Displaying publications 81 - 100 of 3950 in total

Abstract:
Sort:
  1. Sutthinun C, Gattolliat JL, Boonsoong B
    Zootaxa, 2018 Feb 07;4378(1):85-97.
    PMID: 29690018 DOI: 10.11646/zootaxa.4378.1.5
    Platybaetis bishopi Müller-Liebenau, 1980 was originally described from Malaysia only at the larval stage. We provide the first description of the imaginal stage of P. bishopi based on materials from Thailand. The imago of this species can be separated from the known species by coloration of abdominal terga and coloration of wings. A new species, Platybaetis nayokensis sp. nov., is described based on male and female imagos and larvae from Thailand. The larva of this species is mainly distinguished by medium acute spines on the posterior margin of the abdominal terga and two apical setae on the glossa, which seem to be shorter than in other species. The imago can be separated by the abdominal color pattern. The larva of this genus is adapted to live on wet rocks projecting out of water; it prefers large stones near small waterfalls or areas between two large rocks in running water.
    Matched MeSH terms: Water
  2. Hameed BH, Krishni RR, Sata SA
    J Hazard Mater, 2009 Feb 15;162(1):305-11.
    PMID: 18573607 DOI: 10.1016/j.jhazmat.2008.05.036
    In this paper, pineapple stem (PS) waste, an agricultural waste available in large quantity in Malaysia, was utilized as low-cost adsorbent to remove basic dye (methylene blue, MB) from aqueous solution by adsorption. Batch mode experiments were conducted at 30 degrees C to study the effects of initial concentration of methylene blue, contact time and pH on dye adsorption. Equilibrium adsorption isotherms and kinetic were investigated. The experimental data were analyzed by the Langmuir and Freundlich models and the isotherm data fitted well to the Langmuir isotherm with monolayer adsorption capacity of 119.05mg/g. The kinetic data obtained at different concentrations were analyzed using a pseudo-first-order and pseudo-second-order equation and intraparticle diffusion equation. The experimental data fitted very well the pseudo-second-order kinetic model. The PS was found to be very effective adsorbent for MB adsorption.
    Matched MeSH terms: Water
  3. Ibrahim MN, Ngah WS, Norliyana MS, Daud WR, Rafatullah M, Sulaiman O, et al.
    J Hazard Mater, 2010 Oct 15;182(1-3):377-85.
    PMID: 20619537 DOI: 10.1016/j.jhazmat.2010.06.044
    The present study explores the ability of modified soda lignin (MSL) extracted from oil palm empty fruit bunches (EFB) in removing lead (II) ions from aqueous solutions. The effect of contact time, point zero charge (pH(pzc)) and pH of the solution, initial metal ion concentration and adsorbent dosage on the removal process were investigated. Furthermore, the MSL is characterized by SEM, XRF, FT-IR and surface area analysis. Equilibrium adsorption isotherms and kinetics were investigated. The experimental data were analyzed by the Langmuir, Freundlich and Temkin models of adsorption. The kinetic data obtained at different initial concentrations were analyzed using pseudo-first-order and pseudo-second-order models. The results provide strong evidence to support the hypothesis of adsorption mechanism.
    Matched MeSH terms: Water/chemistry; Water Pollutants, Chemical/isolation & purification*
  4. Fatima N, Karimov KS, Qasuria TA, Ibrahim MA
    J Alloys Compd, 2020 Dec 30;849:156702.
