, optical and charge transfer properties have also been investigated.
    Matched MeSH terms: Physical Phenomena
  4. Che Othman FE, Yusof N, Yub Harun N, Bilad MR, Jaafar J, Aziz F, et al.
    Polymers (Basel), 2020 Sep 10;12(9).
    PMID: 32927881 DOI: 10.3390/polym12092064
    Various types of activated carbon nanofibers' (ACNFs) composites have been extensively studied and reported recently due to their extraordinary properties and applications. This study reports the fabrication and assessments of ACNFs incorporated with graphene-based materials, known as gACNFs, via simple electrospinning and subsequent physical activation process. TGA analysis proved graphene-derived rice husk ashes (GRHA)/ACNFs possess twice the carbon yield and thermally stable properties compared to other samples. Raman spectra, XRD, and FTIR analyses explained the chemical structures in all resultant gACNFs samples. The SEM and EDX results revealed the average fiber diameters of the gACNFs, ranging from 250 to 400 nm, and the successful incorporation of both GRHA and reduced graphene oxide (rGO) into the ACNFs' structures. The results revealed that ACNFs incorporated with GRHA possesses the highest specific surface area (SSA), of 384 m2/g, with high micropore volume, of 0.1580 cm3/g, which is up to 88% of the total pore volume. The GRHA/ACNF was found to be a better adsorbent for CH4 compared to pristine ACNFs and reduced graphene oxide (rGO/ACNF) as it showed sorption up to 66.40 mmol/g at 25 °C and 12 bar. The sorption capacity of the GRHA/ACNF was impressively higher than earlier reported studies on ACNFs and ACNF composites. Interestingly, the CH4 adsorption of all ACNF samples obeyed the pseudo-second-order kinetic model at low pressure (4 bar), indicating the chemisorption behaviors. However, it obeyed the pseudo-first order at higher pressures (8 and 12 bar), indicating the physisorption behaviors. These results correspond to the textural properties that describe that the high adsorption capacity of CH4 at high pressure is mainly dependent upon the specific surface area (SSA), pore size distribution, and the suitable range of pore size.
    Matched MeSH terms: Physical Phenomena
  5. Chen L, Ho CD, Jen LY, Lim JW, Chen YH
    Membranes (Basel), 2020 Oct 22;10(11).
    PMID: 33105658 DOI: 10.3390/membranes10110302
    We investigated the insertion of eddy promoters into a parallel-plate gas-liquid polytetrafluoroethylene (PTFE) membrane contactor to effectively enhance carbon dioxide absorption through aqueous amine solutions (monoethanolamide-MEA). In this study, a theoretical model was established and experimental work was performed to predict and to compare carbon dioxide absorption efficiency under concurrent- and countercurrent-flow operations for various MEA feed flow rates, inlet CO2 concentrations, and channel design conditions. A Sherwood number's correlated expression was formulated, incorporating experimental data to estimate the mass transfer coefficient of the CO2 absorption in MEA flowing through a PTFE membrane. Theoretical predictions were calculated and validated through experimental data for the augmented CO2 absorption efficiency by inserting carbon-fiber spacers as an eddy promoter to reduce the concentration polarization effect. The study determined that a higher MEA feed rate, a lower feed CO2 concentration, and wider carbon-fiber spacers resulted in a higher CO2 absorption rate for concurrent- and countercurrent-flow operations. A maximum of 80% CO2 absorption efficiency enhancement was found in the device by inserting carbon-fiber spacers, as compared to that in the empty channel device. The overall CO2 absorption rate was higher for countercurrent operation than that for concurrent operation. We evaluated the effectiveness of power utilization in augmenting the CO2 absorption rate by inserting carbon-fiber spacers in the MEA feed channel and concluded that the higher the flow rate, the lower the power utilization's effectiveness. Therefore, to increase the CO2 absorption flux, widening carbon-fiber spacers was determined to be more effective than increasing the MEA feed flow rate.
    Matched MeSH terms: Physical Phenomena
  6. Chen YZ, Yong MJ, Tan VY, Kong SLS, Elnawawy HMA, Yahya NA, et al.
    Eur Endod J, 2023 May;8(3):215-224.
