Displaying publications 81 - 100 of 242 in total

Abstract:
Sort:
  1. Azeem B, KuShaari K, Man ZB, Basit A, Thanh TH
    J Control Release, 2014 May 10;181:11-21.
    PMID: 24593892 DOI: 10.1016/j.jconrel.2014.02.020
    With the exponential growth of the global population, the agricultural sector is bound to use ever larger quantities of fertilizers to augment the food supply, which consequently increases food production costs. Urea, when applied to crops is vulnerable to losses from volatilization and leaching. Current methods also reduce nitrogen use efficiency (NUE) by plants which limits crop yields and, moreover, contributes towards environmental pollution in terms of hazardous gaseous emissions and water eutrophication. An approach that offsets this pollution while also enhancing NUE is the use of controlled release urea (CRU) for which several methods and materials have been reported. The physical intromission of urea granules in an appropriate coating material is one such technique that produces controlled release coated urea (CRCU). The development of CRCU is a green technology that not only reduces nitrogen loss caused by volatilization and leaching, but also alters the kinetics of nitrogen release, which, in turn, provides nutrients to plants at a pace that is more compatible with their metabolic needs. This review covers the research quantum regarding the physical coating of original urea granules. Special emphasis is placed on the latest coating methods as well as release experiments and mechanisms with an integrated critical analyses followed by suggestions for future research.
    Matched MeSH terms: Polymers/chemistry*
  2. Razak NI, Ibrahim NA, Zainuddin N, Rayung M, Saad WZ
    Molecules, 2014;19(3):2957-68.
    PMID: 24609017 DOI: 10.3390/molecules19032957
    Bleaching treatment of kenaf fiber was performed in alkaline medium containing hydrogen peroxide solution maintained at pH 11 and 80 °C for 60 min. The bleached kenaf fiber was analyzed using Fourier Transform Infrared (FTIR) and X-ray Diffraction (XRD) analysis. The bleached kenaf fiber was then compounded with poly-(lactic acid) (PLA) via a melt blending method. The mechanical (tensile, flexural and impact) performance of the product was tested. The fiber treatment improved the mechanical properties of PLA/bleached kenaf fiber composites. Scanning electron micrograph (SEM) morphological analysis showed improvement of the interfacial adhesion between the fiber surface and polymer matrix.
    Matched MeSH terms: Polymers/chemistry*
  3. Mohammed IA, Al-Mulla EA, Kadar NK, Ibrahim M
    J Oleo Sci, 2013;62(12):1059-72.
    PMID: 24292358
    Palm and soya oils were converted to monoglycerides via transesterification of triglycerides with glycerol by one step process to produce renewable polyols. Thermoplastic polyurethanes (TPPUs) were prepared from the reaction of the monoglycerides which act as polyol with 4,4'-methylenediphenyldiisocyanate (MDI) whereas, thermosetting polyurethanes (TSPUs) were prepared from the reaction of glycerol, MDI and monoglycerides in one pot. Characterization of the polyurethanes was carried out by FT-IR, (1)H NMR, and iodine value and sol-gel fraction. The TSPUs showed good thermal properties compared to TPPUs as well as TSPUs exhibits good properties in pencil hardness and adhesion, however poorer in flexural and impact strength compared to TPPUs. The higher percentage of cross linked fraction, the higher degree of cross linking occurred, which is due to the higher number of double bond presents in the TSPUs. These were reflected in iodine value test as the highest iodine value of the soya-based thermosetting polyurethanes confirmed the highest degree of cross linking. Polyurethanes based on soya oil showed better properties compared to palm oil. This study is a breakthrough development of polyurethane resins using palm and soya oils as one of the raw materials.
    Matched MeSH terms: Polymers/chemistry*
  4. Ongkudon CM, Kansil T, Wong C
    J Sep Sci, 2014 Mar;37(5):455-64.
