Displaying publications 81 - 100 of 109 in total

Abstract:
Sort:
  1. Passos MA, de Cruz VO, Emediato FL, de Teixeira CC, Azevedo VC, Brasileiro AC, et al.
    BMC Genomics, 2013 Feb 05;14:78.
    PMID: 23379821 DOI: 10.1186/1471-2164-14-78
    BACKGROUND: Although banana (Musa sp.) is an important edible crop, contributing towards poverty alleviation and food security, limited transcriptome datasets are available for use in accelerated molecular-based breeding in this genus. 454 GS-FLX Titanium technology was employed to determine the sequence of gene transcripts in genotypes of Musa acuminata ssp. burmannicoides Calcutta 4 and M. acuminata subgroup Cavendish cv. Grande Naine, contrasting in resistance to the fungal pathogen Mycosphaerella musicola, causal organism of Sigatoka leaf spot disease. To enrich for transcripts under biotic stress responses, full length-enriched cDNA libraries were prepared from whole plant leaf materials, both uninfected and artificially challenged with pathogen conidiospores.

    RESULTS: The study generated 846,762 high quality sequence reads, with an average length of 334 bp and totalling 283 Mbp. De novo assembly generated 36,384 and 35,269 unigene sequences for M. acuminata Calcutta 4 and Cavendish Grande Naine, respectively. A total of 64.4% of the unigenes were annotated through Basic Local Alignment Search Tool (BLAST) similarity analyses against public databases.Assembled sequences were functionally mapped to Gene Ontology (GO) terms, with unigene functions covering a diverse range of molecular functions, biological processes and cellular components. Genes from a number of defense-related pathways were observed in transcripts from each cDNA library. Over 99% of contig unigenes mapped to exon regions in the reference M. acuminata DH Pahang whole genome sequence. A total of 4068 genic-SSR loci were identified in Calcutta 4 and 4095 in Cavendish Grande Naine. A subset of 95 potential defense-related gene-derived simple sequence repeat (SSR) loci were validated for specific amplification and polymorphism across M. acuminata accessions. Fourteen loci were polymorphic, with alleles per polymorphic locus ranging from 3 to 8 and polymorphism information content ranging from 0.34 to 0.82.

    CONCLUSIONS: A large set of unigenes were characterized in this study for both M. acuminata Calcutta 4 and Cavendish Grande Naine, increasing the number of public domain Musa ESTs. This transcriptome is an invaluable resource for furthering our understanding of biological processes elicited during biotic stresses in Musa. Gene-based markers will facilitate molecular breeding strategies, forming the basis of genetic linkage mapping and analysis of quantitative trait loci.

    Matched MeSH terms: Plant Diseases/microbiology
  2. Khayi S, Blin P, Pédron J, Chong TM, Chan KG, Moumni M, et al.
    BMC Genomics, 2015;16:788.
    PMID: 26467299 DOI: 10.1186/s12864-015-1997-z
    Dickeya solani is an emerging pathogen that causes soft rot and blackleg diseases in several crops including Solanum tuberosum, but little is known about its genomic diversity and evolution.
    Matched MeSH terms: Plant Diseases/microbiology
  3. Hafizi R, Salleh B, Latiffah Z
    Braz J Microbiol, 2013;44(3):959-68.
    PMID: 24516465
    Crown disease (CD) is infecting oil palm in the early stages of the crop development. Previous studies showed that Fusarium species were commonly associated with CD. However, the identity of the species has not been resolved. This study was carried out to identify and characterize through morphological approaches and to determine the genetic diversity of the Fusarium species. 51 isolates (39%) of Fusarium solani and 40 isolates (31%) of Fusarium oxysporum were recovered from oil palm with typical CD symptoms collected from nine states in Malaysia, together with samples from Padang and Medan, Indonesia. Based on morphological characteristics, isolates in both Fusarium species were classified into two distinct morphotypes; Morphotypes I and II. Molecular characterization based on IGS-RFLP analysis produced 27 haplotypes among the F. solani isolates and 33 haplotypes for F. oxysporum isolates, which indicated high levels of intraspecific variations. From UPGMA cluster analysis, the isolates in both Fusarium species were divided into two main clusters with the percentage of similarity from 87% to 100% for F. solani, and 89% to 100% for F. oxysporum isolates, which was in accordance with the Morphotypes I and II. The results of the present study indicated that F. solani and F. oxysporum associated with CD of oil palm in Malaysia and Indonesia were highly variable.
