Displaying publications 81 - 100 of 306 in total

Abstract:
Sort:
  1. Saeed MEM, Boulos JC, Elhaboub G, Rigano D, Saab A, Loizzo MR, et al.
    Phytomedicine, 2019 Sep;62:152945.
    PMID: 31132750 DOI: 10.1016/j.phymed.2019.152945
    BACKGROUND: Cucurbitacin E (CuE) is an oxygenated tetracyclic triterpenoid isolated from the fruits of Citrullus colocynthis (L.) Schrad.

    PURPOSE: This study outlines CuE's cytotoxic activity against drug-resistant tumor cell lines. Three members of ABC transporters superfamily, P-glycoprotein (P-gp), breast cancer resistance protein (BCRP) and ABCB5 were investigated, whose overexpression in tumors is tightly linked to multidrug resistance. Further factors of drug resistance studied were the tumor suppressor TP53 and the epidermal growth factor receptor (EGFR).

    METHODS: Cytotoxicity assays (resazurin assays) were used to investigate the activity of Citrullus colocynthis and CuE towards multidrug resistant cancer cells. Molecular docking (In silico) has been carried out to explore the CuE's mode of binding to ABC transporters (P-gp, BCRP and ABCB5). The visualization of doxorubicin uptake was done by a Spinning Disc Confocal Microscope. The assessment of proteins expression was done by western blotting analysis. COMPARE and hierarchical cluster analyses were applied to identify, which genes correlate with sensitivity or resistance to cucurbitacins (CuA, CuB, CuE, CuD, CuI, and CuK).

    RESULTS: Multidrug-resistant cells overexpressing P-gp or BCRP were cross-resistant to CuE. By contrast, TP53 knock-out cells were sensitive to CuE. Remarkably, resistant cells transfected with oncogenic ΔEGFR or ABCB5 were hypersensitive (collateral sensitive) to CuE. In silico analyses demonstrated that CuE is a substrate for P-gp and BCRP. Immunoblot analyses highlighted that CuE targeted EGFR and silenced its downstream signaling cascades. The most striking result that emerged from the doxorubicin uptake by ABCB5 overexpressing cells is that CuE is an effective inhibitor for ABCB5 transporter when compared with verapamil. The COMPARE analyses of transcriptome-wide expression profiles of tumor cell lines of the NCI identified common genes involved in cell cycle regulation, cellular adhesion and intracellular communication for different cucurbitacins.

    CONCLUSION: CuE represents a potential therapeutic candidate for the treatment of certain types of refractory tumors. To best of our knowledge, this is the first time to identify CuE and verapamil as inhibitors for ABCB5 transporter.