    PMID: 24376196 DOI: 10.1002/jssc.201300995
    To date, the number of published reports on the large-volume preparation of polymer-based monolithic chromatography adsorbents is still lacking and is of great importance. Many critical factors need to be considered when manufacturing a large-volume polymer-based monolith for chromatographic applications. Structural integrity, validity, and repeatability are thought to be the key factors determining the usability of a large-volume monolith in a separation process. In this review, we focus on problems and solutions pertaining to heat dissipation, pore size distribution, "wall channel" effect, and mechanical strength in monolith preparation. A template-based method comprising sacrificial and nonsacrificial techniques is possibly the method of choice due to its precise control over the porous structure. However, additional expensive steps are usually required for the template removal. Other strategies in monolith preparation are also discussed.
    Matched MeSH terms: Polymers/chemistry*
  5. Zakaria MR, Ariffin H, Abd-Aziz S, Hassan MA, Shirai Y
    Biomed Res Int, 2013;2013:237806.
    PMID: 24106698 DOI: 10.1155/2013/237806
    This study presents the effect of carbon to nitrogen ratio (C/N) (mol/mol) on the cell growth and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) accumulation by Comamonas sp. EB172 in 2 L fermenters using volatile fatty acids (VFA) as the carbon source. This VFA was supplemented with ammonium sulphate and yeast extract in the feeding solution to achieve C/N (mol/mol) 5, 15, 25, and 34.4, respectively. By extrapolating the C/N and the source of nitrogen, the properties of the polymers can be regulated. The number average molecular weight (M n ) of P(3HB-co-3HV) copolymer reached the highest at 838 × 10(3) Da with polydispersity index (PDI) value of 1.8, when the culture broth was supplemented with yeast extract (C/N 34.4). Tensile strength and Young's modulus of the copolymer containing 6-8 mol% 3HV were in the ranges of 13-14.4 MPa and 0.26-0.34 GPa, respectively, comparable to those of polyethylene (PE). Thus, Comamonas sp. EB172 has shown promising bacterial isolates producing polyhydroxyalkanoates from renewable carbon materials.
    Matched MeSH terms: Polymers/chemistry*
  6. Manickam B, Sreedharan R, Elumalai M
    Curr Drug Deliv, 2014;11(1):139-45.
    PMID: 24041312
    One of the popular approaches in controlling drug delivery from the polymeric carriers is suitably achieved by the inclusion of crosslinking agents into the formulations at different concentrations. Nevertheless, addition of the chemical crosslinkers such as glutaraldehyde, formaldehyde etc, used in the drug delivery systems causes very serious cytotoxic reactions. These chemical crosslinking agents did not offer any significant advantageous effects when compared to the natural crosslinking agents for instance genipin, which is quite less toxic, biocompatible and offers very stable crosslinked products. Based on the earlier reports the safety of this particular natural crosslinker is very well established, since it has been widely used as a Chinese traditional medicine for long-time, isolated from fruits of the plant Gardenia jasminoides Ellis. This concise article largely portrayed the value of this unique natural crosslinker, utilized in controlling the drug delivery from the various formulations.
    Matched MeSH terms: Polymers/chemistry
  7. Silverajah VS, Ibrahim NA, Zainuddin N, Yunus WM, Hassan HA
    Molecules, 2012 Oct 08;17(10):11729-47.
    PMID: 23044711 DOI: 10.3390/molecules171011729
    Poly(lactic acid) (PLA) is known to be a useful material in substituting the conventional petroleum-based polymer used in packaging, due to its biodegradability and high mechanical strength. Despite the excellent properties of PLA, low flexibility has limited the application of this material. Thus, epoxidized palm olein (EPO) was incorporated into PLA at different loadings (1, 2, 3, 4 and 5 wt%) through the melt blending technique and the product was characterized. The addition of EPO resulted in a decrease in glass transition temperature and an increase of elongation-at-break, which indicates an increase in the PLA chain mobility. PLA/EPO blends also exhibited higher thermal stability than neat PLA. Further, the PLA/1 wt% EPO blend showed enhancement in the tensile, flexural and impact properties. This is due to improved interaction in the blend producing good compatible morphologies, which can be revealed by Scanning Electron Microscopy (SEM) analysis. Therefore, PLA can be efficiently plasticized by EPO and the feasibility of its use as flexible film for food packaging should be considered.
