Displaying publications 81 - 100 of 267 in total

Abstract:
Sort:
  1. Syed RU, Moni SS, Hussein W, Alhaidan TMS, Abumilha SMY, Alnahdi LK, et al.
    Sci Rep, 2025 Feb 05;15(1):4369.
    PMID: 39910087 DOI: 10.1038/s41598-025-87319-7
    Cubebin, a dibenzyl butyrolactone lignan belonging to several distinct families, including Aristolochiaceae, Myristicaceae, Piperaceae, and Rutaceae, and possesses several pharmacological activities, including analgesic, anti-inflammatory, antioxidant, and vasodilatory. The current study aimed to evaluate the effect of cubebin on streptozotocin (STZ)-evoked diabetic nephropathy (DN). DN is a well-identified complication of diabetes mellitus (DM) characterized by renal hypertrophy that progressively declines kidney function. Wistar rats were randomly divided into groups- normal, STZ control (65 mg/kg/body weight), and STZ + cubebin (10 and 20 mg/kg). Biochemical parameters such as glucose levels, kidney parameters, lipid profile, oxidative stress, endogenous antioxidant markers, inflammatory cytokines and histopathology were performed. Molecular docking [(PDB ID: TNF-α (7JRA), NF-κB (1SVC), TGF-β1 (3TZM)] and dynamic simulation (MDS) were also performed with the selected target. STZ-induced DN was changes in these parameters. In contrast, DN + cubebin at 10 and 20 mg/kg doses improved the biochemical parameters and histological changes. Furthermore, molecular docking and simulation studies showed a binding affinity with negative binding energy with TNF-α (7jra, - 11.342 kcal/mol), TGF-β1 (3tzm, - 9.162 kcal/mol) and NF-κB (1svc, - 6.665 kcal/mol). The results of MDS provided insight into the mechanisms that associate proteins TNF-α, NF-κB, and TGF-β1 in conformational dynamics upon binding to cubebin. In conclusion, these findings exhibit a potential effect of cubebin in STZ-evoked DN rats.
    Matched MeSH terms: Signal Transduction/drug effects
  2. Kavitha K, Navaneethan D, Balagurunathan R, Subramaniam RT, Shaik MR, Guru A
    Mol Biol Rep, 2024 Jun 01;51(1):702.
    PMID: 38822942 DOI: 10.1007/s11033-024-09600-8
    BACKGROUND: The development of cost-effective, simple, environment-friendly biographene is an area of interest. To accomplish environmentally safe, benign culturing that has advantages over other methods to reduce the graphene oxide (GO), extracellular metabolites from actinobacteria associated with mushrooms were used for the first time.

    METHODS: Bactericidal effect of GO against methicillin-resistant Staphylococcus aureus, antioxidant activity, and hydroxyapatite-like bone layer formation, gene expression analysis and appropriate biodegradation of the microbe-mediated synthesis of graphene was studied.

    RESULTS: Isolated extracellular contents Streptomyces achromogenes sub sp rubradiris reduced nano-GO to graphene (rGO), which was further examined by spectrometry and suggested an efficient conversion and significant reduction in the intensity of all oxygen-containing moieties and shifted crystalline peaks. Electron microscopic results also suggested the reduction of GO layer. In addition, absence of significant toxicity in MG-63 cell line, intentional free radical scavenging prowess, liver and kidney histopathology, and Wistar rat bone regeneration through modulation of OPG/RANKL/RUNX2/ALP pathways show the feasibility of the prepared nano GO.

    CONCLUSIONS: The study demonstrates the successful synthesis of biographene from actinobacterial extracellular metabolites, its potential biomedical applications, and its promising role in addressing health and environmental concerns.

    Matched MeSH terms: Signal Transduction/drug effects
  3. Gao G, Su X, Liu S, Wang P, Chen JJ, Liu T, et al.
    Int Immunopharmacol, 2025 Mar 06;149:114190.