    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology*; Antineoplastic Agents, Phytogenic/chemistry
  2. Saedi TA, Ghafourian S, Jafarlou M, Sabariah MN, Ismail P, Eusni RM, et al.
    J Biol Regul Homeost Agents, 2015 Apr-Jun;29(2):395-9.
    PMID: 26122228
    Tumor protein p53 encoded by the TP53 gene in humans is known as a cancer biomarker in patients diagnosed with cancer, and it plays an essential role in apoptosis, genomic stability, and inhibition of angiogenesis. Cancer therapies with common chemotherapy methods are effective, as known, but have some side effects. Berberis vulgaris is traditionally administrated as a cancer drug. The current research aims to evaluate p53 as a biomarker in WEHI-3 cell line and to demonstrate the Berberis vulgaris fruit crude extract (BVFCE) as a new anticancer drug. For this purpose, we evaluated the effect of BVFCE in different concentrations against WEHI-3cell line in vitro and determined the quantitative level of p53 gene in the treated WEHI-3 cells. The results demonstrated that even at only 1 mg/ml concentration of Berberis vulgaris crude extract, there was a low level of p53 biomarker expression on WEHI-3 cells in comparison with doxorubicin. Therefore, the current study suggests BVFCE as a reliable anti-leukaemic drug and candidate for anticancer therapy. However, further investigation need be carried out to confirm its efficiency in vivo.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/isolation & purification; Antineoplastic Agents, Phytogenic/pharmacology*
  3. Rouhollahi E, Zorofchian Moghadamtousi S, Paydar M, Fadaeinasab M, Zahedifard M, Hajrezaie M, et al.
    PMID: 25652758 DOI: 10.1186/s12906-015-0534-6
    BACKGROUND: Curcuma purpurascens BI. (Zingiberaceae) commonly known as 'Koneng Tinggang' and 'Temu Tis' is a Javanese medicinal plant which has been used for numerous ailments and diseases in rural Javanese communities. In the present study, the apoptogenic activity of dichloromethane extract of Curcuma purpurascens BI. rhizome (DECPR) was investigated against HT-29 human colon cancer cells.
    METHODS: Acute toxicity study of DECPR was performed in Sprague-Dawley rats. Compounds of DECPR were analyzed by the gas chromatography-mass spectrometry-time of flight (GC-MS-TOF) analysis. Cytotoxic effect of DECPR on HT-29 cells was analyzed by MTT and lactate dehydrogenase (LDH) assays. Effects of DECPR on reactive oxygen species (ROS) formation and mitochondrial-initiated events were investigated using a high content screening system. The activities of the caspases were also measured using a fluorometric assay. The quantitative PCR analysis was carried out to examine the gene expression of Bax, Bcl-2 and Bcl-xl proteins.
    RESULTS: The in vivo acute toxicity study of DECPR on rats showed the safety of this extract at the highest dose of 5 g/kg. The GC-MS-TOF analysis of DECPR detected turmerone as the major compound in dichloromethane extract. IC50 value of DECPR towards HT-29 cells after 24 h treatment was found to be 7.79 ± 0.54 μg/mL. In addition, DECPR induced LDH release and ROS generation in HT-29 cells through a mechanism involving nuclear fragmentation and cytoskeletal rearrangement. The mitochondrial-initiated events, including collapse in mitochondrial membrane potential and cytochrome c leakage was also triggered by DECPR treatment. Initiator caspase-9 and executioner caspase-3 was dose-dependently activated by DECPR. The quantitative PCR analysis on the mRNA expression of Bcl-2 family of proteins showed a significant up-regulation of Bax associated with down-regulation in Bcl-2 and Bcl-xl mRNA expression.
    CONCLUSIONS: The findings presented in the current study showed that DECP suppressed the proliferation of HT-29 colon cancer cells and triggered the induction of apoptosis through mitochondrial-dependent pathway.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology; Antineoplastic Agents, Phytogenic/therapeutic use*
  4. Reddy AS, Abd Malek SN, Ibrahim H, Sim KS
    BMC Complement Altern Med, 2013 Nov 12;13:314.
    PMID: 24215354 DOI: 10.1186/1472-6882-13-314
    BACKGROUND: Alpinia scabra, locally known as 'Lengkuas raya', is an aromatic, perennial and rhizomatous herb from the family Zingiberaceae. It is a wild species which grows largely on mountains at moderate elevations in Peninsular Malaysia, but it can also survive in the lowlands like in the states of Terengganu and Northern Johor. The present study reports the cytotoxic potential of A. scabra extracts from different parts of the plant.

    METHODS: The experimental approach in the present study was based on a bioassay-guided fractionation. The crude methanol and fractionated extracts (hexane, chloroform and water) from different parts of A. scabra (leaves, rhizomes, roots and pseudo stems) were prepared prior to the cytotoxicity evaluation against human ovarian (SKOV-3) and hormone-dependent breast (MCF7) carcinoma cells. The identified cytotoxic extracts were then subjected to chemical investigations in order to identify the active ingredients. A normal human lung fibroblast cell line (MRC-5) was used to determine the specificity for cancerous cells. The cytotoxic extracts and fractions were also subjected to morphological assessment, DNA fragmentation analysis and DAPI nuclear staining.