    Matched MeSH terms: Polymers/chemistry*
  8. Giita Silverajah VS, Ibrahim NA, Yunus WM, Hassan HA, Woei CB
    Int J Mol Sci, 2012;13(5):5878-98.
    PMID: 22754338 DOI: 10.3390/ijms13055878
    In this work, poly(lactic acid) (PLA) a fully biodegradable thermoplastic polymer matrix was melt blended with three different epoxidized palm oil (EPO). The aim of this research was to enhance the flexibility, mechanical and thermal properties of PLA. The blends were prepared at various EPO contents of 1, 2, 3, 4 and 5 wt% and characterized. The SEM analysis evidenced successful modification on the neat PLA brittle morphology. Tensile tests indicate that the addition of 1 wt% EPO is sufficient to improve the strength and flexibility compared to neat PLA. Additionally, the flexural and impact properties were also enhanced. Further, DSC analysis showed that the addition of EPO results in a decrease in T(g), which implies an increase in the PLA chain mobility. In the presence of 1 wt% EPO, TGA results revealed significant increase in the thermal stability by 27%. Among the three EPOs used, EPO(3) showed the best mechanical and thermal properties compared to the other EPO's, with an optimum loading of 1 wt%. Conclusively, EPO showed a promising outcome to overcome the brittleness and improve the overall properties of neat PLA, thus can be considered as a potential plasticizer.
    Matched MeSH terms: Polymers/chemistry*
  9. Chieng BW, Ibrahim NA, Yunus WM, Hussein MZ, Giita Silverajah VS
    Int J Mol Sci, 2012;13(9):10920-34.
    PMID: 23109829 DOI: 10.3390/ijms130910920
    Graphene nanoplatelet (xGnP) was investigated as a novel reinforcement filler in mechanical properties for poly(lactic acid) (PLA)/epoxidized palm oil (EPO) blend. PLA/EPO/xGnP green nanocomposites were successfully prepared by melt blending method. PLA/EPO reinforced with xGnP resulted in an increase of up to 26.5% and 60.6% in the tensile strength and elongation at break of the nanocomposites respectively, compared to PLA/EPO blend. XRD pattern showed the presence of peak around 26.5° in PLA/EPO nanocomposites which corresponds to characteristic peak of graphene nanoplatelets. However, incorporation of xGnP has no effect on the flexural strength and modulus. Impact strength of PLA/5 wt% EPO improved by 73.6% with the presence of 0.5 wt% xGnP loading. Mechanical properties of PLA were greatly improved by the addition of a small amount of graphene nanoplatelets (<1 wt%).
    Matched MeSH terms: Polymers/chemistry*
  10. Abdullah MM, Jamaludin L, Hussin K, Bnhussain M, Ghazali CM, Ahmad MI
    Int J Mol Sci, 2012;13(4):4388-95.
    PMID: 22605984 DOI: 10.3390/ijms13044388
    This paper presents the results of a study on the effect of temperature on geopolymers manufactured using pozzolanic materials (fly ash). In this paper, we report on our investigation of the performance of porous geopolymers made with fly ash after exposure to temperatures from 600 °C up to 1000 °C. The research methodology consisted of pozzolanic materials (fly ash) synthesized with a mixture of sodium hydroxide and sodium silicate solution as an alkaline activator. Foaming agent solution was added to geopolymer paste. The geopolymer paste samples were cured at 60 °C for one day and the geopolymers samples were sintered from 600 °C to 1000 °C to evaluate strength loss due to thermal damage. We also studied their phase formation and microstructure. The heated geopolymers samples were tested by compressive strength after three days. The results showed that the porous geopolymers exhibited strength increases after temperature exposure.