    PMID: 37257037 DOI: 10.14744/eej.2023.36449
    OBJECTIVE: This study compared the effects of calcium chloride dihydrate (CaCl2.2H2O) on the physical properties and push-out bond strength of white Mineral Trioxide Aggregate (WMTA) and an experimental Malaysian Portland cement mixed with nano-zirconium oxide (nano-ZrO) [(radiopaque Malaysian Portland cement (RMPC). Mineral Trioxide Aggregate (MTA) was the first calcium silicate cement (CSC) introduced in dentistry, but up to date, it is an expensive cement with long setting time and causes tooth discolouration. Although Portland cement has been introduced as a potential substitute to MTA, it still faces some challenges such as long setting time and lack of sufficient radiopacity.

    METHODS: Four groups [WMTA, RMPC, fast-set WMTA (FS-WMTA) and fast-set RMPC (FS-RMPC)] were prepared. Initial setting time was evaluated using Vicat apparatus. The pH was measured at seven-day intervals. For discolouration potential, cements were packed in the pulp chamber of 46 extracted maxillary incisors. Spectrophotometric readings were obtained at seven-day intervals, and the rate of colour change (ΔE) was recorded. For the push-out bond strength testing, cements were applied in 48 sectioned root samples, and the test was performed using universal testing machine at crosshead speed of 0.5 mm/min until bond failure. Statistical analysis was done according to the nature of each group of data using SPSS 26.

    RESULTS: Addition of CaCl2.2H2O decreased the initial setting times of both RMPC and WMTA significantly (p<0.05). The pH values of FS-WMTA and FS-RMPC were comparable to their non-accelerated counterparts ranging from 10 to 12. Discolouration effect was more obviously observed with WMTA and FS-WMTA with time compared to RMPC formulations. Push-out bond strength of the two materials also showed an increase with the addition of the accelerator, however, only FS-WMTA showed statistically significant difference compared to WMTA (p<0.05).

    CONCLUSION: The addition of CaCl2.2H2O improves the physical and mechanical properties of the newly formulated RMPC and WMTA. The RMPC formulation overcomes the discolouration potential of WMTA. (EEJ-2022-12-155).

    Matched MeSH terms: Physical Phenomena
  7. Cheng, S. H., Sarbon, N. M.
    MyJurnal
    The aim of the present work was to develop chicken skin gelatin films incorporated with
    different concentrations of rice starch prepared by casting techniques. Six film-forming
    solutions were prepared separately with different blend ratios of chicken skin gelatin to rice
    starch: A (0/100), B (5/100), C (10/100), D (15/100), E (20/100), and F (25/100). The
    rheological properties of the film-forming solutions (FFS) were determined using frequency
    sweep. The mechanical and physical properties of the respective films were also evaluated.
    With the increase in rice starch concentration, the storage (G’) modulus of FFS increased
    dramatically with loss (G”) modulus as the oscillatory frequency rising to contribute to gel
    behaviour (G’ > G”). As rice starch concentration increased, the chicken skin gelatin films
    also demonstrated higher tensile strength, elongation at break, and water vapour permeability,
    but reduced the solubility of gelatin films in water. Additionally, elevation in melting point
    values indicated that the thermal stability of the composite films was enhanced with the
    increment of rice starch concentration. Film F (with 25% rice starch) yielded the optimal film
    formulation, as it had the highest tensile strength and a high elongation at break value. Thus,
    film F shows the best potential as a film for food packaging.
    Matched MeSH terms: Physical Phenomena
  8. Chia TS, Kwong HC, Wong QA, Quah CK, Arafath MA
    Acta Crystallogr E Crystallogr Commun, 2019 Jan 01;75(Pt 1):8-11.
    PMID: 30713724 DOI: 10.1107/S2056989018016900
    A new polymorphic form of the title compound, C8H8O3, is described in the centrosymmetric monoclinic space group P21/c with Z' = 1 as compared to the first polymorph, which crystallizes with two conformers (Z' = 2) in the asymmetric unit in the same space group. In the crystal of the second polymorph, inversion dimers linked by O-H⋯O hydrogen bonds occur and these are linked into zigzag chains, propagating along the b-axis direction by C-H⋯O links. The crystal structure also features a weak π-π inter-action, with a centroid-to-centroid distance of 3.8018 (6) Å. The second polymorph of the title compound is less stable than the reported first polymorph, as indicated by its smaller calculated lattice energy.