    RESULTS: The leaf (hexane and chloroform) and rhizome (chloroform) extracts showed high inhibitory effect against the tested cells. Ten fractions (LC1-LC10) were yielded after purification of the leaf chloroform extract. Fraction LC4 which showed excellent cytotoxic activity was further purified and resulted in 17 sub-fractions (VLC1-VLC17). Sub-fraction VLC9 showed excellent cytotoxicity against MCF7 and SKOV-3 cells but not toxic against normal MRC-5 cells. Meanwhile, eighteen fractions (RC1-RC18) were obtained after purification of the rhizome chloroform extract, of which fraction RC5 showed cytotoxicity against SKOV-3 cells with high selectivity index. There were marked morphological changes when observed using phase-contrast inverted microscope, DAPI nuclear staining and also DNA fragmentations in MCF7 and SKOV-3 cells after treatment with the cytotoxic extracts and fractions which were indicative of cell apoptosis. Methyl palmitate and methyl stearate were identified in the hexane leaf extract by GC-MS analysis.

    CONCLUSIONS: The data obtained from the current study demonstrated that the cell death induced by cytotoxic extracts and fractions of A. scabra may be due to apoptosis induction which was characterized by apoptotic morphological changes and DNA fragmentation. The active ingredients in the leaf sub-fraction VLC9 and rhizome fraction RC5 may lead to valuable compounds that have the ability to kill cancer cells but not normal cells.