    Matched MeSH terms: Polymers/chemistry*
  11. Ahmad MB, Gharayebi Y, Salit MS, Hussein MZ, Ebrahimiasl S, Dehzangi A
    Int J Mol Sci, 2012;13(4):4860-72.
    PMID: 22606014 DOI: 10.3390/ijms13044860
    Polyimide/SiO(2) composite films were prepared from tetraethoxysilane (TEOS) and poly(amic acid) (PAA) based on aromatic diamine (4-aminophenyl sulfone) (4-APS) and aromatic dianhydride (3,3,4,4-benzophenonetetracarboxylic dianhydride) (BTDA) via a sol-gel process in N-methyl-2-pyrrolidinone (NMP). The prepared polyimide/SiO(2) composite films were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and thermogravimetric analysis (TGA). The FTIR results confirmed the synthesis of polyimide (4-APS/BTDA) and the formation of SiO(2) particles in the polyimide matrix. Meanwhile, the SEM images showed that the SiO(2) particles were well dispersed in the polyimide matrix. Thermal stability and kinetic parameters of the degradation processes for the prepared polyimide/SiO(2) composite films were investigated using TGA in N(2) atmosphere. The activation energy of the solid-state process was calculated using Flynn-Wall-Ozawa's method without the knowledge of the reaction mechanism. The results indicated that thermal stability and the values of the calculated activation energies increased with the increase of the TEOS loading and the activation energy also varied with the percentage of weight loss for all compositions.
    Matched MeSH terms: Polymers/chemistry
  12. Asman S, Yusof NA, Abdullah AH, Haron MJ
    Molecules, 2012 Feb 15;17(2):1916-28.
    PMID: 22337139 DOI: 10.3390/molecules17021916
    This work reports the synthesis and characterization of a hybrid molecularly imprinted polymer (MIP) membrane for removal of methylene blue (MB) in an aqueous environment. MB-MIP powders were hybridized into a polymer membrane (cellulose acetate (CA) and polysulfone (PSf)) after it was ground and sieved (using 90 µm sieve). MB-MIP membranes were prepared using a phase inversion process. The MB-MIP membranes were characterized using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope (SEM). Parameters investigated for the removal of MB by using membrane MB-MIP include pH, effect of time, concentration of MB, and selectivity studies. Maximum sorption of MB by PSf-MB-MIP membranes and CA-MB-MIP membranes occurred at pH 10 and pH 12, respectively. The kinetic study showed that the sorption of MB by MB-MIP membranes (PSf-MB-MIP and CA-MB-MIP) followed a pseudo-second-order-model and the MB sorption isotherm can be described by a Freundlich isotherm model.
    Matched MeSH terms: Polymers/chemistry*
  13. Reddi Mohan Naidu K, Satheesh Krishna B, Anil Kumar M, Arulselvan P, Ibrahim Khalivulla S, Lasekan O
    Molecules, 2012 Jun 18;17(6):7543-55.
    PMID: 22710828 DOI: 10.3390/molecules17067543
    Polyethyleneglycol bound sulfonic acid (PEG-OSO₃H), a chlorosulphonic acid-modified polyethylene glycol was successfully used as an efficient and eco-friendly polymeric catalyst in the synthesis of 14-aryl/heteroaryl-14H-dibenzo[a,j]xanthenes obtained from the reaction of 2-naphthol and carbonyl compounds under solvent-free conditions with short reaction times and excellent yields. The biological properties of these synthesized title compounds revealed that compounds 3b, 3c, 3f and 3i showed highly significant anti-viral activity against tobacco mosaic virus.
    Matched MeSH terms: Polymers/chemistry*
  14. Hoque ME, Chuan YL, Pashby I
    Biopolymers, 2012 Feb;97(2):83-93.