    PMID: 32834521 DOI: 10.1016/j.jallcom.2020.156702
    In this research, due to the present pandemic of COVID-19, we are proposing a stable and fixed semitransparent photo-thermoelectric cell (PTEC) module for green energy harvesting. This module is based on the alloy of Bismuth Telluride Selenide (Bi2Te3Se), designed in a press tablet form and characterized under solar energy. Here, both aspects of solar energy i.e., light and heat are utilized for both energy production and water heating. The semitransparent PTEC converts heat energy directly to electrical energy due to the gradient of temperature between two electrodes (top and bottom) of thermoelectric cells. The PTEC is 25% transparent, which can be varied according to the necessity of the utilizer. The X-ray diffraction of material and electric characterization of module i.e., open-circuited voltage (VOC) and Seebeck coefficient were performed. The experimental observations disclose that in the proposed PTEC module with an increment in the average temperature (TAvg) from 34 to 60 °C, results in the rise of VOC ∼ 2.4 times. However, by modifying the size of heat-absorbing top electrode and by increasing the temperature gradient through the addition of water coolant under the bottom electrode, an uplift in the champion device results in as increment of VOC ∼5.5 times and Seebeck coefficient obtained was -250 μV/0C, respectively. Results show that not only the selection of material but also the external modifications in the device highly effective the power efficiency of the devices. The proposed modules can generate electric power from light and utilize the penetrating sunlight inside the room and for the heating of the water which also acts as a coolant. These semitransparent thermoelectric cells can be built-in within windows and roofs of buildings and can potentially contribute to green energy harvesting, in situations where movement is restricted locally or globally.
    Matched MeSH terms: Water
  5. Amid M, Murshid FS, Manap MY, Hussin M
    Biomed Res Int, 2015;2015:815413.
    PMID: 25756051 DOI: 10.1155/2015/815413
    A novel aqueous two-phase system composed of a surfactant and sorbitol was employed for the first time to purify pectinase from Psidium guajava. The influences of different parameters, including the type and concentration of the surfactant and the concentration and composition of the surfactant/sorbitol ratio, on the partitioning behavior and recovery of pectinase were investigated. Moreover, the effects of system pH and the crude load on purification fold and the yield of purified pectinase were studied. The experimental results indicated that the pectinase was partitioned into surfactant-rich top phase, and the impurities were partitioned into the sorbitol-rich bottom phase with the novel method involving an ATPS composed of 26% (w/w) Triton X-100 and 23% (w/w) sorbitol at 54.2% of the TLL crude load of 20% (w/w) at pH 6.0. The enzyme was successfully recovered by this method with a high purification factor of 15.2 and a yield of 98.3%, whereas the phase components were also recovered and recycled at rates above 96%. This study demonstrated that this novel ATPS method can be used as an efficient and economical alternative to the traditional ATPS for the purification and recovery of the valuable enzyme.
    Matched MeSH terms: Water/chemistry*
  6. Adnan O, Abidin ZZ, Idris A, Kamarudin S, Al-Qubaisi MS
    Environ Sci Pollut Res Int, 2017 Aug;24(24):20104-20112.
    PMID: 28702910 DOI: 10.1007/s11356-017-9560-x
    A new commercial cationic polyelectrolyte chitosan (CM), obtained from the waste of mushroom production, was examined using models of water and wastewater namely kaolin and palm oil mill effluent (pome). As it is biocompatible, widely available, and economically feasible, chitosan mushroom has high potential to be a suitable replacement for alum. Also, it can be a promising alternative to chitosan obtained traditionally from Crustaceans due to its higher zeta potential and homogeneity based on the raw material required for its production. A wide range of coagulant dose (5-60 mg l(-1)) and wastewater pH (2-12) were taken into account to find the optimal conditions of coagulation. The optimal doses are 10 and 20 mg l(-1) at best pH (11 and 3) when treated with kaolin and palm oil mill effluent, respectively, while 1200 mg l(-1) of alum was not enough to reach the efficiency of chitosan mushroom. On the other hand, the optimum dose of chitosan mushroom (20 mg l(-1)) at pH 3 of pome produced (75, 73, and 98%) removal of chemical oxygen demand (COD), biological oxygen demand (BOD), and total suspended solids (TSS), respectively. The significant potential of chitosan mushroom was proved by zeta potential measurement. Indeed, it possesses the highest zeta potential (+70 mV) as compared to the traditional chitosan produced from crustaceans. In short, chitosan mushroom as a biocoagulant is eco-friendly and it enhances water quality that meets the requirements of environmental conservatives.
    Matched MeSH terms: Water; Water Quality; Waste Water
  7. Alqarni LS, Algethami JS, El Kaim Billah R, Alorabi AQ, Alnaam YA, Algethami FK, et al.
    Int J Biol Macromol, 2024 Apr;263(Pt 2):129989.
