Displaying publications 81 - 100 of 509 in total

Abstract:
Sort:
  1. Rasul MG, Islam MS, Yunus RBM, Mokhtar MB, Alam L, Yahaya FM
    Water Environ Res, 2017 Dec 01;89(12):2088-2102.
    PMID: 28087920 DOI: 10.2175/106143017X14839994522740
      The spatio-temporal variability of water quality associated with anthropogenic activities was studied for the Bertam River and its main tributaries within the Bertam Catchment, Cameron Highlands, Malaysia. A number of physico-chemical parameters of collected samples were analyzed to evaluate their spatio-temporal variability. Nonparametric statistical analysis showed significant temporal and spatial differences (p < 0.05) in most of the parameters across the catchment. Parameters except dissolved oxygen and chemical oxygen demand displayed higher values in rainy season. The higher concentration of total suspended solids was caused by massive soil erosion and sedimentation. Seasonal variations in contaminant concentrations are largely affected by precipitation and anthropogenic influences. Untreated domestic wastewater discharge as well as agricultural runoff significantly influenced the water quality. Poor agricultural practices and development activities at slope areas also affected the water quality within the catchment. The analytical results provided a basis for protection of river environments and ecological restoration in mountainous Bertam Catchment.
    Matched MeSH terms: Rivers/chemistry*
  2. Fatema K, Wan Maznah WO, Isa MM
    Trop Life Sci Res, 2014 Dec;25(2):1-19.
    PMID: 27073596 MyJurnal
    In this study, factor analysis (FA) was applied to extract the hidden factors responsible for water quality variations during both wet and dry seasons. Water samples were collected from six sampling stations (St. 1 Lalang River, St. 2 Semeling River, St. 3 Jagung River, St. 4 Teluk Wang River, St. 5 Gelam River and St. 6 Derhaka River) in the Merbok estuary, Malaysia from January to December 2011; the samples were further analysed in the laboratory. Correlation analysis of the data sets showed strong correlations between the parameters. Nutrients such as nitrate (NO3 (-)), nitrite (NO2 (-)), ammonia (NH3) and phosphate (PO4 (3-)) were determined to be critical indicators of water quality throughout the year. Influential water quality parameters during the wet season were conductivity, salinity, biochemical oxygen demand (BOD), dissolved oxygen (DO) and chlorophyll a (Chla), whereas total suspended solid (TSS) and pH were critical water quality indicators during the dry season. The Kruskal-Wallis H test showed that water quality parameters were significantly different among the sampling months and stations (p<0.05), and Mann-Whitney U tests further revealed that the significantly different parameters were temperature, pH, DO, TSS, NO2 (-) and BOD (p<0.01), whereas salinity, conductivity, NO3 (-), PO4 (3-), NH3 and Chla were not significantly different (p>0.05). Water quality parameters in the estuary varied on both temporal and spatial scales and these results may serve as baseline information for estuary management, specifically for the Merbok estuary.
    Matched MeSH terms: Rivers
  3. Syed Sharizman Syed Abdul Rahim
    MyJurnal
    Introduction: Food poisoning usually occurs with the consumption of contaminated food. Some related factors are unsafe water supply, poor sanitation, unhygienic waste disposal and unhygienic practices or poor personal hygiene by food handlers. The purpose of this study is to describe the spatial epidemiology of food poisoning cases in the four districts of Sabah. Methods: This review consists of all food poisoning cases reported from 2011 to 2014 from Kota Kinabalu, Penampang, Putatan and Papar, Sabah. The coordinates used for locations of cases are based on home addresses. Tools such as SPSS v20, ArcGIS v10 and CrimeStat IV were used for data analysis and mapping. Results: A total of 1,787 cases of food poisoning were reported during this review period. In 2011, only Kota Kinabalu and Pa-par illustrated significant food poisoning clusters. Meanwhile, in the year 2012 to 2014, Kota Kinabalu, Penampang and Putatan had clustering of cases. Analysis of nearest neighbour hierarchical clustering analysis showed 32 food poisoning clusters. There were 4 food poisoning points at 500 meters radius around a market place, 2 food poisoning points near a sewage plant and 1 food poisoning point near a water treatment plant. No cases were near a municipal landfill. For rivers and coastline, there were 37 points of food poisoning cases in the proximity of 500 meters. Con-clusion: Food poisoning usually occurs in clusters with possible associated environmental factors.