    Matched MeSH terms: Plant Diseases/microbiology*
  4. Ismail SI, Batzer JC, Harrington TC, Crous PW, Lavrov DV, Li H, et al.
    Mycologia, 2016 Mar-Apr;108(2):292-302.
    PMID: 26740537 DOI: 10.3852/15-036
    Members of the sooty blotch and flyspeck (SBFS) complex are epiphytic fungi in the Ascomycota that cause economically damaging blemishes of apples worldwide. SBFS fungi are polyphyletic, but approx. 96% of SBFS species are in the Capnodiales. Evolutionary origins of SBFS fungi remain unclear, so we attempted to infer their origins by means of ancestral state reconstruction on a phylogenetic tree built utilizing genes for the nuc 28S rDNA (approx. 830 bp from near the 59 end) and the second largest subunit of RNA polymerase II (RPB2). The analyzed taxa included the well-known genera of SBFS as well as non-SBFS fungi from seven families within the Capnodiales. The non-SBFS taxa were selected based on their distinct ecological niches, including plant-parasitic and saprophytic species. The phylogenetic analyses revealed that most SBFS species in the Capnodiales are closely related to plant-parasitic fungi. Ancestral state reconstruction provided strong evidence that plant-parasitic fungi were the ancestors of the major SBFS lineages. Knowledge gained from this study may help to better understand the ecology and evolution of epiphytic fungi.
    Matched MeSH terms: Plant Diseases/microbiology*
  5. Akter S, Kadir J, Juraimi AS, Saud HM, Elmahdi S
    J Environ Biol, 2014 Nov;35(6):1095-100.
    PMID: 25522511
    A total of 325 bacteria were isolated from both healthy and sheath blight infected leaf samples of rice plants, collected from different places of Malaysia, following dilution technique. Sheath blight pathogen was isolated from infected samples by tissue plating method. Out of 325, 14 isolates were found to be antagonist against the pathogen in pre evaluation test. All the 14 isolates were morphologically characterized. Antagonistic activity of these isolates was further confirmed by adopting the standard dual culture and extracellular metabolite tests. The best isolates were selected, based on the results. In dual culture test, the selected bacterial isolates KMB25, TMB33, PMB38, UMB20 and BMB42 showed 68.44%, 60.89%, 60.22%, 50.00% and 48.22% fungal growth inhibition, respectively and in extracellular metabolite test these bacterial isolates exhibited 93.33%, 84.26%, 69.82%, 67.96% and 39.26% of the same, respectively. Biochemical tests of selected isolates were performed following standard procedure. These bacterial isolates were tentatively identified as fluorescent pseudomonas by morphological and biochemical characterization. The identities were further confirmed by Biolog microstation system as P. fluorescens (UMB20), P. aeruginosa (KMB25, TMB33 and PMB38) and P. asplenii (BMB42) with similarity index ranging from 0.517 to 0.697. The effective bacterial isolates obtained from the present study can be used in the management of soil borne fungal pathogen Rhizoctonia solani, causing sheath blight of rice.
    Matched MeSH terms: Plant Diseases/microbiology*
  6. Sundram S, Meon S, Seman IA, Othman R
    Mycorrhiza, 2015 Jul;25(5):387-97.