    PMID: 39904045 DOI: 10.1016/j.intimp.2025.114190
    Renal tubular epithelial cells (RTECs) apoptosis is the key factor in the development of diabetic kidney disease (DKD). Endoplasmic reticulum stress (ERS) leading to mitochondrial Ca2+ overload is one of the causes of apoptosis in RTECs. Corni Fructus (CF) is an herbal medicine, developed and applied as a functional food, and it is commonly used to treat DKD. Cornuside (Cor) is one of the main chemical components in CF. This research seeks to investigate the function of Cor in DKD and delve into its possible mechanisms. Cor significantly improved renal function and ameliorated renal pathological changes of db/db mice. Bioinformatics analyses suggested that the modulation of endoplasmic reticulum-induced intrinsic apoptosis pathway was a primary mechanism by which Cor ameliorated DKD. TUNEL assays and flow cytometry assays indicated that Cor effectively inhibited RTECs apoptosis in db/db mice and AGE-induced HK-2 cells. Further experimental studies showed that Cor mitigated ERS by inhibiting the activation of PERK/ATF4/CHOP signal pathway and down-regulation of VDAC1 protein expression, thus alleviating mitochondrial Ca2+ overload. More importantly, Cor directly targeted NEDD4 to facilitate VDAC1 degradation. Notably, the silencing of NEDD4 nearly abolished Cor's inhibitory effects on mitochondrial Ca2+ overload and apoptosis. In conclusion, Cor modulated Ca2+ homeostasis by alleviating ERS and targeting NEDD4, thus mitigating apoptosis of RTECs in DKD. These findings indicate that Cor has the potential for the treatment and drug development of DKD.
    Matched MeSH terms: Signal Transduction/drug effects
  4. Hairi HA, Jusoh RR, Sadikan MZ, Hasan WNW, Shuid AN
    Int J Med Sci, 2025;22(4):819-833.
    PMID: 39991771 DOI: 10.7150/ijms.103241
    Moringa oleifera (MO) is renowned for its remarkable medicinal uses, supported by claims across various cultures and growing scientific evidence. Preclinical experimental evidence indicated that MO may effectively reduce bone loss and promote bone remodelling through its effects on osteoclasts and osteoblasts. In vivo studies demonstrated that MO enhances critical aspects of bone health, such as bone volume, trabecular thickness and overall bone density. Furthermore, MO positively influenced bone biomarkers including alkaline phosphatase and procollagen type 1 N-terminal propeptide, reflecting improved bone formation. Additionally, in vitro and ex vivo studies revealed that MO boosted bone regeneration, stimulated osteoblast activity and reduced inflammation. In terms of mechanisms, MO may modulate signalling pathways related to bone metabolism, such as BMP2, PI3K/Akt/FOXO1, p38α/MAPK14 and RANKL/RANK//OPG pathways. This evidence provides a strong foundation for future clinical research and potential therapeutic applications in managing and preventing bone loss conditions.
    Matched MeSH terms: Signal Transduction/drug effects
  5. Hanafi NI, Mohamed AS, Md Noor J, Abdu N, Hasani H, Siran R, et al.
    Genet. Mol. Res., 2016 Jun 17;15(2).