    Matched MeSH terms: Antineoplastic Agents, Phytogenic/isolation & purification; Antineoplastic Agents, Phytogenic/toxicity*
  5. Ramasamy S, Abdul Wahab N, Zainal Abidin N, Manickam S
    Exp. Toxicol. Pathol., 2013 Mar;65(3):341-9.
    PMID: 22217449 DOI: 10.1016/j.etp.2011.11.005
    Species of Phyllanthus have traditionally been used for hundreds of years for treating many ailments including diabetes, anemia, bronchitis and hepatitis. The present study aims to investigate the cytotoxic and apoptotic effects of methanol (PWM), hexane (PWH) and ethyl acetate (PWE) extracts from the leaves of the endemic plant Phyllanthus watsonii Airy Shaw (Phyllanthaceae) on MCF-7 human breast cancer cells. We observed that the PWM, PWH and PWE extracts were cytotoxic and selectively inhibited the growth and proliferation of MCF-7 cells compared to untreated control in a dose dependent manner with an IC(50) of 12.7 ± 4.65, 7.9 ± 0.60 and 7.7 ± 0.29 μg/ml, respectively. However, the extracts were not toxic at these concentrations to normal human lung fibroblast MRC-5 cells. Cell death induced by PWM, PWH and PWE extracts were mainly due to apoptosis which was characterized by apoptotic morphological changes and a nuclear DNA fragmentation. Caspase-3 activation following P. watsonii extracts treatment was also evident for apoptotic cell death which was preceded by an S phase cell cycle perturbation. The results suggested that the cytotoxic activity of P. watsonii extracts was related to an early event of cell cycle perturbation and a later event of apoptosis. Hence, P. watsonii displays potential to be further exploited in the discovery and development of new anticancer agents.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/isolation & purification; Antineoplastic Agents, Phytogenic/pharmacology*; Antineoplastic Agents, Phytogenic/toxicity
  6. Ramasamy K, Lim SM, Abu Bakar H, Ismail N, Ismail MS, Ali MF, et al.
    Phytother Res, 2010 May;24(5):640-3.
    PMID: 19468989 DOI: 10.1002/ptr.2891
    Endophytes, which are receiving increasing attention, have been found to be potential sources of bioactive metabolites following the discovery of paclitaxel producing endophytic fungi. In the present study, a total of 348 endophytes were isolated from different parts of 24 Malaysian medicinal plants. Three selected endophytes (HAB10R12, HAB11R3 and HAB21F25) were investigated for their antimicrobial and cytotoxic activities. For antimicrobial activity, HAB10R12 and HAB11R3 were found to be most active against bacteria and fungi, respectively. Their antimicrobial effects were comparable to, if not better than, a number of current commercial antibacterial and antifungal agents. Both HAB10R12 and HAB21F25 were found to be potential anticancer drug candidates, having potent activity against MCF-7 and HCT116 cell lines and warrant further investigation.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/isolation & purification*
  7. RamaChandran S, Ariffin H
    Pediatr Blood Cancer, 2009 Sep;53(3):488-90.
    PMID: 19434733 DOI: 10.1002/pbc.22063
    Haemophagocytic lymphohistiocytosis (HLH) is an uncommon disease with a high fatality rate. Etoposide is an important component of current HLH treatment regimes. Two patients with HLH developed etoposide-related secondary acute myeloid leukemia (sAML) following therapy for HLH. Etoposide, an epipodophyllotoxin, is a topoisomerase II inhibitor that interacts with DNA to potentiate leukaemogenesis. The risk of developing sAML is estimated to be between 1% and 5%, 2-20 years after exposure to etoposide but may also be related to cumulative drug doses, treatment schedules, host factors and co-administration of other antineoplastic agents.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/adverse effects*
  8. Rajan DS, Rajkumar M, Srinivasan R, Harikumar RP, Suresh S, Kumar S
    Pak J Biol Sci, 2013 Nov 01;16(21):1336-41.
    PMID: 24511743
    Seaweeds have been used by mankind as medicine and food for more than 13,000 years. Marine algae are considered to produce a valuable phytoconstituents characterized by a broad spectrum of antitumor activities. The aim of the present study was to explore the effect of different solvent extracts of Sargassum wightii, Greville against Dalton's Ascitic Lymphoma (DAL) in Swiss male albino mice. DAL cells were injected intraperitoneally 1 x10(6) cell to the mice. Two days after cells injection the animals were treated with different solvent extracts of Sargassum wightii at dose of 200 mg kg(-1) for 14 days. 5-fluorouracil (20 mg kg(-1)) was used as reference drug. On day 11, cancer cell number, packed cell volume, decrease in tumour weight of the mice, increase in life span and hematological parameters were evaluated and compared with the same parameters in control. A significant increase in the life span and a decrease in the cancer cell number and tumour weight were noted in the tumour-induced mice after treatment with the extract. The haematological parameters were also normalized by the ethanolic and chloroform extracts in tumour-induced mice. These observations are suggestive of the protective effect of ethanolic extract of Sargassum wightii is comparatively better than other two tested extracts against Dalton's Ascitic Lymphoma (DAL).
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology*; Antineoplastic Agents, Phytogenic/chemistry*
  9. Raja SB, Rajendiran V, Kasinathan NK, P A, Venkatabalasubramanian S, Murali MR, et al.
    Food Chem Toxicol, 2017 Aug;106(Pt A):92-106.
    PMID: 28479391 DOI: 10.1016/j.fct.2017.05.006
    Quercetin is a bioactive compound with anti-inflammatory, antioxidant and anticancer properties. This study exemplifies the differential cytotoxic activity of Quercetin on two human colonic cancer cell lines, HT29 and HCT15. IC50 of Quercetin for HT29 and HCT15 cells were 42.5 μM and 77.4 μM, respectively. Activation of caspase-3, increased level of cytosolic cytochrome c, decreased levels of pAkt, pGSK-3β and cyclin D1 in 40 μM Quercetin treated HT29 cells alone. Though, nuclear translocation of NFkB was increased in 40 μM Quercetin treated HT29 and HCT15 cells, over expression of COX-2 was observed in 40 μM Quercetin treated HT29 cells, whereas, Quercetin treated HCT15 cells did not expressed COX-2. Increased generation of reactive oxygen species (ROS) was observed only in Quercetin treated HT29 cells, which is due to over expression of COX-2, as COX-2 silencing inhibited Quercetin induced apoptosis and ROS generation. Insilico analysis provided evidence that Quercetin could partially inhibit COX-2 enzyme by binding to subunit A which has peroxidase activity and serves as source of ROS. However, Quercetin showed minimal effect on normal intestinal epithelial cells i,e IEC-6. To conclude, differential sensitivity of two cancer cells, HT29 and HCT15, to Quercetin depends on COX-2 dependent ROS generation that induces apoptosis and inhibits cell survival.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology*
  10. Rad SK, Movafagh A
    Recent Pat Food Nutr Agric, 2021;12(1):45-57.
    PMID: 32807070 DOI: 10.2174/2212798411666200817120307
    BACKGROUND: Cinnamomum cassia (C. cassia) is an evergreen tree in China and Southern and Eastern Asia. In traditional medicine, cinnamon is widely used due to its many bioactivity effects.