    Matched MeSH terms: Rivers
  4. Sakai N, Mohd Yusof R, Sapar M, Yoneda M, Ali Mohd M
    Sci Total Environ, 2016 Apr 01;548-549:43-50.
    PMID: 26799806 DOI: 10.1016/j.scitotenv.2016.01.040
    Beta-agonists and sulfonamides are widely used for treating both humans and livestock for bronchial and cardiac problems, infectious disease and even as growth promoters. There are concerns about their potential environmental impacts, such as producing drug resistance in bacteria. This study focused on their spatial distribution in surface water and the identification of pollution sources in the Langat River basin, which is one of the most urbanized watersheds in Malaysia. Fourteen beta-agonists and 12 sulfonamides were quantitatively analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). A geographic information system (GIS) was used to visualize catchment areas of the sampling points, and source profiling was conducted to identify the pollution sources based on a correlation between a daily pollutant load of the detected contaminant and an estimated density of human or livestock population in the catchment areas. As a result, 6 compounds (salbutamol, sulfadiazine, sulfapyridine, sulfamethazine, sulfadimethoxine and sulfamethoxazole) were widely detected in mid catchment areas towards estuary. The source profiling indicated that the pollution sources of salbutamol and sulfamethoxazole were from sewage, while sulfadiazine was from effluents of cattle, goat and sheep farms. Thus, this combination method of quantitative and spatial analysis clarified the spatial distribution of these drugs and assisted for identifying the pollution sources.
    Matched MeSH terms: Rivers/chemistry
  5. Moayedi H, Osouli A, Tien Bui D, Foong LK
    Sensors (Basel), 2019 Oct 29;19(21).
    PMID: 31671801 DOI: 10.3390/s19214698
    Regular optimization techniques have been widely used in landslide-related problems. This paper outlines two novel optimizations of artificial neural network (ANN) using grey wolf optimization (GWO) and biogeography-based optimization (BBO) metaheuristic algorithms in the Ardabil province, Iran. To this end, these algorithms are synthesized with a multi-layer perceptron (MLP) neural network for optimizing its computational parameters. The used spatial database consists of fourteen landslide conditioning factors, namely elevation, slope aspect, land use, plan curvature, profile curvature, soil type, distance to river, distance to road, distance to fault, rainfall, slope degree, stream power index (SPI), topographic wetness index (TWI) and lithology. 70% of the identified landslides are randomly selected to train the proposed models and the remaining 30% is used to evaluate the accuracy of them. Also, the frequency ratio theory is used to analyze the spatial interaction between the landslide and conditioning factors. Obtained values of area under the receiver operating characteristic curve, as well as mean square error and mean absolute error showed that both GWO and BBO hybrid algorithms could efficiently improve the learning capability of the MLP. Besides, the BBO-based ensemble surpasses other implemented models.
    Matched MeSH terms: Rivers
  6. Sakai N, Alsaad Z, Thuong NT, Shiota K, Yoneda M, Ali Mohd M
    Chemosphere, 2017 Oct;184:857-865.