    PMID: 27323195 DOI: 10.4238/gmr.15028150
    Ursodeoxycholic acid (UDCA) is used to treat liver diseases and demonstrates cardioprotective effects. Accumulation of the plasma membrane sphingolipid sphingomyelin in the heart can lead to atherosclerosis and coronary artery disease. Sphingomyelinases (SMases) break down sphingomyelin, producing ceramide, and inhibition of SMases activity can promote cell survival. We hypothesized that UDCA regulates activation of ERK and Akt survival signaling pathways and SMases in protecting cardiac cells against hypoxia. Neonatal cardiomyocytes were isolated from 0- to 2-day-old Sprague Dawley rats, and given 100 μM CoCl2, 150 μM H2O2, or placed in a hypoxia chamber for 24 h. The ameliorative effects of 100-μM UDCA treatment for 12 h were then assessed using MTS, QuantiGene Plex (for Smpd1 and Smpd2), and SMase assays, beating rate assessment, and western blotting (for ERK and Akt). Data were analyzed by the paired Student t-tests and one-way analyses of variance. Cell viability decreased significantly after H2O2 (85%), CoCl2 (50%), and hypoxia chamber (52%) treatments compared to the untreated control (100%). UDCA significantly counteracted the effects of chamber- and CoCl2- induced hypoxia on viability and beating rate. However, no significant differences were observed in acid SMase gene and protein expression between the untreated, CoCl2, and UDCA-CoCl2 groups. In contrast, neutral SMase gene and protein expression did significantly differ between the latter two groups. ERK and Akt phosphorylation was higher in hypoxic cardiomyocytes treated with UDCA than those given CoCl2 alone. In conclusion, UDCA regulates the activation of survival signaling proteins and SMases in neonatal rat cardiomyocytes during hypoxia.
    Matched MeSH terms: Signal Transduction/drug effects
  6. Bharti R, Dey G, Ojha PK, Rajput S, Jaganathan SK, Sen R, et al.
    Oncogene, 2016 Jul 28;35(30):3965-75.
    PMID: 26616855 DOI: 10.1038/onc.2015.466
    Interleukin-6 (IL-6) signaling network has been implicated in oncogenic transformations making it attractive target for the discovery of novel cancer therapeutics. In this study, potent antiproliferative and apoptotic effect of diacerein were observed against breast cancer. In vitro apoptosis was induced by this drug in breast cancer cells as verified by increased sub-G1 population, LIVE/DEAD assay, cell cytotoxicity and presence of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells, as well as downregulation of antiapoptotic proteins Bcl-2 and Bcl-xL and upregulation of apoptotic protein Bax. In addition, apoptosis induction was found to be caspase dependent. Further molecular investigations indicated that diacerein instigated apoptosis was associated with inhibition of IL-6/IL-6R autocrine signaling axis. Suppression of STAT3, MAPK and Akt pathways were also observed as a consequence of diacerein-mediated upstream inhibition of IL-6/IL-6R. Fluorescence study and western blot analysis revealed cytosolic accumulation of STAT3 in diacerein-treated cells. The docking study showed diacerein/IL-6R interaction that was further validated by competitive binding assay and isothermal titration calorimetry. Most interestingly, it was found that diacerein considerably suppressed tumor growth in MDA-MB-231 xenograft model. The in vivo antitumor effect was correlated with decreased proliferation (Ki-67), increased apoptosis (TUNEL) and inhibition of IL-6/IL-6R-mediated STAT3, MAPK and Akt pathway in tumor remnants. Taken together, diacerein offered a novel blueprint for cancer therapy by hampering IL-6/IL-6R/STAT3/MAPK/Akt network.
    Matched MeSH terms: Signal Transduction/drug effects*
  7. Ibrahim MY, Mohd Hashim N, Mohan S, Abdulla MA, Abdelwahab SI, Kamalidehghan B, et al.
    Drug Des Devel Ther, 2014;8:2193-211.
    PMID: 25395836 DOI: 10.2147/DDDT.S66574
    BACKGROUND: Cratoxylum arborescens has been used traditionally in Malaysia for the treatment of various ailments.

    METHODS: α-Mangostin (AM) was isolated from C. arborescens and its cell death mechanism was investigated. AM-induced cytotoxicity was observed with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Acridine orange/propidium iodide staining and annexin V were used to detect cells in early phases of apoptosis. High-content screening was used to observe the nuclear condensation, cell permeability, mitochondrial membrane potential, and cytochrome c release. The role of caspases-3/7, -8, and -9, reactive oxygen species, Bcl-2 and Bax expression, and cell cycle arrest were also investigated. To determine the role of the central apoptosis-related proteins, a protein array followed by immunoblot analysis was conducted. Moreover, the involvement of nuclear factor-kappa B (NF-κB) was also analyzed.

