Displaying publications 81 - 100 of 493 in total

Abstract:
Sort:
  1. Teow YH, Nordin NI, Mohammad AW
    Environ Sci Pollut Res Int, 2019 Nov;26(33):33747-33757.
    PMID: 29754300 DOI: 10.1007/s11356-018-2189-6
    Textile wastewater contains methylene blue (MB), a major coloring agent in textile industry. Activated carbon (AC) is the most widely used adsorbent in removing dyes from industrial wastewater. However, high production cost of AC is the major obstacle for its wide application in dye wastewater treatment. In this study, a sustainable approach in synthesizing graphenic adsorbent from palm oil mill effluent (POME), a potential carbonaceous source, has been explored. This new development in adsorption technique is considered as green synthesis as it does not require any binder during the synthesis process, and at the same time, it helps to solve the bottleneck of palm oil industry as POME is the main cause contributed to Malaysia's water pollution problem. The synthesized GSC was characterized through XRD, FESEM, and EDX. The adsorption performance of the synthesized GSC was evaluated by adsorption of MB. The effect of initial concentration of synthetic MB solution (1-20 mg/L) and weight of GSC (5-20 g) were investigated. A remarkable change in color of synthetic MB solution from blue to crystal clear was observed at the end of adsorption study. High efficiency of the synthesized GSC for dye-contaminated wastewater treatment is concluded.
    Matched MeSH terms: Color; Coloring Agents
  2. Nagarajan J, Krishnamurthy NP, Nagasundara Ramanan R, Raghunandan ME, Galanakis CM, Ooi CW
    Food Chem, 2019 Oct 30;296:47-55.
    PMID: 31202305 DOI: 10.1016/j.foodchem.2019.05.135
    The redfleshed pulp discarded from pink guava puree industry is a rich source of lycopene and pectin. In this study, we developed a facile extraction process employing water as the primary extraction medium to isolate the lycopene and pectin from pink guava decanter. When the decanter was suspended in water, the complexation of lycopene and pectin formed the cloudy solution, where the colloidal complexes were recovered through centrifugation. The presence of lycopene and pectin in the complex was confirmed by the spectroscopic, microscopic and chromatographic analyses. The lycopene fractionated from the complexes had a purity level of 99% and was in all-trans configuration. The colloidal complexes yielding the highest concentration of lycopene was obtained at pH 7, 1% (w/v) solid loading and 25 °C. The experimental data of time-course extraction of lycopene-pectin complex were best fitted with two-site kinetic model, hinting the fast- and slow-release phases in the extraction process.
    Matched MeSH terms: Color
  3. Mior Zakuan Azmi M, Taip FS, Mustapa Kamal SM, Chin NL
    J Food Sci Technol, 2019 Oct;56(10):4616-4624.
    PMID: 31686693 DOI: 10.1007/s13197-019-03926-z
    Baking temperature and time are among the conditions for producing good quality cakes. The aim of this study was to investigate the effects of baking temperature and time on the volume expansion, moisture content, and texture of moist cakes baked in either an air fryer or a convection oven. The cakes were baked under different conditions: (1) baking temperature of 150 °C, 160 °C, and 170 °C for both air fryer and convection oven and (2) baking time of 25, 30, 35 min for air fryer and 35, 40, 45 min for convection oven. Baking temperature and time were found to have a significant (p color of the product but no significant effect on the springiness of the product. Based on the numerical optimization method, the optimum condition in an air fryer was 150 °C for 25 min. These optimized conditions resulted in higher relative height (37.19%), higher moisture content (28.80%), lower crumb firmness and chewiness (5.05 N and 1.42 N respectively) as well as higher overall acceptance score (5.70) as compared to optimum condition in convection oven (150 °C at 55 min). Moreover, baking in the presence of rapid air flow in an air fryer may be declared that it is possible to produce high-quality moist cake with minimum baking temperature and shorter baking time.