    PMID: 28646768 DOI: 10.1016/j.chemosphere.2017.06.070
    Arsenic and 5 heavy metals (nickel, copper, zinc, cadmium and lead) were quantitated in surface water (n = 18) and soil/ore samples (n = 45) collected from 5 land uses (oil palm converted from forest, oil palm in peat swamp, bare land, quarry and forest) in the Selangor River basin by inductively coupled plasma mass spectrometry (ICP-MS). Geographic information system (GIS) was used as a spatial analytical tool to classify 4 land uses (forest, agriculture/peat, urban and bare land) from a satellite image taken by Landsat 8. Source profiling of the 6 elements was conducted to identify their occurrence, their distribution and the pollution source associated with the land use. The concentrations of arsenic, cadmium and lead were also analyzed in maternal blood (n = 99) and cord blood (n = 87) specimens from 136 pregnant women collected at the University of Malaya Medical Center for elucidating maternal exposure as well as maternal-to-fetal transfer. The source profiling identified that nickel and zinc were discharged from sewage and/or industrial effluents, and that lead was discharged from mining sites. Arsenic showed a site-specific pollution in tin-tungsten deposit areas, and the pollution source could be associated with arsenopyrite. The maternal blood levels of arsenic (0.82 ± 0.61 μg/dL), cadmium (0.15 ± 0.2 μg/dL) and lead (2.6 ± 2.1 μg/dL) were not significantly high compared to their acute toxicity levels, but could have attributable risks of chronic toxicity. Those in cord blood were significantly decreased in cadmium (0.06 ± 0.07 μg/dL) and lead (0.99 ± 1.2 μg/dL) but were equivalent in arsenic (0.82 ± 1.1 μg/dL) because of the different kinetics of maternal-to-fetal transfer.
    Matched MeSH terms: Rivers/chemistry
  7. Mustafa S, Bahar A, Aziz ZA, Darwish M
    J Contam Hydrol, 2020 Aug;233:103662.
    PMID: 32569923 DOI: 10.1016/j.jconhyd.2020.103662
    This article provides an analytical solute transport model to investigate the potential of groundwater contamination by polluted surface water in a two dimensional domain. The clogging of streambed which makes the aquifer partially penetrated by the stream, is considered in the model. The impacts of pumping process, hydraulic conductivity and clogging layer on the quality of water produced from nearby drinking water wells are evaluated. It is found that results are consistent with numerical simulation conducted by MODFLOW software. Moreover, the model is applied using data of contamination occurrence in Malaysia, where high contaminants concentrations are found close to streams. Results show that the pumping activities (rate and time period) are crucial factors when evaluating the risk of groundwater contamination from surface water. Additionally, this study illustrates that the increase in either hydraulic conductivity or leakance coefficient parameters due to the clogging layer will enlarge the area of contamination. The model is able to determine the suitable pumping rate and location of the well so that the contamination plume never reaches the extraction well, which is useful in constructing riverbank filtration sites.
    Matched MeSH terms: Rivers
  8. Tan WT, Tan GS, Nather Khan IS
    Environ Pollut, 1988;52(3):221-35.
    PMID: 15092608
    Chemical forms of copper and lead in river water of the Linggi River Basin have been fractionated into ASV labile, moderately labile, slowly labile, and inert metal species, based on a previously proposed scheme. Free (hydrated) metal ions were identified by a potentiometric method using an ion selective electrode. Speciation results showed that the soluble copper and lead species occurred mainly in the moderately labile and slowly labile fractions. The speciation results are primarily interpreted in terms of organic interaction due to agricultural based and light industries, and urban discharges. The measured metal complexing capacity (MCC) of the samples reveals consistency of the results with the nature of the discharge. MCC correlates reasonably well with the value from the permanganate test on the river water. In general, the speciation pattern was found to be consistent with the findings of other workers.
    Matched MeSH terms: Rivers
  9. Tingga RCT, Anwarali F, Mohd Ridwan A, M. T. Abdullah M, Senawi J
    Sains Malaysiana, 2012;41:659-669.
    A faunal survey aimed to document small mammals was conducted at Nature Study Centre of Kuala Atok, Taman Negara Pahang from 16th to 23rd May 2008. This survey was part of the Biodiversity Inventory Programme that was organised by the Department of Wildlife and National Parks (DWNP). On average, ten mist nets, two four-bank harp traps, 100 cage traps and 40 Sherman traps were set for six trapping nights. A total of 79 individuals from three orders, seven families and 23 species were caught in this study. Of the 23 species, three were frugivorous bats, 15 were insectivorous bats, four were rodents and one was treeshrew. Our sampling site was bounded by Pahang River and mainly covered with lowland secondary forest. This is evidence by the highest abundance of Long-tailed Giant Rat (Leopoldamys sabanus) for non-volant small mammals, and Fawn Roundleaf Bat (Hipposideros cervinus) for volant small mammals that are adapted to disturbed habitat. The increasing species cumulative curve for Chiropteran indicates that there may be more species yet to be recorded from this study site compared to rodents and treeshrews. Preliminary analysis on the species similarity between our study site to other survey reports in Peninsular Malaysia, positioned Kuala Atok with Krau Wildlife Reserve and Bukit Fraser Forest Reserve that are located adjacent to our study site. This similarity further indicate the
    importance of future survey in Kuala Atok especially for Chiropterans to properly document the species diversity in this site that may be as rich as other well studied area e.g. Krau Wildlife Reserve.