    PMID: 25492807 DOI: 10.1007/s00572-014-0620-5
    The effect of arbuscular mycorrhizal fungi (AMF) in combination with endophytic bacteria (EB) in reducing development of basal stem rot (BSR) disease in oil palm (Elaeis guineensis) was investigated. BSR caused by Ganoderma boninense leads to devastating economic loss and the oil palm industry is struggling to control the disease. The application of two AMF with two EB as biocontrol agents was assessed in the nursery and subsequently, repeated in the field using bait seedlings. Seedlings pre-inoculated with a combination of Glomus intraradices UT126, Glomus clarum BR152B and Pseudomonas aeruginosa UPMP3 significantly reduced disease development measured as the area under disease progression curve (AUDPC) and the epidemic rate (R L) of disease in the nursery. A 20-month field trial using similar treatments evaluated disease development in bait seedlings based on the rotting area/advancement assessed in cross-sections of the seedling base. Data show that application of Glomus intraradices UT126 singly reduced disease development of BSR, but that combination of the two AMF with P. aeruginosa UPMP3 significantly improved biocontrol efficacy in both nursery and fields reducing BSR disease to 57 and 80%, respectively. The successful use of bait seedlings in the natural environment to study BSR development represents a promising alternative to nursery trial testing in the field with shorter temporal assessment.
    Matched MeSH terms: Plant Diseases/microbiology*
  7. Rashid MH, Hossain MA, Kashem MA, Kumar S, Rafii MY, Latif MA
    ScientificWorldJournal, 2014;2014:639246.
    PMID: 24723819 DOI: 10.1155/2014/639246
    Botrytis gray mold (BGM) caused by Botrytis cinerea Pers. Ex. Fr. is an extremely devastating disease of chickpea (Cicer arietinum L.) and has a regional as well as an international perspective. Unfortunately, nonchemical methods for its control are weak and ineffective. In order to identify an effective control measure, six fungicides with different modes of action were evaluated on a BGM susceptible chickpea variety BARIchhola-1 at a high BGM incidence location (Madaripur) in Bangladesh for three years (2008, 2009, and 2010). Among the six fungicides tested, one was protectant [Vondozeb 42SC, a.i. mancozeb (0.2%)], two systemic [Bavistin 50 WP, a.i. carbendazim (0.2%), and Protaf 250EC, propiconazole (0.05%)], and three combination formulations [Acrobat MZ690, dimethomorph 9% + mancozeb 60%, (0.2%); Secure 600 WG, phenomadone + mancozeb (0.2%); and Companion, mancozeb 63% + carbendazim 12% (0.2%)]. The results showed superiority of combination formulations involving both protectant and systemic fungicides over the sole application of either fungicide separately. Among the combination fungicides, Companion was most effective, resulting in the lowest disease severity (3.33 score on 1-9 scale) and the highest increase (38%) of grain yield in chickpea. Therefore, this product could be preferred over the sole application of either solo protectant or systemic fungicides to reduce yield losses and avoid fungicide resistance.
    Matched MeSH terms: Plant Diseases/microbiology*
  8. Oghenekaro AO, Miettinen O, Omorusi VI, Evueh GA, Farid MA, Gazis R, et al.
    Fungal Biol, 2014 May-Jun;118(5-6):495-506.
    PMID: 24863478 DOI: 10.1016/j.funbio.2014.04.001
    Rigidoporus microporus (Polyporales, Basidiomycota) syn. Rigidoporus lignosus is the most destructive root pathogen of rubber plantations distributed in tropical and sub-tropical regions. Our primary objective was to characterize Nigerian isolates from rubber tree and compare them with other West African, Southeast Asian and American isolates. To characterize the 20 isolates from Nigeria, we used sequence data of the nuclear ribosomal DNA ITS and LSU, β-tubulin and translation elongation factor 1-α (tef1) gene sequences. Altogether, 40 isolates of R. microporus were included in the analyses. Isolates from Africa, Asia and South/Central America formed three distinctive clades corresponding to at least three species. No phylogeographic pattern was detected among R. microporus collected from West and Central African rubber plantations suggesting continuous gene flow among these populations. Our molecular phylogenetic analysis suggests the presence of two distinctive species associated with the white rot disease. Phylogenetic analyses placed R. microporus in the Hymenochaetales in the vicinity of Oxyporus. This is the first study to characterize R. microporus isolates from Nigeria through molecular phylogenetic techniques, and also the first to compare isolates from rubber plantations in Africa and Asia.