    Matched MeSH terms: Physical Phenomena
  9. Chiu W, Too S, Daud S, Rashid N, Chia M, Rahman S, et al.
    Sains Malaysiana, 2014;43:941-945.
    In the present study, we report the size distribution study on the iron oxide (Fe304) magnetic nanocrystals (Ncs), which have been synthesized by using green chemistry approach with palm-oil based carboxylic compound (oleic acid) as capping ligands . The Fe304 Ncs were prepared by one pot reaction under non-hydrolytic approach. With the assistance of oleic acid that plays the role as effective capping-ligands , we showed that the Fe304 NCs that are highly monodispersed in size and shape can be synthesized by scrupulously controlling the reaction time. The diameter of Fe304 Ncs can be tuned within the range of 4.0-18.0 nm and exhibit very uniform morphology, which are spherical in shape. Current synthetic approach offers a cheap, environmentally benign and excellent repeatability route in large-scale production of high-quality magnetic Fe304 Ncs if compared to the preceding reports.
    Matched MeSH terms: Physical Phenomena
  10. Chong WY, Lim WH, Yap YK, Lai CK, De La Rue RM, Ahmad H
    Sci Rep, 2016 Apr 01;6:23813.
    PMID: 27034015 DOI: 10.1038/srep23813
    Increased absorption of transverse-magnetic (TM)-polarised light by a graphene-oxide (GO) coated polymer waveguide has been observed in the presence of transverse-electric (TE)-polarised light. The GO-coated waveguide exhibits very strong photo-absorption of TE-polarised light--and acts as a TM-pass waveguide polariser. The absorbed TE-polarised light causes a significant temperature increase in the GO film and induces thermal reduction of the GO, resulting in an increase in optical-frequency conductivity and consequently increased optical propagation loss. This behaviour in a GO-coated waveguide gives the action of an inverted optical switch/modulator. By varying the incident TE-polarised light power, a maximum modulation efficiency of 72% was measured, with application of an incident optical power level of 57 mW. The GO-coated waveguide was able to respond clearly to modulated TE-polarised light with a pulse duration of as little as 100 μs. In addition, no wavelength dependence was observed in the response of either the modulation (TE-polarised light) or the signal (TM-polarised light).
    Matched MeSH terms: Physical Phenomena
  11. Choo TF, Mohd Salleh MA, Kok KY, Matori KA, Abdul Rashid S
    Materials (Basel), 2020 Nov 18;13(22).
    PMID: 33218206 DOI: 10.3390/ma13225218
    Grog is an additive material that plays important roles in ceramic making. It improves the fabrication process of green bodies as well as the physical properties of fired bodies. Few low-cost materials and wastes have found their application as grog in recent years, thus encouraging the replacement of commercial grogs with cost-saving materials. Coal fly ash, a combustion waste produced by coal-fired power plant, has the potential to be converted into grog owing to its small particle sizes and high content of silica and alumina. In this study, grog was derived from coal fly ash and mixed with kaolin clay to produce ceramics. Effects of the grog addition on the resultant ceramics were investigated. It was found that, to a certain extent, the grog addition reduced the firing shrinkage and increased the total porosity of the ceramics. The dimensional stability of the ceramics at a firing temperature of 1200 °C was also not noticeably affected by the grog. However, the grog addition in general had negative effects on the biaxial flexural strength and refractoriness of the ceramics.
    Matched MeSH terms: Physical Phenomena
  12. Chow ZP, Ahmad Z, Wong KJ, Koloor SSR, Petrů M
    Polymers (Basel), 2021 Feb 04;13(4).