    PMID: 38354916 DOI: 10.1016/j.ijbiomac.2024.129989
    In this study, the synthesis and experimental theoretical evaluation of a new chitosan/alginate/hydrozyapatite nanocomposite doped with Mn2 and Fe2O3 for Cr removal was reported. The physicochemical properties of the obtained materials were analyzed using the following methods: SEM-EDX, XRD, FTIR, XPS, pH drift measurements, and thermal analysis. The adsorption properties were estimated based on equilibrium and adsorption kinetics measurements. The Langmuir, Freundlich and Temkin isotherms were applied to analyze the equilibrium data. The thermodynamic analysis of adsorption isotherms was performed. A number of equations and kinetic models were used to describe the adsorption rate data, including pseudo-first (PFOE) and pseudo-second (PSOE) order kinetic equations. The obtained test results show that the synthesized biomaterial, compared to pure chitosan, is characterized by greater resistance to high temperatures. Moreover, this biomaterial had excellent adsorption properties. For the adsorption of Cr (VI), the equilibrium state was reached after 120 min, and the sorption capacity was 455.9 mg/g. In addition, DFT calculations and NCI analyses were performed to get more light on the adsorption mechanism of Cr (VI) on the prepared biocomposite.
    Matched MeSH terms: Waste Water
  8. Sim SF, Ling TY, Lau S, Jaafar MZ
    Environ Monit Assess, 2015 Apr;187(4):181.
    PMID: 25773897 DOI: 10.1007/s10661-015-4416-7
    A computer-aided multivariate water quality index is developed based on partial least squares (PLS) regression. The index is termed as the partial least squares water quality index (PLS-WQI). Briefly, a training set was computationally generated based on the guideline of National Water Quality Standards for Malaysia (NWQS) to predict the water quality. The index is benchmarked with the well-established index developed by the Department of Environment, Malaysia (DOE-WQI). The PLS-WQI is a continuous variable with the value closer to I indicating good water quality and closer to V indicating poor water quality. Unlike other conventional indexing methods, the algorithm calculates the index in a multivariate manner. The algorithm allows rapid processing of a large dataset without tedious calculation; it can be an efficient tool for spatial and temporal routine monitoring of water quality. Although the algorithm is designed based on the guideline of NWQS, it can be easily adapted to accommodate other guidelines. The algorithm was evaluated and demonstrated on the simulated and real datasets. Results indicate that the algorithm is robust and reliable. Based on six parameters, the overall ratings derived are inversely correlated to DOE-WQI. When the number of parameter is increased, the overall ratings appear to provide better insights into the water quality.
    Matched MeSH terms: Water Pollutants/standards*; Water Pollution/statistics & numerical data*; Water Quality/standards
  9. Arifin MH, Kayode JS, Ismail MKI, Abdullah AM, Embrandiri A, Nazer NSM, et al.
    MethodsX, 2021;8:101182.
    PMID: 33365262 DOI: 10.1016/j.mex.2020.101182
    A novel methodological approach was developed to quantified the volume of industrial waste desposal (IWD) site, combined with municipal waste materials (MWM), through the integration of a non-invasive, fast, and less expenssive RES2-D Electrical Resistivity Technique (ERT), using Wenner-Schlumberger electrode array geophysical method with Oasis Montaj software. Underground water bearing structures, and the eco-system are being contaminated through seepage of the plumes emanating from the mixtures of the industrial waste materials (IWM), made of moist cemented soil with municipal solid wastes (MSW) dumped at the site. The distribution of the contiminant hazardous plumes emanating from the waste materials' mixtures within the subsurface structural lithological layers was clearly map and delineated within the near-surface structures, using the triplicate technique to collect samples of the soil with the waste mixtures, and the water analysis for the presence of dissolved ions. The deployed method helped to monitor the seepage of the contaminant leachate plumes to the groundwater aquifer units via the ground surface, through the subsurface stratum lithological layers, and hence, estimation of the waste materials' volume was possibly approximated to be 312,000 m3. In summary, the novel method adopted are as presented below:•The novel method is transferable, reproduce-able, and most importantly, it is unambiguous technique for the quantification of environmental, industrial and municipal waste materials.•It helps to map the distribution of the plumes emanating from the waste materials' mixtures within the subsurface structural lithological layers that was clearly delineated within the near-surface structures underlain the study site.•The procedure helped in the monitoring of leachate contaminants plumes seepages into the surface water bodies and the groundwater aquifer units, via the ground surface, through to the porous subsurface stratum lithological layers.