    RESULTS: Apoptosis was confirmed by the apoptotic cells stained with annexin V and increase in chromatin condensation in nucleus. Treatment of cells with AM promoted cell death-transducing signals that reduced MMP by downregulation of Bcl-2 and upregulation of Bax, triggering cytochrome c release from the mitochondria to the cytosol. The released cytochrome c triggered the activation of caspase-9 followed by the executioner caspase-3/7 and then cleaved the PARP protein. Increase of caspase-8 showed the involvement of extrinsic pathway. AM treatment significantly arrested the cells at the S phase (P<0.05) concomitant with an increase in reactive oxygen species. The protein array and Western blotting demonstrated the expression of HSP70. Moreover, AM significantly blocked the induced translocation of NF-κB from cytoplasm to nucleus.

    CONCLUSION: Together, the results demonstrate that the AM isolated from C. arborescens inhibited the proliferation of MDA-MB-231 cells, leading to cell cycle arrest and programmed cell death, which was suggested to occur through both the extrinsic and intrinsic apoptosis pathways with involvement of the NF-κB and HSP70 signaling pathways.

    Matched MeSH terms: Signal Transduction/drug effects*
  8. Kuan CS, Yee YH, See Too WC, Few LL
    PLoS One, 2014;9(12):e113485.
    PMID: 25490397 DOI: 10.1371/journal.pone.0113485
    Choline kinase is the most upstream enzyme in the CDP-choline pathway. It catalyzes the phosphorylation of choline to phosphorylcholine in the presence of ATP and Mg2+ during the biosynthesis of phosphatidylcholine, the major phospholipid in eukaryotic cell membranes. In humans, choline kinase (CK) is encoded by two separate genes, ckα and ckβ, which produce three isoforms, CKα1, CKα2, and CKβ. Previous studies have associated ckβ with muscle development; however, the molecular mechanism underlying the transcriptional regulation of ckβ has never been elucidated.
    Matched MeSH terms: Signal Transduction/drug effects*
  9. Tan HK, Moad AI, Tan ML
    Asian Pac J Cancer Prev, 2014;15(16):6463-75.
    PMID: 25169472
    The mammalian target of rapamycin (mTOR) kinase plays an important role in regulating cell growth and cell cycle progression in response to cellular signals. It is a key regulator of cell proliferation and many upstream activators and downstream effectors of mTOR are known to be deregulated in various types of cancers. Since the mTOR signalling pathway is commonly activated in human cancers, many researchers are actively developing inhibitors that target key components in the pathway and some of these drugs are already on the market. Numerous preclinical investigations have also suggested that some herbs and natural phytochemicals, such as curcumin, resveratrol, timosaponin III, gallic acid, diosgenin, pomegranate, epigallocatechin gallate (EGCC), genistein and 3,3'-diindolylmethane inhibit the mTOR pathway either directly or indirectly. Some of these natural compounds are also in the clinical trial stage. In this review, the potential anti-cancer and chemopreventive activities and the current status of clinical trials of these phytochemicals are discussed.
    Matched MeSH terms: Signal Transduction/drug effects
  10. Hajjouli S, Chateauvieux S, Teiten MH, Orlikova B, Schumacher M, Dicato M, et al.
    Molecules, 2014 Sep 16;19(9):14649-66.
    PMID: 25230121 DOI: 10.3390/molecules190914649
    Eurycomanone and eurycomanol are two quassinoids from the roots of Eurycoma longifolia Jack. The aim of this study was to assess the bioactivity of these compounds in Jurkat and K562 human leukemia cell models compared to peripheral blood mononuclear cells from healthy donors. Both eurycomanone and eurycomanol inhibited Jurkat and K562 cell viability and proliferation without affecting healthy cells. Interestingly, eurycomanone inhibited NF-κB signaling through inhibition of IκBα phosphorylation and upstream mitogen activated protein kinase (MAPK) signaling, but not eurycomanol. In conclusion, both quassinoids present differential toxicity towards leukemia cells, and the presence of the α,β-unsaturated ketone in eurycomanone could be prerequisite for the NF-κB inhibition.