    Matched MeSH terms: Plant Diseases/microbiology*
  9. Eslaminejad T, Zakaria M
    Microb Pathog, 2011 Nov;51(5):325-37.
    PMID: 21839160 DOI: 10.1016/j.micpath.2011.07.007
    Roselle, or Jamaica sorrel (Hibiscus sabdariffa) is a popular vegetable in many tropical regions, cultivated for its leaves, seeds, stems and calyces which, the dried calyces are used to prepare tea, syrup, jams and jellies and as beverages. The main objectives of this study were to identify and characterise fungal pathogens associated with Roselle diseases based on their morphological and cultural characteristics and to determine the pathogenicity of four fungi infecting Roselle seedlings, namely Phoma exigua, Fusarium nygamai, Fusarium tgcq and Rhizoctonia solani in Penang. A total of 200 fungal isolates were obtained from 90 samples of symptomatic Roselle tissues. The isolates were identified based on cultural and morphological characteristics, as well as their pathogenicity. The fungal pathogen most frequently isolated was P. exigua (present in 45% of the samples), followed by F. nygamai (25%), Rhizoctonia solani (19%) and F. camptoceras (11%). Pathogenicity tests showed that P. exigua, F. nygamai, F. camptoceras and R. solani were able to infect both wounded and unwounded seedlings with different degrees of severity as indicated by the Disease severity (DS). R. solani was the most pathogenic fungus affecting both wounded and unwounded Roselle seedlings, followed by P. exigua that was highly pathogenic on wounded seedlings. F. nygamai was less pathogenic while the least pathogenic fungus was F. camptoceras, infecting only the unwounded seedlings but, surprisingly, not the wounded plants.
    Matched MeSH terms: Plant Diseases/microbiology*
  10. Ashkani S, Rafii MY, Sariah M, Siti Nor Akmar A, Rusli I, Abdul Rahim H, et al.
    Genet. Mol. Res., 2011 Jul 06;10(3):1345-55.
    PMID: 21751161 DOI: 10.4238/vol10-3gmr1331
    Among 120 simple sequence repeat (SSR) markers, 23 polymorphic markers were used to identify the segregation ratio in 320 individuals of an F(2) rice population derived from Pongsu Seribu 2, a resistant variety, and Mahsuri, a susceptible rice cultivar. For phenotypic study, the most virulent blast (Magnaporthe oryzae) pathotype, P7.2, was used in screening of F(2) population in order to understand the inheritance of blast resistance as well as linkage with SSR markers. Only 11 markers showed a good fit to the expected segregation ratio (1:2:1) for the single gene model (d.f. = 1.0, P < 0.05) in chi-square (χ(2)) analyses. In the phenotypic data analysis, the F(2) population segregated in a 3:1 (R:S) ratio for resistant and susceptible plants, respectively. Therefore, resistance to blast pathotype P7.2 in Pongsu Seribu 2 is most likely controlled by a single nuclear gene. The plants from F(2) lines that showed resistance to blast pathotype P7.2 were linked to six alleles of SSR markers, RM168 (116 bp), RM8225 (221 bp), RM1233 (175 bp), RM6836 (240 bp), RM5961 (129 bp), and RM413 (79 bp). These diagnostic markers could be used in marker assisted selection programs to develop a durable blast resistant variety.
    Matched MeSH terms: Plant Diseases/microbiology*
  11. Amin NM, Bunawan H, Redzuan RA, Jaganath IB
    Int J Mol Sci, 2010;12(1):39-45.