    Matched MeSH terms: Color
  4. Kutty SRM, Almahbashi NMY, Nazrin AAM, Malek MA, Noor A, Baloo L, et al.
    Heliyon, 2019 Oct;5(10):e02439.
    PMID: 31667371 DOI: 10.1016/j.heliyon.2019.e02439
    Treated palm oil mill effluents (POME) is of great concern as it still has colour from its dissolved organics which may pollute receiving water bodies. In this study, the removal of colour from treated palm oil mill effluent were investigated through adsorption studies using carbon derived from wastewater sludge (WSC). Sludge from activated sludge plants were dried and processed to produce WSC. In this study, three different bed depths of WSC were used: 5 cm, 10 cm, and 15 cm. For each bed depth, the flowrate was varied at three different values: 100 mL/hr, 50 mL/hr and 25 mL/hr. It was found that at bed depth of 5 cm, the breakthrough curves were occurred at 360 min, 150 min and 15 min for flowrates of 25, 50 and 100 mL/hr respectively. It was observed that at a particular depth the exhaustion time for column reduced as flow rate increases. Kinetic models, Adams-Bohart and Yoon-Nelson were used to analyze the performance of the adsorption. It was found that rate constant for Adams Bohart model decreased with the increase in bed depth. Adsorption capacity obtained from Adams-Bohart model ranged from 2676.19 mg/L up to 8938.78 mg/L. The maximum adsorption capacity increases with smaller bed depth. For Yoon-Nelson model, the rate constant decreases with increase in bed depth. The required time for 50% breakthrough obtained from the models ranged from 17.01 to 104.17 minutes for all three bed depths. The reduction of colour was found to be effective at all bed depths. The experimental data was best described by both models as with higher values of correlation coefficient (R2).
    Matched MeSH terms: Color
  5. Hamzah MH, Ahmad Asri MF, Che Man H, Mohammed A
    PMID: 31533308 DOI: 10.3390/ijerph16183453
    Common conventional biological treatment methods fail to decolorize palm oil mill effluent (POME). The present study focused on using the abundant palm oil mill boiler (POMB) ashes for POME decolorization. The POMB ashes were subjected to microwave irradiation and chemical treatment using H2SO4. The resultant adsorbents were characterized using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and Brunauer-Emmett-Teller (BET) analyses. The adsorption efficiency was evaluated at various pH levels (2-8.5), adsorption dosages (3-15 g) in 200 mL, and contact times (1-5 h). The microwave-irradiated POMB-retained ash recorded the highest color removal of 92.31%, for which the best conditions were pH 2, 15 g adsorbent dosage in 200 mL, and 5 h of contact time. At these best treatment conditions, the color concentration of the treated effluent was analyzed using the method proposed by the American Dye Manufacturers Institute (ADMI). The color concentration was 19.20 ADMI, which complies with the Malaysia discharge standard class A. The Freundlich isotherm model better fit the experimental data and had a high R2 of 0.9740. Based on these results, it can be deduced that microwave-irradiated POMB-retained ash has potential applications for POME decolorization via a biosorption process.
    Matched MeSH terms: Color*
  6. Chen AH, Ahmad A, Kearney S, Strang N
    Graefes Arch Clin Exp Ophthalmol, 2019 Sep;257(9):1997-2004.
    PMID: 31273509 DOI: 10.1007/s00417-019-04405-z
    PURPOSE: Near work, accommodative inaccuracy and ambient lighting conditions have all been implicated in the development of myopia. However, differences in accommodative responses with age and refractive error under different visual conditions remain unclear. This study explores differences in accommodative ability and refractive error with exposure to differing ambient illumination and visual demands in Malay schoolchildren and adults.