    Matched MeSH terms: Water; Groundwater
  10. Altowayti WAH, Allozy HGA, Shahir S, Goh PS, Yunus MAM
    Environ Sci Pollut Res Int, 2019 Oct;26(28):28737-28748.
    PMID: 31376124 DOI: 10.1007/s11356-019-06059-0
    Several parts of the world have been facing the problem of nitrite and nitrate contamination in ground and surface water. The acute toxicity of nitrite has been shown to be 10-fold higher than that of nitrate. In the present study, aminated silica carbon nanotube (ASCNT) was synthesised and tested for nitrite removal. The synergistic effects rendered by both amine and silica in ASCNT have significantly improved the nitrite removal efficiency. The IEP increased from 2.91 for pristine carbon nanotube (CNT) to 8.15 for ASCNT, and the surface area also increased from 178.86 to 548.21 m2 g-1. These properties have promoted ASCNT a novel adsorbent to remove nitrite. At optimum conditions of 700 ppm of nitrite concentration at pH 7 and 5 h of contact with 15 mg of adsorbent, the ASCNT achieved the maximal loading capacity of 396 mg/g (85% nitrite removal). The removal data of nitrite onto ASCNT fitted the Langmuir isotherm model better than the Freundlich isotherm model with the highest regression value of 0.98415, and also, the nonlinear analysis of kinetics data showed that the removal of nitrite followed pseudo-second-order kinetic. The positive values of both ΔS° and ΔH° suggested an endothermic reaction and an increase in randomness at the solid-liquid interface. The negative ΔG° values indicated a spontaneous adsorption process. The ASCNT was characterised using FESEM-EDX and FTIR, and the results obtained confirmed the removal of nitrite. Based on the findings, ASCNT can be considered as a novel and promising candidate for the removal of nitrite ions from wastewater.
    Matched MeSH terms: Water/chemistry; Water Pollutants, Chemical/analysis; Water Pollutants, Chemical/chemistry*; Water Purification/methods; Waste Water/analysis
  11. Suah FB, Ahmad M, Heng LY
    PMID: 25748985 DOI: 10.1016/j.saa.2015.02.068
    A novel approach for the determination of Al(3+) from aqueous samples was developed using an optode membrane produced by physical inclusion of Al(3+) selective reagent, which is morin into a plasticized poly(vinyl chloride). The inclusion of Triton X-100 was found to be valuable and useful for enhancing the sorption of Al(3+) ions from liquid phase into the membrane phase, thus increasing the intensity of optode's absorption. The optode showed a linear increase in the absorbance at λ(max)=425 nm over the concentration range of 1.85×10(-6)-1.1×10(-4) mol L(-1) (0.05-3 μg mL(-1)) of Al(3+) ions in aqueous solution after 5 min. The limit of detection was determined to be 1.04×10(-6) mol L(-1) (0.028 μg mL(-1)). The optode developed in the present work was easily prepared and found to be stable, has good mechanical strength, sensitive and reusable. In addition, the optode was tested for Al(3+) determination in lake water, river water and pharmaceutical samples, which the result was satisfactory.
    Matched MeSH terms: Water Pollutants, Chemical/analysis
  12. Ismanto A, Hadibarata T, Kristanti RA, Sugianto DN, Widada S, Atmodjo W, et al.
    Mar Pollut Bull, 2023 Nov;196:115563.