    Matched MeSH terms: Rivers
  10. Nel HA, Dalu T, Wasserman RJ
    Sci Total Environ, 2018 Jan 15;612:950-956.
    PMID: 28886547 DOI: 10.1016/j.scitotenv.2017.08.298
    Microplastics are important novel pollutants in freshwaters but their behaviour in river sediments is poorly understood due to the large amounts of coloured dissolved organic matter that impede sample processing. The present study aimed to 1.) estimate the microplastic pollution dynamics in an urban river system experiencing temporal differences in river flow, and 2.) investigate the potential use of chironomids as indicators of microplastic pollution levels in degraded freshwater environments. Microplastic levels were estimated from sediment and Chironomus spp. larvae collected from various sites along the Bloukrans River system, in the Eastern Cape South Africa during the summer and winter season. River flow, water depth, channel width, substrate embeddedness and sediment organic matter were simultaneously collected from each site. The winter season was characterised by elevated microplastic abundances, likely as a result of lower energy and increased sediment deposition associated with reduced river flow. In addition, results showed that particle distribution may be governed by various other external factors, such as substrate type and sediment organic matter. The study further highlighted that deposit feeders associated with the benthic river habitats, namely Chironomus spp. ingest microplastics and that the seasonal differences in sediment microplastic dynamics were reflected in chironomid microplastic abundance. There was a positive, though weakly significant relationship between deposit feeders and sediment suggesting that deposit feeders such as Chironomus spp. larvae could serve as an important indicator of microplastic loads within freshwater ecosystems.
    Matched MeSH terms: Rivers*
  11. Syafiuddin A, Salmiati S, Hadibarata T, Kueh ABH, Salim MR, Zaini MAA
    Sci Rep, 2018 01 17;8(1):986.
    PMID: 29343711 DOI: 10.1038/s41598-018-19375-1
    The current status of silver nanoparticles (AgNPs) in the water environment in Malaysia was examined and reported. For inspection, two rivers and two sewage treatment plants (STPs) were selected. Two activated carbons derived from oil palm (ACfOPS) and coconut (ACfCS) shells were proposed as the adsorbent to remove AgNPs. It was found that the concentrations of AgNPs in the rivers and STPs are in the ranges of 0.13 to 10.16 mg L-1 and 0.13 to 20.02 mg L-1, respectively, with the highest concentration measured in July. ACfOPS and ACfCS removed up to 99.6 and 99.9% of AgNPs, respectively, from the water. The interaction mechanism between AgNPs and the activated carbon surface employed in this work was mainly the electrostatic force interaction via binding Ag+ with O- presented in the activated carbon to form AgO. Fifteen kinetic models were compared statistically to describe the removal of AgNPs. It was found that the experimental adsorption data can be best described using the mixed 1,2-order model. Therefore, this model has the potential to be a candidate for a general model to describe AgNPs adsorption using numerous materials, its validation of which has been confirmed with other material data from previous works.
    Matched MeSH terms: Rivers
  12. Hamilton MG, Mekkawy W, Benzie JAH
    Genet. Sel. Evol., 2019 Apr 29;51(1):17.