    PMID: 21339975 DOI: 10.3390/ijms12010039
    Erwinia mallotivora was isolated from papaya infected with dieback disease showing the typical symptoms of greasy, water-soaked lesions and spots on leaves. Phylogenetic analysis of 16S rRNA gene sequences showed that the strain belonged to the genus Erwinia and was united in a monophyletic group with E. mallotivora DSM 4565 (AJ233414). Earlier studies had indicated that the causal agent for this disease was E. papayae. However, our current studies, through Koch's postulate, have confirmed that papaya dieback disease is caused by E. mallotivora. To our knowledge, this is the first new discovery of E. mallotivora as a causal agent of papaya dieback disease in Peninsular Malaysia. Previous reports have suggested that E. mallotivora causes leaf spot in Mallotus japonicus. However, this research confirms it also to be pathogenic to Carica papaya.
    Matched MeSH terms: Plant Diseases/microbiology*
  12. Miah G, Rafii MY, Ismail MR, Puteh AB, Rahim HA, Asfaliza R, et al.
    Mol Biol Rep, 2013 Mar;40(3):2369-88.
    PMID: 23184051 DOI: 10.1007/s11033-012-2318-0
    Blast disease caused by the fungal pathogen Magnaporthe oryzae is the most severe diseases of rice. Using classical plant breeding techniques, breeders have developed a number of blast resistant cultivars adapted to different rice growing regions worldwide. However, the rice industry remains threatened by blast disease due to the instability of blast fungus. Recent advances in rice genomics provide additional tools for plant breeders to improve rice production systems that would be environmentally friendly. This article outlines the application of conventional breeding, tissue culture and DNA-based markers that are used for accelerating the development of blast resistant rice cultivars. The best way for controlling the disease is to incorporate both qualitative and quantitative genes in resistant variety. Through conventional and molecular breeding many blast-resistant varieties have been developed. Conventional breeding for disease resistance is tedious, time consuming and mostly dependent on environment as compare to molecular breeding particularly marker assisted selection, which is easier, highly efficient and precise. For effective management of blast disease, breeding work should be focused on utilizing the broad spectrum of resistance genes and pyramiding genes and quantitative trait loci. Marker assisted selection provides potential solution to some of the problems that conventional breeding cannot resolve. In recent years, blast resistant genes have introgressed into Luhui 17, G46B, Zhenshan 97B, Jin 23B, CO39, IR50, Pusa1602 and Pusa1603 lines through marker assisted selection. Introduction of exotic genes for resistance induced the occurrence of new races of blast fungus, therefore breeding work should be concentrated in local resistance genes. This review focuses on the conventional breeding to the latest molecular progress in blast disease resistance in rice. This update information will be helpful guidance for rice breeders to develop durable blast resistant rice variety through marker assisted selection.
    Matched MeSH terms: Plant Diseases/microbiology
  13. Lim HP, Fong YK
    Mycopathologia, 2005 Jan;159(1):171-9.
    PMID: 15750750
    Basidiospores were isolated from the fruiting bodies of Ganoderma infecting oil palms from an estate in Johor and from ornamental palms (including oil palms) from Singapore. The spores were then germinated to obtain homokaryotic mycelia. Based on clamp connection formation in paired hyphal fusions, tester strains were identified from the homokaryons isolated. Compatibility tests were then carried out using these testers to determine the relatedness of the homokaryotic Ganoderma isolates, both from Johor and from Singapore. Results from the compatibility tests showed that Ganoderma from both locations belong to the same species, while the Ganoderma isolates from Singapore share some common alleles. The pathogenicity tests carried out on Chrysalidocarpus lutescens seedlings using inoculum growing on rubber wood blocks showed that dikaryotic mycelia can cause basal stem rot infection.