    OBJECTIVE: The present novel study aims to evaluate and make a comparison of antioxidant and antiproliferative activities of different extractions of C. cassia bark using seven solvents having different polarities. Solvents polarity gradients start with the solvent of lower polarity, n-hexane, and end with water as the highest polar solvent. Among the extracts, acetone extract contains the highest phenolic and flavonoid contents; therefore, it is assessed for the ability to protect DNA from damage.

    METHODS: The extracts are evaluated for total phenolic, flavonoid contents and antioxidant activities, using FRAP, DPPH, superoxide, and hydroxyl and nitric oxide radicals scavenging assays. DNA damage protecting activity of the acetone extract is studied with the comet assay. Each of the extracts is studied for its antiproliferative effect against, MCF-7, MDA-MB-231(breast cancer), and HT29 (colon cancer), using MTT assay.

    RESULTS: The acetone extract exhibited the highest FRAP value, phenolic and flavonoids contents when compared to the other extracts and could protect 45% mouse fibroblast cell line (3T3-L1) from DNA damage at 30 μg/ml. The lowest IC50 value in DPPH, superoxide, and hydroxyl radicals scavenging was noticed in the ethyl acetate extract. IC50 value obtained for the hexane extract was the lowest compared to the other extracts in scavenging nitric oxide radicals. The hexane extract showed the highest antiproliferative effect against cancer cells followed by the chloroform extract. The ethyl acetate extract inhibited the proliferation of only MCF-7 by IC50 of 100 μg/ml, while the other extracts exhibited no IC50 in all the cancer cells.

    CONCLUSION: C. cassia showed promising antioxidant and anticancer activities with significant DNA damage protecting effect.