    Matched MeSH terms: Signal Transduction/drug effects
  11. Ichwan SJ, Al-Ani IM, Bilal HG, Suriyah WH, Taher M, Ikeda MA
    Chin J Physiol, 2014 Oct 31;57(5):249-55.
    PMID: 25241984 DOI: 10.4077/CJP.2014.BAB190
    Thymoquinone (TQ) is the main constituent of black seed (Nigella sativa, spp) essential oil which shows promising in vitro and in vivo anti-neoplastic activities in different tumor cell lines. However, to date there are only a few reports regarding the apoptotic effects of TQ on cervical cancer cells. Here, we report that TQ stimulated distinct apoptotic pathways in two human cervical cell lines, Siha and C33A. TQ markedly induced apoptosis as demonstrated by cell cycle analysis in both cell lines. Moreover, quantitative PCR revealed that TQ induced apoptosis in Siha cells through p53-dependent pathway as shown by elevated level of p53-mediated apoptosis target genes, whereas apoptosis in C33A cells was mainly associated with the activation of caspase-3. These results support previous findings on TQ as a potential therapeutic agent for human cervical cancer.
    Matched MeSH terms: Signal Transduction/drug effects
  12. Foo JB, Yazan LS, Tor YS, Armania N, Ismail N, Imam MU, et al.
    PMID: 24947113 DOI: 10.1186/1472-6882-14-197
    Dillenia suffruticosa root dichloromethane extract (DCM-DS) has been reported to exhibit strong cytotoxicity towards breast cancer cells. The present study was designed to investigate the cell cycle profile, mode of cell death and signalling pathways of DCM-DS-treated human caspase-3 deficient MCF-7 breast cancer cells.
    Matched MeSH terms: Signal Transduction/drug effects*
  13. Theron KE, Penny CB, Hosie MJ
    Reprod Biol, 2014 Sep;14(3):224-33.
    PMID: 25152521 DOI: 10.1016/j.repbio.2014.04.005
    RU486 is a partial progesterone and estrogen receptor antagonist, functioning to actively silence progesterone receptor gene-associated transcription. For this reason, it has been used as both a contraceptive and an abortive agent. In the present study, cellular and gene specific effects of RU486 were investigated in a rat model of early pregnancy, including key phases of the window of receptivity and early implantation. As these stages are hormonally regulated by progesterone and estrogens, the focus here was to elucidate the mechanism of action of a single dose of RU486, used as a postcoital contraceptive, to successfully prevent implantation of a viable blastocyst. Immunofluorescent techniques were used to examine the change in protein levels of PR in RU486-treated endometria at days 4.5, 5.5 and 6.5 of pregnancy. Changes in the Pgr gene expression level as a consequence of RU486 administration was evaluated using quantitative real-time reverse transcription polymerase chain reaction. The progesterone receptor gene and protein expression was ubiquitously decreased throughout pregnancy as a direct consequence of RU486 administration. The overall effects of postcoital RU486 administration during early pregnancy indicate highly effective inhibition of progesterone and estrogen effects on the endometrium, mediated by their receptors. More specifically, the expression and localization of the progesterone receptor mirrors that described in ovariectomized animal models, suggesting a hormonally under-stimulated endometrium. Clearly from the present study, the precise priming of the endometrium by progesterone, in preparation for blastocyst implantation, is severely impaired by RU486, thus predisposing the uterus to pregnancy failure.
    Matched MeSH terms: Signal Transduction/drug effects
  14. Tang YQ, Jaganath IB, Manikam R, Sekaran SD
    Int J Med Sci, 2014;11(6):564-77.