    PMID: 33557350 DOI: 10.3390/polym13040492
    This paper aims to propose a temperature-dependent cohesive model to predict the delamination of dissimilar metal-composite material hybrid under Mode-I and Mode-II delamination. Commercial nonlinear finite element (FE) code LS-DYNA was used to simulate the material and cohesive model of hybrid aluminium-glass fibre-reinforced polymer (GFRP) laminate. For an accurate representation of the Mode-I and Mode-II delamination between aluminium and GFRP laminates, cohesive zone modelling with bilinear traction separation law was implemented. Cohesive zone properties at different temperatures were obtained by applying trends of experimental results from double cantilever beam and end notched flexural tests. Results from experimental tests were compared with simulation results at 30, 70 and 110 °C to verify the validity of the model. Mode-I and Mode-II FE models compared to experimental tests show a good correlation of 5.73% and 7.26% discrepancy, respectively. Crack front stress distribution at 30 °C is characterised by a smooth gradual decrease in Mode-I stress from the centre to the edge of the specimen. At 70 °C, the entire crack front reaches the maximum Mode-I stress with the exception of much lower stress build-up at the specimen's edge. On the other hand, the Mode-II stress increases progressively from the centre to the edge at 30 °C. At 70 °C, uniform low stress is built up along the crack front with the exception of significantly higher stress concentrated only at the free edge. At 110 °C, the stress distribution for both modes transforms back to the similar profile, as observed in the 30 °C case.
    Matched MeSH terms: Physical Phenomena
  13. Chua SY, Guo N, Tan CS, Wang X
    Sensors (Basel), 2017 Sep 05;17(9).
    PMID: 28872589 DOI: 10.3390/s17092031
    Accuracy is an important measure of system performance and remains a challenge in 3D range gated reconstruction despite the advancement in laser and sensor technology. The weighted average model that is commonly used for range estimation is heavily influenced by the intensity variation due to various factors. Accuracy improvement in term of range estimation is therefore important to fully optimise the system performance. In this paper, a 3D range gated reconstruction model is derived based on the operating principles of range gated imaging and time slicing reconstruction, fundamental of radiant energy, Laser Detection And Ranging (LADAR), and Bidirectional Reflection Distribution Function (BRDF). Accordingly, a new range estimation model is proposed to alleviate the effects induced by distance, target reflection, and range distortion. From the experimental results, the proposed model outperforms the conventional weighted average model to improve the range estimation for better 3D reconstruction. The outcome demonstrated is of interest to various laser ranging applications and can be a reference for future works.
    Matched MeSH terms: Physical Phenomena
  14. Chuo SC, Nasir HM, Mohd-Setapar SH, Mohamed SF, Ahmad A, Wani WA, et al.
    Crit Rev Anal Chem, 2020 Sep 20.
    PMID: 32954795 DOI: 10.1080/10408347.2020.1820851
    Naturally active compounds are usually contained inside plants and materials thereof. Thus, the extraction of the active compounds from plants needs appropriate extraction methods. The commonly employed extraction methods are mostly based on solid-liquid extraction. Frequently used conventional extraction methods such as maceration, heat-assisted extraction, Soxhlet extraction, and hydrodistillation are often criticized for large solvent consumption and long extraction times. Therefore, many advanced extraction methods incorporating various technologies such as ultrasound, microwaves, high pressure, high voltage, enzyme hydrolysis, innovative solvent systems, adsorption, and mechanical forces have been studied. These advanced extraction methods are often better than conventional methods in terms of higher yields, higher selectivity, lower solvent consumption, shorter processing time, better energy efficiency, and potential to avoid organic solvents. They are usually designed to be greener, more sustainable, and environment friendly. In this review, we have critically described recently developed extraction methods pertaining to obtaining active compounds from plants and materials thereof. Main factors that affect the extraction performances are tuned, and extraction methods are chosen in line with the properties of targeted active compounds or the objectives of extraction. The review also highlights the advancements in extraction procedures by using combinations of extraction methods to obtain high overall yields or high purity extracts.
    Matched MeSH terms: Physical Phenomena
  15. Croot A, Othman MZ, Conejeros S, Fox N, Allan N
    J Phys Condens Matter, 2018 Aug 31.