    PMID: 31035934 DOI: 10.1186/s12711-019-0454-x
    Catla catla (Hamilton) fertilised spawn was collected from the Halda, Jamuna and Padma rivers in Bangladesh from which approximately 900 individuals were retained as 'candidate founders' of a breeding population. These fish were fin-clipped and genotyped using the DArTseq platform to obtain, 3048 single nucleotide polymorphisms (SNPs) and 4726 silicoDArT markers. Using SNP data, individuals that shared no putative parents were identified using the program COLONY, i.e. 140, 47 and 23 from the Halda, Jamuna and Padma rivers, respectively. Allele frequencies from these individuals were considered as representative of those of the river populations, and genomic relationship matrices were generated. Then, half-sibling and full-sibling relationships between individuals were assigned manually based on the genomic relationship matrices. Many putative half-sibling and full-sibling relationships were found between individuals from the Halda and Jamuna rivers, which suggests that catla sampled from rivers as spawn are not necessarily representative of river populations. This has implications for the interpretation of past population genetics studies, the sampling strategies to be adopted in future studies and the management of broodstock sourced as river spawn in commercial hatcheries. Using data from individuals that shared no putative parents, overall multi-locus pairwise estimates of Wright's fixation index (FST) were low (≤ 0.013) and the optimum number of clusters using unsupervised K-means clustering was equal to 1, which indicates little genetic divergence among the SNPs included in our study within and among river populations.
    Matched MeSH terms: Rivers
  13. Hamidreza Salemi, Mohd Amin Mohd Soom, Lee, Teang Shui, Mohd Kamil Yusoff
    MyJurnal
    One of the most interesting water management case studies in Iran is the case of Zayandehrud River, the main river that supplies water to Isfahan Province which is located in Gavkhuni River Basin (GRB). This paper examines the present and future demands for water and determines the extent to which water will be available for agricultural use by the year 2020. Although demand and supply conditions in 2000 were more or less in balance, there was an increase in the supply of some 28% by 2010 due to the completion of the third trans-basin diversion and the development of other local water sources. However, the demand exceeded its supply in 2010 and the basin fell into severe deficit. In this condition, the only way to keep supply and demand in balance is to reduce allocations to agriculture. By 2020, agriculture would only have 5% more water than the present and water supply is only 90% that of the normal, and this would then shrink from 2025 onwards. In other words, agriculture would have to be sacrificed in order to ensure full supplies of water for the other sectors. The scenarios examined reveal that a sustainable agriculture can only be accomplished by water saving practices and management measures, which may further lead to reduced demand, control supplies, and improve the efficiency of water use.
    Matched MeSH terms: Rivers
  14. Ali H. Ahmed Suliman, Webster Gumindoga, Ayob Katimon, Intan Zaurah Mat Darus
    Sains Malaysiana, 2014;43:1379-1388.
    This paper presents the application of TOPMODEL in the Pinang catchment of Malaysia for stream flow simulation. An attempt has been made to use remote-sensing data (ASTER DEM of 30 m resolution) as a primary input for TOPMODEL in order to simulate the stream flow pattern of this tropical catchment. A calibration period was executed based on 2007-2008 hydro-meteorological dataset which gave a satisfactory Nash-Sutcliffe model (NS) model efficiency of 0.749 and a relative volume error (RVE) of -19.2. The recession curve parameter (m) and soil transmissivity at saturation zone (To), were established as the most sensitive parameters through a sensitivity analysis processes. Hydro-meteorological datasets for the period between 2009 and 2010 were used to validate the model which resulted in satisfactory efficiencies of 0.774 (NS) and -19.84 (RVE), respectively. This study demonstrated the ability ASTER DEM acquired from remote sensing to generate the required TOPMODEL parameters for stream flow simulation which gives insights into better management of available water resources.
    Matched MeSH terms: Rivers
  15. Matsuda I, Tuuga A, Akiyama Y, Higashi S
    Am J Primatol, 2008 Nov;70(11):1097-101.