    Matched MeSH terms: Antineoplastic Agents, Phytogenic/isolation & purification; Antineoplastic Agents, Phytogenic/pharmacology; Antineoplastic Agents, Phytogenic/chemistry
  11. Qazzaz ME, Raja VJ, Lim KH, Kam TS, Lee JB, Gershkovich P, et al.
    Cancer Lett, 2016 Jan 28;370(2):185-97.
    PMID: 26515390 DOI: 10.1016/j.canlet.2015.10.013
    Natural products play a pivotal role in medicine especially in the cancer arena. Many drugs that are currently used in cancer chemotherapy originated from or were inspired by nature. Jerantinine B (JB) is one of seven novel Aspidosperma indole alkaloids isolated from the leaf extract of Tabernaemontana corymbosa. Preliminary antiproliferative assays revealed that JB and JB acetate significantly inhibited growth and colony formation, accompanied by time- and dose-dependent apoptosis induction in human cancer cell lines. JB significantly arrested cells at the G2/M cell cycle phase, potently inhibiting tubulin polymerisation. Polo-like kinase 1 (PLK1; an early trigger for the G2/M transition) was also dose-dependently inhibited by JB (IC50 1.5 µM). Furthermore, JB provoked significant increases in reactive oxygen species (ROS). Annexin V+ cell populations, dose-dependent accumulation of cleaved-PARP and caspase 3/7 activation, and reduced Bcl-2 and Mcl-1 expression confirm apoptosis induction. Preclinical in silico biopharmaceutical assessment of JB calculated rapid absorption and bioavailability >70%. Doses of 8-16 mg/kg JB were predicted to maintain unbound plasma concentrations >GI50 values in mice during efficacy studies. These findings advocate continued development of JB as a potential chemotherapeutic agent.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology*
  12. Primus PS, Ismail MH, Adnan NE, Wu CH, Kao CL, Choo YM
    J Asian Nat Prod Res, 2022 Feb;24(2):146-152.
    PMID: 33565351 DOI: 10.1080/10286020.2021.1883590
    Three new compounds, i.e. stenophyllols A-C (1-3), were isolated from the rhizome of Boesenbergia stenophylla. The structures were determined by spectroscopic analysis (UV, IR, NMR and HRESIMS). In-vitro neuroblastoma cell viability assay showed stenophyllol A (1) was able to reduce the N2A cell viability to 20% within 24 h.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/isolation & purification; Antineoplastic Agents, Phytogenic/pharmacology*
  13. Poh Yen K, Stanslas J, Zhang T, Li H, Wang X, Kok Meng C, et al.
    Bioorg Med Chem, 2021 11 01;49:116442.
    PMID: 34600241 DOI: 10.1016/j.bmc.2021.116442
    Acquired paclitaxel (PTX) chemoresistance in triple-negative breast cancer (TNBC) can be inferred from the overexpression of toll-like receptor 4 (TLR4) and myeloid differentiation primary response 88 (MyD88) proteins and the activation of the TLR4/MyD88 cascading signalling pathway. Finding a new inhibitor that can attenuate the activation of this pathway is a novel strategy for reducing PTX chemoresistance. In this study, a series of small molecule compounds were synthesised and tested in combination with PTX against TNBC cells. The trimethoxy-substituted compound significantly decreased MyD88 overexpression and improved PTX activity in MDA-MB-231TLR4+ cells but not in HCCTLR4- cells. On the contrary, the trifluoromethyl-substituted compound with PTX synergistically improved the growth inhibition in both TNBC subtypes. The fluorescence titrations indicated that both compounds could bind with MD2 with good and comparable binding affinities. This was further supported by docking analysis, in which both compounds fit perfectly well and form some critical binding interactions with MD2, an essential lipid-binding accessory to TLR4 involved in activating the TLR-4/MyD88-dependent pathway.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/chemical synthesis; Antineoplastic Agents, Phytogenic/pharmacology*; Antineoplastic Agents, Phytogenic/chemistry
  14. Pillai MK, Young DJ, Bin Hj Abdul Majid HM
    Mini Rev Med Chem, 2018;18(14):1220-1232.
    PMID: 28969549 DOI: 10.2174/1389557517666171002154123