    PMID: 30168449 DOI: 10.1088/1361-648X/aade16
    Substitutional clusters of multiple light element dopants are a promising route to the elusive shallow donor in diamond. To understand the behaviour of co-dopants, this report presents an extensive first principles study of possible clusters of boron and nitrogen. We use periodic hybrid density functional calculations to predict the geometry, stability and electronic excitation energies of a range of clusters containing up to five N and/or B atoms. Excitation energies from hybrid calculations are compared to those from the empirical marker method, and are in good agreement. When a boron-rich or nitrogen-rich cluster consists of 3 - 5 atoms, the minority dopant element - a nitrogen or boron atom respectively - can be in either a central or peripheral position. We find B-rich clusters are most stable when N sits centrally, whereas N-rich clusters are most stable with B in a peripheral position. In the former case, excitation energies mimic those of the single boron acceptor, while the latter produce deep levels in the band-gap. Implications for probable clusters that would arise in high-pressure high-temperature (HPHT) co-doped diamond and their properties are discussed.
    Matched MeSH terms: Physical Phenomena
  16. Damulira E, Yusoff MNS, Omar AF, Mohd Taib NH, Ahmed NM
    Appl Radiat Isot, 2021 Apr;170:109622.
    PMID: 33592486 DOI: 10.1016/j.apradiso.2021.109622
    This study compares the real-time dosimetric performance of a bpw34 photodiode (PD) and cold white light-emitting diodes (LEDs) based on diagnostic X-ray-induced signals. Signals were extracted when both the transducers were under identical exposure settings, including source-to-detector distance (SDD), tube voltage (kVp), and current-time product (mAs). The transducers were in a photovoltaic configuration, and black vinyl tape was applied on transducer active areas as a form of optical shielding. X-ray beam spectra and energies were simulated using Matlab-based Spektr functions. Transducer performance analysis was based on signal linearity to mAs and air kerma, and sensitivity dependence on absorbed dose, energy, and dose rate. Bpw34 PD and cold white LED output signals were 84.8% and 85.5% precise, respectively. PD signals were 94.7% linear to mAs, whereas LED signals were 91.9%. PD and LED signal linearity to dose coefficients were 0.9397 and 0.9128, respectively. Both transducers exhibited similar dose and energy dependence. However, cold white LEDs were 0.73% less dose rate dependent than the bpw34 PD. Cold white LEDs demonstrated potential in detecting diagnostic X-rays because their performance was similar to that of the bpw34 PD. Moreover, the cold white LED array's dosimetric response was independent of the heel effect. Although cold white LED signals were lower than bpw34 PD signals, they were quantifiable and electronically amplifiable.
    Matched MeSH terms: Physical Phenomena
  17. Darain KMU, Jumaat MZ, Shukri AA, Obaydullah M, Huda MN, Hosen MA, et al.
    Polymers (Basel), 2016 Jul 19;8(7).
    PMID: 30974542 DOI: 10.3390/polym8070261
    This study investigates the flexural behaviour of reinforced concrete (RC) beams strengthened through the combined externally bonded and near-surface mounted (CEBNSM) technique. The externally bonded reinforcement (EBR) and near-surface mounted (NSM) techniques are popular strengthening solutions, although these methods often demonstrate premature debonding failure. The proposed CEBNSM technique increases the bond area of the concrete⁻carbon fibre reinforced polymer (CFRP) interface, which can delay the debonding failure. This technique is appropriate when any structure has a narrow cross-sectional width or is in need of additional flexural capacity that an individual technique or material cannot attain. An experimental test matrix was designed with one control and five strengthened RC beams to verify the performance of the proposed technique. The strengthening materials were CFRP bar as NSM reinforcement combined with CFRP fabric as EBR material. The test variables were the diameter of the NSM bars (8 and 10 mm), the thickness of the CFRP fabrics (one and two layers) and the U-wrap anchorage. The strengthened beams showed enhancement of ultimate load capacity, stiffness, cracking behaviour, and strain compatibility. The ultimate capacity of the CEBNSM-strengthened beams increased from 71% to 105% compared to that of the control beam. A simulation method based on the moment-rotation approach was also presented to predict the behaviour of CEBNSM-strengthened RC beams.
    Matched MeSH terms: Physical Phenomena
  18. Daramola J, Ekhwan TM, Mokhtar J, Lam KC, Adeogun GA
    Heliyon, 2019 Jul;5(7):e02106.