    PMID: 21830198 DOI: 10.1002/bip.21701
    Advances in scaffold design and fabrication technology have brought the tissue engineering field stepping into a new era. Conventional techniques used to develop scaffolds inherit limitations, such as lack of control over the pore morphology and architecture as well as reproducibility. Rapid prototyping (RP) technology, a layer-by-layer additive approach offers a unique opportunity to build complex 3D architectures overcoming those limitations that could ultimately be tailored to cater for patient-specific applications. Using RP methods, researchers have been able to customize scaffolds to mimic the biomechanical properties (in terms of structural integrity, strength, and microenvironment) of the organ or tissue to be repaired/replaced quite closely. This article provides intensive description on various extrusion based scaffold fabrication techniques and review their potential utility for TE applications. The extrusion-based technique extrudes the molten polymer as a thin filament through a nozzle onto a platform layer-by-layer and thus building 3D scaffold. The technique allows full control over pore architecture and dimension in the x- and y- planes. However, the pore height in z-direction is predetermined by the extruding nozzle diameter rather than the technique itself. This review attempts to assess the current state and future prospects of this technology.
    Matched MeSH terms: Polymers/chemistry
  15. Aziz HA, Tan YT, Peh KK
    AAPS PharmSciTech, 2012 Mar;13(1):35-45.
    PMID: 22101965 DOI: 10.1208/s12249-011-9707-x
    Microencapsulation of water-soluble drugs using coacervation-phase separation method is very challenging, as these drugs partitioned into the aqueous polymeric solution, resulting in poor drug entrapment. For evaluating the effect of ovalbumin on the microencapsulation of drugs with different solubility, pseudoephedrine HCl, verapamil HCl, propranolol HCl, paracetamol, and curcuminoid were used. In addition, drug mixtures comprising of paracetamol and pseudoephedrine HCl were also studied. The morphology, encapsulation efficiency, particle size, and in vitro release profile were investigated. The results showed that the solubility of the drug determined the ratio of ovalbumin to be used for successful microencapsulation. The optimum ratios of drug, ovalbumin, and gelatin for water-soluble (pseudoephedrine HCl, verapamil HCl, and propranolol HCl), sparingly water-soluble (paracetamol), and water-insoluble (curcuminoid) drugs were found to be 1:1:2, 2:3:5, and 1:3:4. As for the drug mixture, the optimum ratio of drug, ovalbumin, and gelatin was 2:3:5. Encapsulated particles prepared at the optimum ratios showed high yield, drug loading, entrapment efficiency, and sustained release profiles. The solubility of drug affected the particle size of the encapsulated particle. Highly soluble drugs resulted in smaller particle size. In conclusion, addition of ovalbumin circumvented the partitioning effect, leading to the successful microencapsulation of water-soluble drugs.
    Matched MeSH terms: Polymers/chemistry*
  16. Abdi MM, Abdullah LC, Sadrolhosseini AR, Mat Yunus WM, Moksin MM, Tahir PM
    PLoS One, 2011;6(9):e24578.
    PMID: 21931763 DOI: 10.1371/journal.pone.0024578
    A new sensing area for a sensor based on surface plasmon resonance (SPR) was fabricated to detect trace amounts of mercury and lead ions. The gold surface used for SPR measurements were modified with polypyrrole-chitosan (PPy-CHI) conducting polymer composite. The polymer layer was deposited on the gold surface by electrodeposition. This optical sensor was used for monitoring toxic metal ions with and without sensitivity enhancement by chitosan in water samples. The higher amounts of resonance angle unit (ΔRU) were obtained for PPy-CHI film due to a specific binding of chitosan with Pb(2+) and Hg(2+) ions. The Pb(2+) ion bind to the polymer films most strongly, and the sensor was more sensitive to Pb(2+) compared to Hg(2+). The concentrations of ions in the parts per million range produced the changes in the SPR angle minimum in the region of 0.03 to 0.07. Data analysis was done by Matlab software using Fresnel formula for multilayer system.
    Matched MeSH terms: Polymers/chemistry*
  17. Walter JK, Jin Z, Jornitz MW, Gorrschalk U
    Methods Biochem Anal, 2011;54:281-317.
    PMID: 21954783
    Matched MeSH terms: Polymers/chemistry*
  18. Hena S
    J Hazard Mater, 2010 Sep 15;181(1-3):474-9.