    The plant Alpinia officinarum of the ginger family originated in China and is used throughout South and South-East Asian countries to flavor food and as a traditional medicine to treat a variety of diseases. This review summarizes the biological, pharmacological and phytochemical properties of extracts and subsequently isolated compounds from A. officinarum. In vitro and in vivo studies of both extracts and pure compounds indicate a wide variety of potent bioactivities including antiinflammatory, antibacterial, antioxidant, antiobesity, anticancer, enzyme inhibitory and remarkable antiviral properties. The latter is particularly promising in the face of emerging, virulent respiratory diseases in Asia and the Middle East.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/isolation & purification; Antineoplastic Agents, Phytogenic/pharmacology; Antineoplastic Agents, Phytogenic/chemistry
  15. Piaru SP, Mahmud R, Abdul Majid AM, Ismail S, Man CN
    J Sci Food Agric, 2012 Feb;92(3):593-7.
    PMID: 25520982
    In this study the chemical composition, antioxidant activities and cytotoxic effect of the essential oils of Myristica fragrans (nutmeg) and Morinda citrifolia (mengkudu) were determined.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/analysis; Antineoplastic Agents, Phytogenic/isolation & purification; Antineoplastic Agents, Phytogenic/pharmacology*; Antineoplastic Agents, Phytogenic/chemistry
  16. Phang CW, Karsani SA, Sethi G, Abd Malek SN
    PLoS One, 2016;11(2):e0148775.
    PMID: 26859847 DOI: 10.1371/journal.pone.0148775
    Flavokawain C (FKC) is a naturally occurring chalcone which can be found in Kava (Piper methysticum Forst) root. The present study evaluated the effect of FKC on the growth of various human cancer cell lines and the underlying associated mechanisms. FKC showed higher cytotoxic activity against HCT 116 cells in a time- and dose-dependent manner in comparison to other cell lines (MCF-7, HT-29, A549 and CaSki), with minimal toxicity on normal human colon cells. The apoptosis-inducing capability of FKC on HCT 116 cells was evidenced by cell shrinkage, chromatin condensation, DNA fragmentation and increased phosphatidylserine externalization. FKC was found to disrupt mitochondrial membrane potential, resulting in the release of Smac/DIABLO, AIF and cytochrome c into the cytoplasm. Our results also revealed that FKC induced intrinsic and extrinsic apoptosis via upregulation of the levels of pro-apoptotic proteins (Bak) and death receptors (DR5), while downregulation of the levels of anti-apoptotic proteins (XIAP, cIAP-1, c-FlipL, Bcl-xL and survivin), resulting in the activation of caspase-3, -8 and -9 and cleavage of poly(ADP-ribose) polymerase (PARP). FKC was also found to cause endoplasmic reticulum (ER) stress, as suggested by the elevation of GADD153 protein after FKC treatment. After the cells were exposed to FKC (60μM) over 18hrs, there was a substantial increase in the phosphorylation of ERK 1/2. The expression of phosphorylated Akt was also reduced. FKC also caused cell cycle arrest in the S phase in HCT 116 cells in a time- and dose-dependent manner and with accumulation of cells in the sub-G1 phase. This was accompanied by the downregulation of cyclin-dependent kinases (CDK2 and CDK4), consistent with the upregulation of CDK inhibitors (p21Cip1 and p27Kip1), and hypophosphorylation of Rb.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology*; Antineoplastic Agents, Phytogenic/chemistry
  17. Phang CW, Abd Malek SN, Karsani SA
    Biomed Pharmacother, 2021 May;137:110846.
    PMID: 33761587 DOI: 10.1016/j.biopha.2020.110846
    Chalcones and their derivatives belong to the flavonoid family. They have been extensively studied for their anticancer properties and some have been approved for clinical use. In this study, the in vivo anti-tumor activity of flavokawain C (FKC), a naturally occurring chalcone found in Kava (Piper methysticum Forst) was evaluated in HCT 116 cells (colon carcinoma). We also attempted to identify potential biomarkers and/or molecular targets in serum with applicability in predicting treatment outcome. The anti-tumor effects and toxicity of FKC were assessed using the xenograft nude mice model. Cisplatin was used as positive control. The anti-proliferative and apoptotic activities were then evaluated in tumor tissues treated with FKC. Furthermore, two-dimensional electrophoresis (2-DE) followed by protein identification using MALDI-TOF/TOF-MS/MS was performed to compare the serum proteome profiles between healthy nude mice and nude mice bearing HCT 116 tumor treated with vehicle solution and FKC, respectively. Our results showed