    PMID: 37797535 DOI: 10.1016/j.marpolbul.2023.115563
    This study aimed to address the pressing issue of plastic pollution in aquatic ecosystems by assessing the prevalence and distribution of microplastics (MPs) in water and riverbank sediments of the Pekalongan River, a vital water source in Indonesia. From the present findings, MP concentrations in water ranged from 45.2 to 99.1 particles/L, while sediment concentrations ranged from 0.77 to 1.01 particles/g. This study revealed that fragment and film MPs constituted 30.1 % and 25.4 % of the total, respectively, with MPs measuring <1 mm and constituting 51.4 % of the total. Colored MPs, particularly blue and black MPs, accounted for 34 % of the total. The primary polymer components, as determined via Fourier transform infrared spectroscopy, were identified as polystyrene, polyester, and polyamide. In response to the escalating plastic waste crisis caused by single-use plastics, Pekalongan's local government implemented refuse segregation and recycling programs as part of its efforts to transition toward zero-waste practices.
    Matched MeSH terms: Water
  13. Khuzaimah Arifin, Wan Ramli Wan Daud, Mohammad B. Kassim
    Sains Malaysiana, 2014;43:95-101.
    A novel bimetallic double thiocyanate-bridged ruthenium and tungsten metal complex containing bipyridyl and dithiolene co-ligands was synthesized and the behavior of the complex as a dye-sensitizer for a photoelectrochemical (PEG) cell for a direct water splitting reaction was investigated. The ligands and metal complexes were characterized on the basis of elemental analysis as well as uv-Vis, Fourier transform infrared ( Pim) and nuclear magnetic resonance (11I and 13C NMR) spectroscopy. Cyclic voltammetry of the bimetallic complex showed multiple redox couples, in which half potentials E 112 at 0 .625 , 0.05 and 0.61 V were assigned as the formal redox processes of Ru(III)IRu(II) reduction, W(IV)IW(V) and W(V)IW(VI) oxidations, respectively. Photocurrent measurements were performed in homogeneous system and TiO2 was used as the photoanode for photocurrent measurements. Current density generated by the bimetallic complex was higher than that of N3 commercial dye which suggested that the bimetallic complex donated more electrons to the semiconductor.
    Matched MeSH terms: Water
  14. Cui M, Jang M, Kang K, Kim D, Snyder SA, Khim J
    Chemosphere, 2016 Feb;144:2081-90.
    PMID: 26583290 DOI: 10.1016/j.chemosphere.2015.10.107
    A novel and economic sequential process consisting of precipitation, adsorption, and oxidation was developed to remediate actual rare-earth (RE) wastewater containing various toxic pollutants, including radioactive species. In the precipitation step, porous air stones (PAS) containing waste oyster shell (WOS), PASWOS, was prepared and used to precipitate most heavy metals with >97% removal efficiencies. The SEM-EDS analysis revealed that PAS plays a key role in preventing the surface coating of precipitants on the surface of WOS and in releasing the dissolved species of WOS successively. For the adsorption step, a polyurethane (PU) impregnated by coal mine drainage sludge (CMDS), PUCMDS, was synthesized and applied to deplete fluoride (F), arsenic (As), uranium (U), and thorium (Th) that remained after precipitation. The continuous-mode sequential process using PAS(WOS), PU(CMDS), and ozone (O3) had 99.9-100% removal efficiencies of heavy metals, 99.3-99.9% of F and As, 95.8-99.4% of U and Th, and 92.4% of COD(Cr) for 100 days. The sequential process can treat RE wastewater economically and effectively without stirred-tank reactors, pH controller, continuous injection of chemicals, and significant sludge generation, as well as the quality of the outlet met the EPA recommended limits.
    Matched MeSH terms: Waste Water
  15. Chen SH, Ng SL, Cheow YL, Ting ASY
    J Hazard Mater, 2017 Jul 15;334:132-141.