    METHODS: Sixty young adults (21-25 years) and 60 schoolchildren (8-12 years) were recruited. Accommodative lag and accommodative fluctuations at far (6 m) and near (25 cm) were measured using the Grand Seiko WAM-5500 open-field autorefractor. The effects of mesopic room illumination on accommodation were also investigated.

    RESULTS: Repeated-measures ANOVA indicated that accommodative lag at far and near differed significantly between schoolchildren and young adults [F(1.219, 35.354) = 11.857, p  0.05). Accommodative lag and fluctuations were greater under mesopic room conditions for all ages [all p 

    Matched MeSH terms: Color Vision/physiology*
  7. Khoo KS, Lee SY, Ooi CW, Fu X, Miao X, Ling TC, et al.
    Bioresour Technol, 2019 Sep;288:121606.
    PMID: 31178260 DOI: 10.1016/j.biortech.2019.121606
    Haematococcus pluvialis is one of the most abundant sources of natural astaxanthin as compared to others microorganism. Therefore, it is important to understand the biorefinery of astaxanthin from H. pluvialis, starting from the cultivation stage to the downstream processing of astaxanthin. The present review begins with an introduction of cellular morphologies and life cycle of H. pluvialis from green vegetative motile stage to red non-motile haematocyst stage. Subsequently, the conventional biorefinery methods (e.g., mechanical disruption, solvent extraction, direct extraction using vegetable oils, and enhanced solvent extraction) and recent advanced biorefinery techniques (e.g., supercritical CO2 extraction, magnetic-assisted extraction, ionic liquids extraction, and supramolecular solvent extraction) were presented and evaluated. Moreover, future prospect and challenges were highlighted to provide a useful guide for future development of biorefinery of astaxanthin from H. pluvialis. The review aims to serve as a present knowledge for researchers dealing with the bioproduction of astaxanthin from H. pluvialis.
    Matched MeSH terms: Color
  8. Muhamad Sarih N, Myers P, Slater A, Slater B, Abdullah Z, Tajuddin HA, et al.
    Sci Rep, 2019 08 14;9(1):11834.
    PMID: 31413269 DOI: 10.1038/s41598-019-47847-5
    Three fluorescent organic compounds-furocoumarin (FC), dansyl aniline (DA), and 7-hydroxycoumarin-3-carboxylic acid (CC)-are mixed to produce almost pure white light emission (WLE). This novel mixture is immobilised in silica aerogel and applied as a coating to a UV LED to demonstrate its applicability as a low-cost, organic coating for WLE via simultaneous emission. In ethanol solution and when immobilised in silica aerogel, the mixture exhibits a Commission Internationale d'Eclairage (CIE) chromaticity index of (0.27, 0.33). It was observed that a broadband and simultaneous emission involving coumarin carboxylic acid, furocoumarin and dansyl aniline played a vital role in obtaining a CIE index close to that of pure white light.
    Matched MeSH terms: Color
  9. Banch TJH, Hanafiah MM, Alkarkhi AFM, Abu Amr SS
    Polymers (Basel), 2019 Aug 14;11(8).
    PMID: 31416151 DOI: 10.3390/polym11081349
    In this study, tannin-based natural coagulant was used to treat stabilized landfill leachate. Tannin modified with amino group was utilized for the treatment process. Central composite design (CCD) was used to investigate and optimize the effect of tannin dosage and pH on four responses. The treatment efficiency was evaluated based on the removal of four selected (responses) parameters; namely, chemical oxygen demand (COD), color, NH3-N and total suspended solids (TSS). The optimum removal efficiency for COD, TSS, NH3-N and color was obtained using a tannin dosage of 0.73 g at a pH of 6. Moreover, the removal efficiency for selected heavy metals from leachate; namely, iron (Fe2+), zinc (Zn2+), copper (Cu2+), chromium (Cr2+), cadmium (Cd2+), lead (Pb2+), arsenic (As3+), and cobalt (Co2+) was also investigated. The results for removal efficiency for COD, TSS, NH3-N, and color were 53.50%, 60.26%, and 91.39%, respectively. The removal of selected heavy metals from leachate for Fe2+, Zn2+, Cu2+, Cr2+, Cd2+, Pb2+, As3+ and cobalt Co2+ were 89.76%, 94.61%, 94.15%, 89.94%, 17.26%, 93.78%, 86.43% and 84.19%, respectively. The results demonstrate that tannin-based natural coagulant could effectively remove organic compounds and heavy metals from stabilized landfill leachate.
    Matched MeSH terms: Color
  10. Md Pauzi SH, Saari HN, Roslan MR, Syed Khair Azman Jamalulil SNS, Tauan IS, Mohd Rusli FA, et al.
    Malays J Pathol, 2019 Aug;41(2):133-138.
    PMID: 31427548
    INTRODUCTION: Evaluation of HER2 status in breast cancer using immunohistochemistry (IHC) and in-situ-hybridisation (ISH) study is important to establish prognosis and to select patient for targeted therapy.

