METHODS: To verify this hypothesis, a computational model was developed to simulate the thermochemical processes involved during TCA with sequential injection. Four major processes that take place during TCA were considered, i.e., the flow of acid and base, their neutralisation, the release of exothermic heat and the formation of thermal damage inside the tissue. Equimolar acid and base at 7.5 M was injected into the tissue intermittently. Six injection intervals, namely 3, 6, 15, 20, 30 and 60 s were investigated.
RESULTS: Shortening of the injection interval led to the enlargement of coagulation volume. If one considers only the coagulation volume as the determining factor, then a 15 s injection interval was found to be optimum. Conversely, if one places priority on safety, then a 3 s injection interval would result in the lowest amount of reagent residue inside the tissue after treatment. With a 3 s injection interval, the coagulation volume was found to be larger than that of simultaneous injection with the same treatment parameters. Not only that, the volume also surpassed that of radiofrequency ablation (RFA); a conventional thermal ablation technique commonly used for liver cancer treatment.
CONCLUSION: The numerical results verified the hypothesis that shortening the injection interval will lead to the formation of larger thermal coagulation zone during TCA with sequential injection. More importantly, a 3 s injection interval was found to be optimum for both efficacy (large coagulation volume) and safety (least amount of reagent residue).
METHODS: siRNA was conjugated with a thermo-responsive copolymer that was synthesized by copolymerization of N-isopropylacrylamide (NIPAAm) and hydrophilic N,N-dimethylacrylamide (DMAA) to permit thermally controlled interaction between siRNA and an intracellular gene silencing-related protein by utilizing the coil-to-globule phase transition of the copolymer. The composition of the copolymer was fine-tuned to obtain lower critical solution temperature (LCST) around body temperature, and the phase transition behavior was evaluated. The cellular uptake and gene silencing efficiency of the copolymer-siRNA conjugates were then investigated in cultured cells.
RESULTS: The siRNA conjugated with the copolymer with LCST of 38.0°C exhibited ~ 11.5 nm of the hydrodynamic diameter at 37°C and ~ 9.8 nm of the diameter at 41°C, indicating the coil-globule transition above the LCST. In line with this LCST behavior, its cellular uptake and gene silencing efficiency were enhanced when the temperature was increased from 37°C to 41°C.
CONCLUSION: By fine-tuning the LCST behavior of the copolymer that was conjugated with siRNA, siRNA activity could be controlled in a thermo-responsive manner around the body temperature. This technique may offer a promising approach to induce therapeutic effects of siRNA selectively in the target site even in the in vivo conditions.