that FKC treatment significantly inhibited HCT 116 tumor growth. In vivo toxicity studies showed that administration of FKC did not cause damage to major organs and had no significant effect on body weight. FKC was found to induce apoptosis in tumor, and this was associated with increased expression of cleaved caspase-3 and decreased expression of Ki67 in tumor tissues. Our proteomic analysis identified five proteins that changed in abundance - Ig mu chain C region (secreted form), GRP78, hemopexin, kininogen-1 and apolipoprotein E. Overall, our findings demonstrated the potential of FKC as an anti-cancer agent for the treatment of colon carcinoma.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/adverse effects; Antineoplastic Agents, Phytogenic/pharmacology*; Antineoplastic Agents, Phytogenic/therapeutic use
  18. Pettit GR, Meng Y, Gearing RP, Herald DL, Pettit RK, Doubek DL, et al.
    J Nat Prod, 2004 Feb;67(2):214-20.
    PMID: 14987061
    Bioassay (P388 lymphocytic leukemia cell line and human tumor cell lines)-guided separation of the extracts prepared from the tropical and coastal trees Hernandia peltata (Malaysia) and Hernandianymphaeifolia (Republic of Maldives) led to the isolation of a new lignan designated as hernanol (1) and 12 previously known lignans: (-)-deoxypodophyllotoxin (2), deoxypicropodophyllin (3), (+)-epiaschantin (4), (+)-epieudesmin (5), praderin (6), 5'-methoxyyatein (7), podorhizol (8), deoxypodorhizone (9), bursehernin (10), kusunokinol (11), clusin (12), and (-)-maculatin (13). The oxidative cyclization (with VOF(3)) of lignans 8, 9, and 10 resulted in a new and unusual benzopyran (14), isostegane (15), and a new dibenzocyclooctadiene lactone (16), respectively. The structure and relative stereochemistry of hernanol (1) and lignans 3, 7, 8, 9, 10, 11, and 12 were determined by 1D and 2DNMR and HRMS analyses. The structures and absolute stereochemistry of structures 2, 4, 5, 6, 13, 14, 15, and 16 were unequivocally determined by single-crystal X-ray diffraction analyses. Evaluation against the murine P388 lymphocytic leukemia cell line and human tumor cell lines showed podophyllotoxin derivatives 2 and 3 to be strong cancer cell line growth inhibitors and substances 4, 5, 8, and 15 to have marginal cancer cell line inhibitory activities. Seven of the lignans and one of the synthetic modifications (14) inhibited growth of the pathogenic bacterium Neisseria gonorrhoeae.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/isolation & purification*; Antineoplastic Agents, Phytogenic/pharmacology; Antineoplastic Agents, Phytogenic/chemistry
  19. Permana D, Lajis NH, Mackeen MM, Ali AM, Aimi N, Kitajima M, et al.
    J Nat Prod, 2001 Jul;64(7):976-9.
    PMID: 11473441
    Two new prenylated compounds, the benzoquinone atrovirinone (1) and the depsidone atrovirisidone (2), were isolated from the roots of Garcinia atroviridis. Their structures were determined on the basis of the analysis of spectroscopic data. While compound 2 showed some cytotoxicity against HeLa cells, both compounds 1 and 2 were only mildly inhibitory toward Bacillus cereus and Staphylococcus aureus.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/isolation & purification*; Antineoplastic Agents, Phytogenic/pharmacology; Antineoplastic Agents, Phytogenic/chemistry
  20. Othman N, Pan L, Mejin M, Voong JC, Chai HB, Pannell CM, et al.
    J Nat Prod, 2016 Apr 22;79(4):784-91.
    PMID: 26974604 DOI: 10.1021/acs.jnatprod.5b00810
    Four new 2,3-secodammarane triterpenoids, stellatonins A-D (3-6), together with a new 3,4-secodammarane triterpenoid, stellatonin E (7), and the known silvestrol (1), 5‴-episilvestrol (2), and β-sitosterol, were isolated from a methanol extract of the stems of Aglaia stellatopilosa through bioassay-guided fractionation. The structures of the new compounds were elucidated using spectroscopic and chemical methods. The compounds were evaluated for their cytotoxic activity against three human cancer cell lines and for their antimicrobial activity using a microtiter plate assay against a panel of Gram-positive and Gram-negative bacteria and fungi.
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/isolation & purification*; Antineoplastic Agents, Phytogenic/pharmacology; Antineoplastic Agents, Phytogenic/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links