    PMID: 18651612 DOI: 10.1002/ajp.20604
    From May 2005-2006, selections of river crossing locations and sleeping sites used by a one-male group (BE-Group) of proboscis monkeys (Nasalis larvatus) were investigated along the Menanggul River, tributary of the Kinabatangan River, Sabah, Malaysia. The frequency of river crossings for focal monkeys in the BE-Group was significantly higher at locations with narrow branch-to-bank distances. Branch-to-bank distances were defined as the distances between the longest tree branches extending over the river and the bank of river on each side. This was measured in areas crossed by the monkeys. The focal monkeys used locations with a higher probability of successful river crossings that did not require jumping into the water and swimming across than those that did. The frequency of sleeping site usage by the BE-Group was positively correlated with the frequency of using river crossing locations by the focal monkeys. Previous reports on predation of proboscis monkeys indicate that clouded leopards (Neofelis diardi) and crocodilians (Tomistoma schlegeli and Crocodylus porosus) may be the major terrestrial and aquatic predators of these monkeys. The selection of river crossing locations by proboscis monkeys may be influenced both by the threat of these predators and the location of suitable and protected sleeping sites. Finally, sleeping sites locations that offer arboreal escape routes may protect proboscis monkeys from leopard attack.
    Matched MeSH terms: Rivers
  16. Kwan CS, Takada H, Mizukawa K, Saha M, Rinawati, Santiago EC
    Mar Pollut Bull, 2013 Nov 15;76(1-2):95-105.
    PMID: 24120227 DOI: 10.1016/j.marpolbul.2013.09.023
    Polybrominated diphenyl ethers (PBDEs) were measured in surface sediment samples collected from urban canals or rivers in Lao PDR, Cambodia, Vietnam, India, Indonesia, Thailand, the Philippines, Malaysia and Japan. The total PBDE concentrations in the sediments ranged from 0.83 to 3140 ng/g dry wt. BDE-209 was predominant, ranging from 43% to 97% of total PBDEs, followed by nona-BDEs and some detectable concentrations of BDEs 47, 49, 99, 100, 153, 154 and 183. Sedimentary PBDE levels in Malaysia, Cambodia, the Philippines and Thailand were generally higher than those reported for highly industrialized countries. Spatial distribution of PBDEs indicated that inland sources may impact coastal areas. The presence of BDE congeners which are not contained in technical mixtures and the higher proportions of nona-BDEs relative to BDE-209 in the sediments were identified as indicators of debromination. BDE-209 was possibly debrominated under anaerobic conditions in some of the sediment samples.
    Matched MeSH terms: Rivers
  17. Magam SM, Masood N, Alkhadher SAA, Alanazi TYA, Zakaria MP, Sidek LM, et al.
    Environ Geochem Health, 2024 Jan 16;46(2):38.
    PMID: 38227164 DOI: 10.1007/s10653-023-01828-w
    The seasonal variation of petroleum pollution including n-alkanes in surface sediments of the Selangor River in Malaysia during all four climatic seasons was investigated using GC-MS. The concentrations of n-alkanes in the sediment samples did not significantly correlate with TOC (r = 0.34, p > 0.05). The concentrations of the 29 n-alkanes in the Selangor River ranged from 967 to 3711 µg g-1 dw, with higher concentrations detected during the dry season. The overall mean per cent of grain-sized particles in the Selangor River was 85.9 ± 2.85% sand, 13.5 ± 2.8% clay, and 0.59 ± 0.34% gravel, respectively. n-alkanes are derived from a variety of sources, including fresh oil, terrestrial plants, and heavy/degraded oil in estuaries. The results of this study highlight concerns and serve as a warning that hydrocarbon contamination is affecting human health. As a result, constant monitoring and assessment of aliphatic hydrocarbons in coastal and riverine environments are needed.
    Matched MeSH terms: Rivers*
  18. Anandkumar A, Nagarajan R, Sellappa Gounder E, Prabakaran K
    Chemosphere, 2022 Jan;287(Pt 1):132069.