    PMID: 20627405 DOI: 10.1016/j.jhazmat.2010.05.037
    Adsorption capacity of Cr(VI) onto chitosan coated with poly 3-methyl thiophene synthesized chemically was investigated in a batch system by considering the effects of various parameters like contact time, initial concentration, pH and temperature. Cr(VI) removal is pH dependent and found to be maximum at pH 2.0. Increases in adsorption capacity with increase in temperature indicate that the adsorption reaction is endothermic. Based on this study, the thermodynamic parameters like standard Gibb's free energy (DeltaG degrees), standard enthalpy (DeltaH degrees) and standard entropy (DeltaS degrees) were evaluated. Adsorption kinetics of Cr(VI) ions onto chitosan coated with poly 3-methyl thiophene were analyzed by pseudo-first-order and pseudo-second-order models. The Langmuir, Freundlich and Temkin isotherms were used to describe the adsorption equilibrium studies of chitosan coated with poly 3-methyl thiophene at different temperatures. Langmuir isotherm shows better fit than Freundlich and Temkin isotherms in the temperature range studied. The results show that the chitosan coated with poly 3-methyl thiophene can be efficiently used for the treatment of wastewaters containing chromium as a low cost alternative compared to commercial activated carbon and other adsorbents reported. In order to find out the possibility of regeneration and reuse of exhausted adsorbent, desorption studies were also performed.
    Matched MeSH terms: Polymers/chemistry*
  19. Ariffin H, Nishida H, Hassan MA, Shirai Y
    Biotechnol J, 2010 May;5(5):484-92.
    PMID: 20408140 DOI: 10.1002/biot.200900293
    Chemical recycling of bio-based polymers polyhydroxyalkanoates (PHAs) by thermal degradation was investigated from the viewpoint of biorefinery. The thermal degradation resulted in successful transformation of PHAs into vinyl monomers using alkali earth compound (AEC) catalysts. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)s (PHBVs) were smoothly and selectively depolymerized into crotonic (CA) and 2-pentenoic (2-PA) acids at lower degradation temperatures in the presence of CaO and Mg(OH)(2) as catalysts. Obtained CA from 3-hydroxybutyrate sequences in PHBV was copolymerized with acrylic acid to produce useful water-soluble copolymers, poly(crotonic acid-co-acrylic acid) that have high glass-transition temperatures. The copolymerization of CA derived from PHA pyrolysis is an example of cascade utilization of PHAs, which meets the idea of sustainable development.
    Matched MeSH terms: Polymers/chemistry
  20. Ali N, Halim NS, Jusoh A, Endut A
    Bioresour Technol, 2010 Mar;101(5):1459-65.
    PMID: 19786347 DOI: 10.1016/j.biortech.2009.08.070
    The focus of this research is to study the potential of nanofiltration membrane technology in removing ammonia-nitrogen from the aquaculture system. One of the major fabrication parameters that directly affect the separation performance is shear rate or casting rate during membrane fabrication. In this study, asymmetric polyethersulfone (PES) nanofiltration membranes were prepared at five different shear rates within the range of 67-400 s(-1). Membrane productivity and separation performance were assessed via pure water, salt and ammonia-nitrogen permeation experiments, and their structural properties were determined by employing the combination of the irreversible thermodynamic (IT) model, solution diffusion model, steric hindrance pore (SHP) model and Teorell-Meyers (TMS) model. The study reveals that the alteration of shear rate enormously affects the membrane morphology and structural parameters, hence subsequently significantly influencing the membrane performance. It was found that, membrane produced at the shear rate 200 s(-1) or equivalent to 10s of casting speed during membrane fabrications managed to remove about 68% of ammonia-nitrogen, in which its separation performance is the most favourable by means of highest flux and rejection ability towards unwanted solutes. Besides, from the research findings, nano-membrane technology is a potential candidate for the treatment of aquaculture wastewater.
    Matched MeSH terms: Polymers/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links