    Matched MeSH terms: Plant Diseases/microbiology*
  14. Getha K, Vikineswary S, Wong WH, Seki T, Ward A, Goodfellow M
    J Ind Microbiol Biotechnol, 2005 Jan;32(1):24-32.
    PMID: 15650871
    Streptomyces sp. strain g10 exhibited strong antagonism towards Fusarium oxysporum f.sp. cubense (Foc) races 1, 2 and 4 in plate assays by producing extracellular antifungal metabolites. Treating the planting hole and roots of 4-week-old tissue-culture-derived 'Novaria' banana plantlets with strain g10 suspension (10(8) cfu/ml), significantly (P < 0.05) reduced wilt severity when the plantlets were inoculated with 10(4) spores/ml Foc race 4. The final disease severity index for leaf symptom (LSI) and rhizome discoloration (RDI) was reduced about 47 and 53%, respectively, in strain g10-treated plantlets compared to untreated plantlets. Reduction in disease incidence was not significant (P < 0.05) when plantlets were inoculated with a higher concentration (10(6) spores/ml) of Foc race 4. Rhizosphere population of strain g10 showed significant (P = 0.05) increase of more than 2-fold at the end of the 3rd week compared to the 2nd week after soil amendment with the antagonist. Although the level dropped, the rhizosphere population at the end of the 6th week was still nearly 2-fold higher than the level detected after 2 weeks. In contrast, the root-free population declined significantly (P = 0.05), nearly 4-fold after 6 weeks when compared to the level detected after 2 weeks. Neither growth-inhibiting nor growth-stimulating effects were observed in plantlets grown in strain g10-amended soil.
    Matched MeSH terms: Plant Diseases/microbiology*
  15. Rebitanim NA, Hanafi MM, Idris AS, Abdullah SNA, Mohidin H, Rebitanim NZ
    Biomed Res Int, 2020;2020:3063710.
    PMID: 32420335 DOI: 10.1155/2020/3063710
    Basal stem rot (BSR) caused by Ganoderma boninense is a major threat to sustainable oil palm production especially in Southeast Asia and has brought economic losses to the oil palm industry around the world. With no definitive cure at present, this study introduces a new fertilizer technology called GanoCare®, as an effort to suppress BSR incidence in oil palm. Experiments were carried out to evaluate the effect of GanoCare® on growth, physiology, and BSR disease suppression using sitting technique in the oil palm nursery stage. A follow-up using similar treatments was carried out in the field to test on severity of Ganoderma using baiting technique under natural condition. Treatments tested were 10 g/month and 30 g/three months given as pretreatment only or continuous treatment. Results showed that GanoCare® increased the height, bulb diameter, leaf area, chlorophyll content, photosynthesis rate, and fresh and dry weight of the leaf, bole, and root of oil palm seedlings in the nursery trial. Seedlings treated with GanoCare® exhibited reduced percentage of disease severity, incidence, and dead seedlings, compared to the control. In nursery and field, lowest percentage of dead seedlings due to Ganoderma was found in seedlings given combination of pretreatment and continuous treatment of 30 g/three months (T4) with 5.56 and 6.67%, while control seedlings significantly marked the maximum percentage of 94.45 and 93.33%. The most successful treatment in both nursery and field was T4 with disease reductions of 77.78 and 82.36%, respectively, proving that nutrients contained in GanoCare® are essential in allowing better development of a strong defense system in the seedlings.
    Matched MeSH terms: Plant Diseases/microbiology*
  16. Azizi P, Osman M, Hanafi MM, Sahebi M, Yusop MR, Taheri S
    Plant Physiol Biochem, 2019 Nov;144:466-479.