    PMID: 28407540 DOI: 10.1016/j.jhazmat.2017.04.004
    Four fungal isolates: Simplicillium chinense (iso 9, accession no. KX425621), Penicillium simplicissimum (iso 10, KP713758), Trichoderma asperellum (iso 11, KP792512), and Coriolopsis sp. (1c3, KM403574) were subjected to a series of induced-tolerance training under high metal concentrations to determine if greater tolerance could be achieved from constant exposure to such conditions. Adaptive tolerance assay (Tolerance Index, TI) and Field-Emission Scanning Electron Microscopy with Energy Dispersive X-ray (SEM-EDX) characterized their metal tolerance. "Untrained" S. chinense, P. simplicissimum and T. asperellum showed tolerance towards 4000-4500ppm Al(III) (TI: 0.64-0.71), 1000ppm Cr(III) (0.52-0.83) and Pb(II) (0.32-0.88). With tolerance training, tolerance towards 2000-6000ppm Al(III), 500-3000ppm Pb(II) and 2000-3000ppm Cr(III) were achieved (TI: 0.01-0.82) compared to untrained cultures (0.00-0.59). In contrast, tolerance training for Coriolopsis sp. and P. simplicissimum was less successful, with TI values similar or lower than untrained cultures. SEM-EDX analysis proposed biosorption and bioaccumulation as mechanisms for metal removal. The latter was demonstrated with the removal of Cr(III) and Pb(II) by S. chinense (12.37 and 11.52mgg-1, respectively) and T. asperellum (10.44 and 7.50mgg-1). Induced-tolerance training may render benefit in the long run, but this delicate approach is suggestively species and metal dependent.
    Matched MeSH terms: Water Pollutants, Chemical/isolation & purification; Water Pollutants, Chemical/metabolism; Water Pollutants, Chemical/toxicity*
  16. Al-Baldawi IA, Abdullah SR, Anuar N, Suja F, Idris M
    J Hazard Mater, 2013 May 15;252-253:64-9.
    PMID: 23500791 DOI: 10.1016/j.jhazmat.2013.01.067
    In this study, bulrush (Scirpus grossus) was subjected to a 72 day phytotoxicity test to assess its ability to phytoremediate diesel contamination in simulated wastewater at different concentrations (0, 8700, 17,400 and 26,100mg/L). Diesel degradation by S. grossus was measured in terms of total petroleum hydrocarbon (TPH-D). The TPH-D concentration in the synthetic wastewater was determined with the liquid-liquid extraction method and gas chromatography. S. grossus was found to reduce TPH-D by 70.0 and 80.2% for concentrations of 8700 mg/L and 17,400mg/L, respectively. At a diesel concentration of 26,100mg/L, S. grossus died after 14 days. Additionally, the biomass of S. grossus plants was found to increase throughout the phytotoxicity test, confirming the ability of the plant to survive in water contaminated with diesel at rates of less than 17,400mg/L.
    Matched MeSH terms: Water Pollutants, Chemical/metabolism; Water Pollutants, Chemical/toxicity*
  17. Molla AH, Fakhru'l-Razi A, Abd-Aziz S, Hanafi MM, Roychoudhury PK, Alam MZ
    Bioresour Technol, 2002 Dec;85(3):263-72.
    PMID: 12365494
    Twenty seven filamentous fungal strains representing five genera; Aspergillus, Penicillium, Trichoderma, Myriodontium and Pleurotus were isolated from four sources; domestic wastewater sludge cake (SC) from IWK (Indah Water Konsortium) wastewater treatment plant, palm oil mill effluent compost from Sri Ulu palm Oil Processing Mill, compost of plant debris, and fungal fruiting bodies from a rotten wood stump. Thirty-three strains/isolates were tested for their ability to convert domestic wastewater sludge into compost by assessing biomass production and growth rate on sludge enriched media. The strains/isolates Aspergillus niger, SS-T2008, WW-P1003 and RW-P1 512 produced the highest dry biomass at higher sludge supplemented culture media from their respective group (Aspergillus, Trichoderma, Penicillium and Basidiomycetes, respectively). This implied these strains are better adapted for growth at higher sludge rich substances, and subsequently may be efficient in bioconversion/biodegradation of sludge. The fungi isolated from ecological closely related sources were more amendable to adaptation in a sludge rich culture media.