    PMID: 31372557 DOI: 10.1016/j.heliyon.2019.e02106
    Over the years, sedimentation has posed a great danger to the storage capacity of hydropower reservoirs. Good understanding of the transport system and hydrological processes in the dam is very crucial to its sustainability. Under optimal functionality, the Shiroro dam in Northern Nigeria can generate ∼600 MW, which is ideally sufficient to power about 404,000 household. Unfortunately, there have not been reliable monitoring measures to assess yield in the upstream, where sediments are sourced into the dam. In this study, we applied the Soil and Water Assessment Tool (SWAT) to predict the hydrological processes, the sediment transport mechanism and sediment yield between 1990 and 2018 in Kaduna watershed (32,124 km2) located upstream of the dam. The model was calibrated and validated using observed flow and suspended sediment concentration (SSC) data. Performance evaluation of the model was achieved statistically using Nash-Sutcliffe (NS), coefficient of determination (r2) and percentage of observed data (p-factor). SWAT model evaluation using NS (0.71), r2 (0.80) and p-factors of 0.86 suggests that the model performed satisfactorily for streamflow and sediment yield predictions. The model identified the threshold depth of water (GWQMN.gw) and base flow (ALPHA_BF.gw) as the most sensitive parameters for streamflow and sediment yield estimation in the watershed. Our finding showed that an estimated suspended sediment yield of about 84.1 t/ha/yr was deposited within the period under study. Basins 67, 71 and 62 have erosion prone area with the highest sediment values of 79.4, 75.1 and 73.8 t/h respectively. Best management practice is highly recommended for the dam sustainability, because of the proximity of erosion-prone basins to the dam.
    Matched MeSH terms: Physical Phenomena
  19. Daryabor F, Tangang F, Liew J
    Sains Malaysiana, 2014;43:389-398.
    This study investigates the southwest monsoon circulation and temperature along the east coast of Peninsular Malaysia by using the Regional Ocean Modeling System at 9 km resolution. The simulated circulation shows strong northward flowing western boundary currents along the east coast of Peninsular Malaysia with maximum speed of approximately of 0.6-0.7 ms-1. The western boundary current, that extends to a depth of about 35 m, continues flowing northward up to approximately 7oN where it changes direction eastward. The circulation along the east coast of Peninsular Malaysia is also characterized by two anti-cyclonic eddies. Furthermore, an elongated of cooler sea surface temperature that stretches along the coast was also simulated. The existence of this cool SST pattern is associated with coastal upwelling process due to localized lifting of isotherms near the coast as a response to the southerly-southwesterly wind stress along the coast during the southwest monsoon.
    Matched MeSH terms: Physical Phenomena
  20. Das K, Anis M, Azemi BM, Ismail N
    Biotechnol Bioeng, 1995 Dec 5;48(5):551-5.
    PMID: 18623521
    Glutamic acid produced from palm waste hydrolysate by fermentation with Brevibacterium lactofermentum ATCC 13869 is produced with a remarkably high yield compared with that produced from pure glucose as a carbon source. The produce yield is 70 g/L with glucose, wherease, when palm waste hydrolysate is the fermentation medium in the same bioreactor under same conditions, it is 88 g/L. The higher yield may be attributed to the fact that this organism has the ability to convert sugars other than only glucose present in the hydrolysate. Bioreactor conditions most conducive for maximum production are pH 7.5, temperature of 30 degrees rmentation period of 48 h, inoculum size 6%, substrate concentration of 10 g per 100 mL, yeast extract 0.5 g per 100 mL as a suitable N source, and biotin at a concentration of 10 pg/L. Palm waste hydrolysate used in this study was prepared by enzymic saccharification of treated palm press fiber under conditions that yielded a maximum of 30 g/L total reducing sugars. Glutamic acid from fermentation broth was recovered by using a chromatographic column (5cm x 60 cm) packed with a strong ion-exchange resin. The filtered broth containing glutamic acid and other inorganic ions was fed to the fully charged column. The broth was continuously recycled at a flow rate of 50 mL/min (retention time of 55 min) until glutamic acid was fully adsorbed on the column leaving other ions in the effluent. Recovery was done by eluting with urea and sodium hydroxide for total displacement of glutamic acid from the resin. The eluent containing 88 g/L of glutamic acid was concentrated by evaporation to obtain solid crystals of the product. (c) 1995 John Wiley & Sons, Inc.
    Matched MeSH terms: Physical Phenomena
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links