    PMID: 31655345 DOI: 10.1016/j.plaphy.2019.10.014
    Pyricularia oryzae (P. oryzae), one of the most devastating fungal pathogens, is the cause of blast disease in rice. Infection with a blast fungus induces biological responses in the host plant that lead to its survival through the termination or suppression of pathogen growth, and metabolite compounds play vital roles in plant interactions with a wide variety of other organisms. Numerous studies have indicated that rice has a multi-layered plant immune system that includes pre-developed (e.g., cell wall and phytoanticipins), constitutive and inducible (phytoalexins) defence barriers against stresses. Significant progress towards understanding the basis of the molecular mechanisms underlying the defence responses of rice to P. oryzae has been achieved. Nonetheless, even though the important metabolites in the responses of rice to pathogens have been identified, their exact mechanisms and their contributions to plant immunity against blast fungi have not been elucidated. The purpose of this review is to summarize and discuss recent advances towards the understanding of the integrated metabolite variations in rice after P. oryzae invasion.
    Matched MeSH terms: Plant Diseases/microbiology
  17. Sahebi M, Hanafi MM, Mohidin H, Rafii MY, Azizi P, Idris AS, et al.
    Biomed Res Int, 2018;2018:1494157.
    PMID: 29721500 DOI: 10.1155/2018/1494157
    Oil palm (Elaeis guineensis Jacq) is one of the major sources of edible oil. Reducing the effect of Ganoderma, main cause of basal stem rot (BSR) on oil palm, is the main propose of this study. Understanding the oil palm defense mechanism against Ganoderma infection through monitoring changes in the secondary metabolite compounds levels before/after infection by Ganoderma under different fertilizing treatment is required. Oil palm requires macro- and microelements for growth and yield. Manipulating the nutrient for oil palm is a method to control the disease. The 3-4-month-old oil palm seedlings were given different macronutrient treatments to evaluate induction of defense related enzymes and production of secondary metabolite compounds in response to G. boninense inoculation. The observed trend of changes in the infected and uninfected seedlings was a slightly higher activity for β-1,3-glucanases, chitinase, peroxidase, and phenylalanine ammonia-lyase during the process of pathogenesis. It was found that PR proteins gave positive response to the interaction between oil palm seedlings and Ganoderma infection. Although the responses were activated systematically, they were short-lasting as the changes in enzymes activities appeared before the occurrence of visible symptoms. Effect of different nutrients doses was obviously observed among the results of the secondary metabolite compounds. Many identified/unidentified metabolite compounds were presented, of which some were involved in plant cell defense mechanism against pathogens, mostly belonging to alkaloids with bitter-tasting nitrogenous-compounds, and some had the potential to be used as new markers to detect basal stem rot at the initial step of disease.
    Matched MeSH terms: Plant Diseases/microbiology*
  18. Fan L, Wei Y, Chen Y, Jiang S, Xu F, Zhang C, et al.
    Food Chem, 2023 Mar 01;403:134419.
    PMID: 36191421 DOI: 10.1016/j.foodchem.2022.134419
    This study investigatedthe mechanism of epinecidin-1 against Botrytis cinerea, in vitro, and its effectiveness at inhibiting gray mold on postharvest peach fruit. We found that in vitro, epinecidin-1 had significantly greater antifungal activity against B. cinerea than either clavanin-A or mytimycin, two other marine derived antimicrobial peptides that we tested. Its antifungal activity was heat-resistant (15 min at 40-100 °C) and tolerant to lower concentrations of cations (<100 mM Na+, K+; <10 mM Ca2+). Epinecidin-1 interacted directly with B. cinerea genomic DNA, and that in mycelia, epinecidin-1 exposure induced accumulation of intracellular ROS and increased the permeability of cell membranes resulting in leakage of nucleic acids and aberrant cell morphology. Meanwhile, 200 μM of epinecidin-1 had a significant inhibitory effect on gray mold injected into peach fruit. These results suggested that epinecidin-1 showed promise as a potential method for controlling postharvest gray mold in peaches.
    Matched MeSH terms: Plant Diseases/microbiology
  19. Lim FH, Rasid OA, Idris AS, As'wad AWM, Vadamalai G, Parveez GKA, et al.
    Mol Biol Rep, 2023 Mar;50(3):2367-2379.