    Matched MeSH terms: Water Purification/methods*
  18. Krishna Sahith Sayani J, English NJ, Khan MS, Ali A
    Chemosphere, 2023 Feb;313:137550.
    PMID: 36521742 DOI: 10.1016/j.chemosphere.2022.137550
    Gas Hydrate modelling has gained huge attention in the past decade due to its increase in usage for various energy as well as environmental applications at an industrial scale. As the experimental approach is highly expensive and time-consuming, modelling is the best way to predict the conditions before the actual applications at industrial scales. The commercial software currently existing uses the equation of states (EOS) to predict the thermodynamic conditions of gas hydrates. But, in certain cases, the prediction by using EOS fails to predict the hydrate conditions accurately. Therefore, there arose a need for an accurate prediction model to estimate the hydrate formation conditions. So, in this work, an accurate prediction model has been proposed to predict the thermodynamic equilibrium conditions of the gas hydrate formation. The performance of prediction accuracy for the proposed model is compared with those of the SRK equation of state and Peng Robinson (PR) Equation of state. It was observed that in most of the cases the proposed model has predicted the thermodynamic conditions more accurately than the PR and SRK equation of state. This work helps in understanding the limitations of EOS for the prediction hydrate conditions. Also, the current work helps in strengthening the conventional statistical modelling technique to predict the hydrate conditions for a broader range.
    Matched MeSH terms: Water*
  19. Kura NU, Ramli MF, Ibrahim S, Sulaiman WN, Zaudi MA, Aris AZ
    ScientificWorldJournal, 2014;2014:796425.
    PMID: 25574493 DOI: 10.1155/2014/796425
    The existing knowledge regarding seawater intrusion and particularly upconing, in which both problems are linked to pumping, entirely relies on theoretical assumptions. Therefore, in this paper, an attempt is made to capture the effects of pumping on seawater intrusion and upconing using 2D resistivity measurement. For this work, two positions, one perpendicular and the other parallel to the sea, were chosen as profile line for resistivity measurement in the coastal area near the pumping wells of Kapas Island, Malaysia. Subsequently, water was pumped out of two pumping wells simultaneously for about five straight hours. Then, immediately after the pumping stopped, resistivity measurements were taken along the two stationed profile lines. This was followed by additional measurements after four and eight hours. The results showed an upconing with low resistivity of about 1-10 Ωm just beneath the pumping well along the first profile line that was taken just after the pumping stopped. The resistivity image also shows an intrusion of saline water (water enriched with diluted salt) from the sea coming towards the pumping well with resistivity values ranging between 10 and 25 Ωm. The subsequent measurements show the recovery of freshwater in the aquifer and how the saline water is gradually diluted or pushed out of the aquifer. Similarly the line parallel to the sea (L2) reveals almost the same result as the first line. However, in the second and third measurements, there were some significant variations which were contrary to the expectation that the freshwater may completely flush out the saline water from the aquifer. These two time series lines show that as the areas with the lowest resistivity (1 Ωm) shrink with time, the low resistivity (10 Ωm) tends to take over almost the entire area implying that the freshwater-saltwater equilibrium zone has already been altered. These results have clearly enhanced our current understanding and add more scientific weight to the theoretical assumptions on the effects of pumping on seawater intrusion and upconing.
    Matched MeSH terms: Fresh Water; Water Movements*
  20. Ng TH, Dulipat J, Foon JK, Lopes-Lima M, Alexandra Zieritz, Liew TS
    Zookeys, 2017.
    PMID: 28769673 DOI: 10.3897/zookeys.673.12544
    Sabah, a Malaysian state at the north-eastern tip of Borneo, is situated in one of the Earth's biodiversity hotspots yet its freshwater gastropod diversity remains poorly known. An annotated checklist of the freshwater gastropods is presented, based on specimens deposited in the BORNEENSIS collection of the Institute for Tropical Biology and Conservation at Universiti Malaysia Sabah, Malaysia. A KMZ file is also provided, which acts as a repository of digital images and complete collection data of all examined material, so that it can be shared and adapted to facilitate future research.
    Matched MeSH terms: Fresh Water
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links