    PMID: 34523457 DOI: 10.1016/j.chemosphere.2021.132069
    Miri city has a dynamic coastal environment, mainly influenced by intensive sedimentation from the Baram River and excessive trace metal loading by the Miri River, which are significant environmental concerns. As the mobility, bioavailability, and toxicity of the trace metals in the sediments are largely controlled by their particulate speciation, the modified BCR sequential extraction protocol was applied to determine the particulate speciation of trace metals in the coastal sediments of Miri, to unravel the seasonal geochemical processes responsible for known observations, and to identify possible sources of these trace metals. The granulometric analysis results showed that littoral currents aided by the monsoonal winds have influenced the grain size distribution of the sediments, enabling us to divide the study area into north-east and south-west segments where the geochemical composition are distinct. The Cu (>84%) and Zn (82%) concentrations are predominantly associated with the exchangeable fraction, which is readily bioavailable. Pb and Cd are dominant in non-residual fractions and other metals viz., Fe, Mn, Co, Ni, and Cr are dominant in the residual fraction. Using Pearson's correlation and factor analysis, the major mechanisms controlling the chemistry of the sediments are identified as association of Cu and Zn with fine fraction sediments, sulphide oxidation in the SW segment of the study area, atmospheric fallout of Pb and Cd in the river basins, precipitation of dissolved Fe and Mn supplied from the rivers and remobilization of Mn from the coastal sediments. Based on various pollution indices, it is inferred that the coastal sediments of NW Borneo are contaminated with Cu and Zn, and are largely bioavailable, which can be a threat to the local aquatic organisms, coral reefs, and coastal mangroves.
    Matched MeSH terms: Rivers
  19. Abdul-Hadi A, Mansor S, Pradhan B, Tan CK
    Environ Monit Assess, 2013 May;185(5):3977-91.
    PMID: 22930185 DOI: 10.1007/s10661-012-2843-2
    A study was conducted to investigate the influence of Asian monsoon on chlorophyll-a (Chl-a) content in Sabah waters and to identify the related oceanographic conditions that caused phytoplankton blooms at the eastern and western coasts of Sabah, Malaysia. A series of remote sensing measurements including surface Chl-a, sea surface temperature, sea surface height anomaly, wind speed, wind stress curl, and Ekman pumping were analyzed to study the oceanographic conditions that lead to large-scale nutrients enrichment in the surface layer. The results showed that the Chl-a content increased at the northwest coast from December to April due to strong northeasterly wind and coastal upwelling in Kota Kinabalu water. The southwest coast (Labuan water) maintained high concentrations throughout the year due to the effect of Padas River discharge during the rainy season and the changing direction of Baram River plume during the northeast monsoon (NEM). However, with the continuous supply of nutrients from the upwelling area, the high Chl-a batches were maintained at the offshore water off Labuan for a longer time during NEM. On the other side, the northeast coast illustrated a high Chl-a in Sandakan water during NEM, whereas the northern tip off Kudat did not show a pronounced change throughout the year. The southeast coast (Tawau water) was highly influenced by the direction of the surface water transport between the Sulu and Sulawesi Seas and the prevailing surface currents. The study demonstrates the presence of seasonal phytoplankton blooms in Sabah waters which will aid in forecasting the possible biological response and could further assist in marine resource managements.
    Matched MeSH terms: Rivers/chemistry
  20. Masood N, Halimoon N, Aris AZ, Zakaria MP, Vaezzadeh V, Magam SM, et al.
    Environ Geochem Health, 2018 Dec;40(6):2551-2572.
    PMID: 29802607 DOI: 10.1007/s10653-018-0122-z
    Rapid increase in industrialization and urbanization in the west coast of Peninsular Malaysia has led to the intense release of petroleum and products of petroleum into the environment. Surface sediment samples were collected from the Selangor River in the west coast of Peninsular Malaysia during four climatic seasons and analyzed for PAHs and biomarkers (hopanes). Sediments were soxhlet extracted and further purified and fractionated through first and second step column chromatography. A gas chromatography-mass spectrometry (GC-MS) was used for analysis of PAHs and hopanes fractions. The average concentrations of total PAHs ranged from 219.7 to 672.3 ng g-1 dw. The highest concentrations of PAHs were detected at 964.7 ng g-1 dw in station S5 in the mouth of the Selangor River during the wet inter-monsoonal season. Both pyrogenic and petrogenic PAHs were detected in the sediments with a predominance of the former. The composition of hopanes was homogeneous showing that petroleum hydrocarbons share an identical source in the study area. Diagnostic ratios of hopanes indicated that some of the sediment samples carry the crankcase oil signature.
    Matched MeSH terms: Rivers*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links