    PMID: 36580194 DOI: 10.1007/s11033-022-08131-4
    BACKGROUND: The basidiomycete fungus, Ganoderma boninense is the main contributor to oil palm Basal Stem Rot (BSR) in Malaysia and Indonesia. Lanosterol 14α-Demethylase (ERG11) is a key enzyme involved in biosynthesis of ergosterol, which is an important component in the fungal cell membrane. The Azole group fungicides are effective against pathogenic fungi including G. boninense by inhibiting the ERG11 activity. However, the work on molecular characterization of G. boninense ERG11 is still unavailable today.

    METHODS AND RESULTS: This study aimed to isolate and characterize the full-length cDNA encoding ERG11 from G. boninense. The G. boninense ERG11 gene expression during interaction with oil palm was also studied. A full-length 1860 bp cDNA encoding ERG11 was successfully isolated from G. boninense. The G. boninense ERG11 shared 91% similarity to ERG11 from other basidiomycete fungi. The protein structure homology modeling of GbERG11 was analyzed using the SWISS-MODEL workspace. Southern blot and genome data analyses showed that there is only a single copy of ERG11 gene in the G. boninense genome. Based on the in-vitro inoculation study, the ERG11 gene expression in G. boninense has shown almost 2-fold upregulation with the presence of oil palm.

    CONCLUSION: This study provided molecular information and characterization study on the G. boninense ERG11 and this knowledge could be used to design effective control measures to tackle the BSR disease of oil palm.

    Matched MeSH terms: Plant Diseases/microbiology
  20. Pinheiro TDM, Rego ECS, Alves GSC, Fonseca FCA, Cotta MG, Antonino JD, et al.
    Int J Mol Sci, 2022 Nov 05;23(21).
    PMID: 36362377 DOI: 10.3390/ijms232113589
    Banana (Musa spp.), which is one of the world's most popular and most traded fruits, is highly susceptible to pests and diseases. Pseudocercospora musae, responsible for Sigatoka leaf spot disease, is a principal fungal pathogen of Musa spp., resulting in serious economic damage to cultivars in the Cavendish subgroup. The aim of this study was to characterize genetic components of the early immune response to P. musae in Musa acuminata subsp. burmannicoides, var. Calcutta 4, a resistant wild diploid. Leaf RNA samples were extracted from Calcutta 4 three days after inoculation with fungal conidiospores, with paired-end sequencing conducted in inoculated and non-inoculated controls using lllumina HiSeq 4000 technology. Following mapping to the reference M. acuminata ssp. malaccensis var. Pahang genome, differentially expressed genes (DEGs) were identified and expression representation analyzed on the basis of gene ontology enrichment, Kyoto Encyclopedia of Genes and Genomes orthology and MapMan pathway analysis. Sequence data mapped to 29,757 gene transcript models in the reference Musa genome. A total of 1073 DEGs were identified in pathogen-inoculated cDNA libraries, in comparison to non-inoculated controls, with 32% overexpressed. GO enrichment analysis revealed common assignment to terms that included chitin binding, chitinase activity, pattern binding, oxidoreductase activity and transcription factor (TF) activity. Allocation to KEGG pathways revealed DEGs associated with environmental information processing, signaling, biosynthesis of secondary metabolites, and metabolism of terpenoids and polyketides. With 144 up-regulated DEGs potentially involved in biotic stress response pathways, including genes involved in cell wall reinforcement, PTI responses, TF regulation, phytohormone signaling and secondary metabolism, data demonstrated diverse early-stage defense responses to P. musae. With increased understanding of the defense responses occurring during the incompatible interaction in resistant Calcutta 4, these data are appropriate for the development of effective disease management approaches based on genetic improvement through introgression of candidate genes in superior cultivars.
    Matched MeSH terms: Plant Diseases/microbiology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links