    PMID: 24782645 DOI: 10.7150/ijms.7704
    Melanoma is the most fatal form of skin cancer. Different signalling pathways and proteins will be differentially expressed to pace with the tumour growth. Thus, these signalling molecules and proteins are become potential targets to halt the progression of cancer. The present works were attempted to investigate the underlying molecular mechanisms of anticancer effects of Phyllanthus (P.amarus, P.niruri, P.urinaria and P.watsonii) on skin melanoma, MeWo cells.
    Matched MeSH terms: Signal Transduction/drug effects
  15. Lee KH, Abas F, Mohamed Alitheen NB, Shaari K, Lajis NH, Israf DA, et al.
    Int J Rheum Dis, 2015 Jul;18(6):616-27.
    PMID: 24832356 DOI: 10.1111/1756-185X.12341
    Synovial fibroblast has emerged as a potential cellular target in progressive joint destruction in rheumatoid arthritis development. In this study, BDMC33 (2,6-bis[2,5-dimethoxybenzylidene]cyclohexanone), a curcumin analogue with enhanced anti-inflammatory activity has been synthesized and the potency of BDMC33 on molecular and cellular basis of synovial fibroblasts (SF) were evaluated in vitro.
    Matched MeSH terms: Signal Transduction/drug effects
  16. Hajrezaie M, Paydar M, Moghadamtousi SZ, Hassandarvish P, Gwaram NS, Zahedifard M, et al.
    ScientificWorldJournal, 2014;2014:540463.
    PMID: 24737979 DOI: 10.1155/2014/540463
    Metal-based drugs with extensive clinical applications hold great promise for the development of cancer chemotherapeutic agents. In the last few decades, Schiff bases and their complexes have become well known for their extensive biological potential. In the present study, we examined the antiproliferative effect of a copper (II) complex on HT-29 colon cancer cells. The Cu(BrHAP)2 Schiff base compound demonstrated a potent antiproliferative effect in HT-29 cells, with an IC50 value of 2.87  μg/ml after 72 h of treatment. HT-29 cells treated with Cu (II) complexes underwent apoptosis death, as exhibited by a progressive elevation in the proportion of the G1 cell population. At a concentration of 6.25  μg/ml, the Cu(BrHAP)2 compound caused significant elevation in ROS production following perturbation of mitochondrial membrane potential and cytochrome c release, as assessed by the measurement of fluorescence intensity in stained cells. Furthermore, the activation of caspases 3/7 and 9 was part of the Cu (II) complex-induced apoptosis, which confirmed the involvement of mitochondrial-mediated apoptosis. Meanwhile, there was no significant activation of caspase-8. Taken together, these results imply that the Cu(BrHAP)2 compound is a potential candidate for further in vivo and clinical colon cancer studies to develop novel chemotherapeutic agents derived from metal-based agents.
    Matched MeSH terms: Signal Transduction/drug effects
  17. Jamal J, Mustafa MR, Wong PF
    J Ethnopharmacol, 2014 Jun 11;154(2):428-36.
    PMID: 24768807 DOI: 10.1016/j.jep.2014.04.025
    Paeonol is a phenolic compound isolated mainly from Moutan cortex, root bark of Chinese Peony tree. Moutan cortex holds a significant value in traditional Chinese medicine for alleviating various oxidative stress-related diseases mainly atherosclerosis and myocardial infarction. The present study seeks to identify the protective mechanisms of paeonol in oxidative stress-induced premature senescence in endothelial cells.
    Matched MeSH terms: Signal Transduction/drug effects*
  18. Jamaluddin JL, Huri HZ, Vethakkan SR, Mustafa N
    Pharmacogenomics, 2014 Feb;15(2):235-49.
    PMID: 24444412 DOI: 10.2217/pgs.13.234
    In the adult pancreas, the expression of the genes PAX4, KCNQ1, TCF7L2, KCNJ11, ABCC8, MTNR1B and WFS1 are mainly restricted to β cells to maintain glucose homeostasis. We have identified these genes as the main regulators of incretin-mediated actions, and therefore they may potentially influence the response of DPP-4 inhibitors. This review represents the first detailed exploration of pancreatic β-cell genes and their variant mechanisms, which could potentially affect the response of DPP-4 inhibitors in Type 2 diabetes. We have focused on the signaling pathways of these genes to understand their roles in gastrointestinal incretin-mediated effects; and finally, we sought to associate gene mechanisms with their Type 2 diabetes risk variants to predict the responses of DPP-4 inhibitors for this disease.
    Matched MeSH terms: Signal Transduction/drug effects
  19. Cheah SC, Lai SL, Lee ST, Hadi AH, Mustafa MR
    Molecules, 2013 Jul 24;18(8):8764-78.
    PMID: 23887718 DOI: 10.3390/molecules18088764
    In the present study, we investigated the effects of panduratin A (PA), isolated from Boesenbergia rotunda, on apoptosis and chemoinvasion in A549 human non-small cell lung cancer cells. Activation of the executioner procaspase-3 by PA was found to be dose-dependent. Caspase-3 activity was significantly elevated at the 5 µg/mL level of PA treatment and progressed to a maximal level. However, no significant elevated level was detected on procaspase-8. These findings suggest that PA activated caspase-3 but not caspase-8. Numerous nuclei of PA treated A549 cells stained brightly by anti-cleaved PARP antibody through High Content Screening. This result further confirmed that PA induced apoptotic cell death was mediated through activation of caspase-3 and eventually led to PARP cleavage. Treatment of A549 cells with PA resulted in a strong inhibition of NF-κB activation, which was consistent with a decrease in nuclear levels of NF-κB/p65 and NF-κB/p50 and the elevation of p53 and p21. Besides that, we also showed that PA significantly inhibited the invasion of A549 cells in a dose-dependent manner through reducing the secretion of MMP-2 of A549 cells gelatin zymography assay. Our findings not only provide the effects of PA, but may also be important in the design of therapeutic protocols that involve targeting of either p53 or NF-κB.
    Matched MeSH terms: Signal Transduction/drug effects
  20. Kamaldin MN, Akhtar MN, Mohamad AS, Lajis N, Perimal EK, Akira A, et al.
    Molecules, 2013 Apr 10;18(4):4209-20.
    PMID: 23612473 DOI: 10.3390/molecules18044209
    Previous studies have shown that systemic administration of 6'-hydroxy-2',4'-dimethoxychalcone (flavokawin B, FKB) exerts significant peripheral and central antinociceptive effects in laboratory animals. However, the mechanisms underlying these peripheral and central antinociceptive effects have yet to be elucidated. Therefore, the objective of the present study was to evaluate the participation of nitric oxide (NO)/cyclic guanosine monophosphate (cGMP)/potassium (K+) channels pathway in the peripheral antinociception induced by FKB. It was demonstrated that intraplantar (i.pl.) administration of FKB (150, 250, 375 and 500 µg/paw) resulted in dose-dependent peripheral antinociception against mechanical hyperalgesia in carrageenan-induced hyperalgesia test model in rats. The possibility of FKB having either a central or a systemic effect was excluded since administration of FKB into the right paw did not elicit antinociception in the contralateral paw. Furthermore, peripheral antinociception induced by FKB (500 µg/paw) was significantly reduced when L-arginine (25 µg/paw, i.pl.), Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 50 µg/paw, i.pl.), glibenclamide (300 µg/paw, i.pl.), tetraethylammonium (300 µg/paw, i.pl.) and charybdotoxin (3 µg/paw, i.pl.) were injected before treatment. Taken together, our present data suggest that FKB elicits peripheral antinociception when assessed in the mechanical hyperalgesia induced by carrageenan. In addition, it was also demonstrated that this effect was mediated through interaction of the NO/cGMP/K+ channels signaling pathway.
    Matched MeSH terms: Signal Transduction/drug effects*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links