    OBJECTIVE: The study aims to determine the concordance between HER2 protein IHC score and its gene status by dual-colour dual-hapten in-situ-hybridization (DDISH) study.

    MATERIALS AND METHODS: Retrospective study was performed on 767 referred breast cancer cases over a period of five years. The HER2 IHC score (the initial and repeat test score) and the results of HER2 gene status by DDISH were retrieved from the histopathological reports. The agreement between initial IHC score with repeat test score was measured using Cohen Kappa. Chi square test analyzed the association between HER2 IHC score with its gene status by DDISH.

    RESULTS: The concordance of HER2 IHC score between the initial and repeat test were 52.7% and 89.4% for IHC score 2+ and 3+ respectively. There was moderate agreement of HER2 IHC score between the initial and repeat test score (ϰ = 0.526, p<0.001). A significant association noted between HER2 IHC score with its gene status by DDISH (p<0.001). Only 56 out of 207 cases (27.1%) with 2+ IHC score showed HER2 gene amplification while the majority of cases with 3+ IHC score were gene-amplified (446 out of 451, 98.9%).

    CONCLUSION: ISH study should be done in all IHC-equivocal cases (2+) to select patient for targeted therapy. Gene amplification must also be confirmed in IHC-positive cases (3+) to prevent from giving non-effective treatment with possible adverse effects to patient with non-amplified HER2 gene.

    Matched MeSH terms: Color
  11. Em PP, Hossen J, Fitrian I, Wong EK
    Heliyon, 2019 Aug;5(8):e02169.
    PMID: 31440587 DOI: 10.1016/j.heliyon.2019.e02169
    Collisions arising from lane departures have contributed to traffic accidents causing millions of injuries and tens of thousands of casualties per year worldwide. Many related studies had shown that single vehicle lane departure crashes accounted largely in road traffic deaths that results from drifting out of the roadway. Hence, automotive safety has becoming a concern for the road users as most of the road casualties occurred due to driver's fallacious judgement of vehicle path. This paper proposes a vision-based lane departure warning framework for lane departure detection under daytime and night-time driving environments. The traffic flow and conditions of the road surface for both urban roads and highways in the city of Malacca are analysed in terms of lane detection rate and false positive rate. The proposed vision-based lane departure warning framework includes lane detection followed by a computation of a lateral offset ratio. The lane detection is composed of two stages: pre-processing and detection. In the pre-processing, a colour space conversion, region of interest extraction, and lane marking segmentation are carried out. In the subsequent detection stage, Hough transform is used to detect lanes. Lastly, the lateral offset ratio is computed to yield a lane departure warning based on the detected X-coordinates of the bottom end-points of each lane boundary in the image plane. For lane detection and lane departure detection performance evaluation, real-life datasets for both urban roads and highways in daytime and night-time driving environments, traffic flows, and road surface conditions are considered. The experimental results show that the proposed framework yields satisfactory results. On average, detection rates of 94.71% for lane detection rate and 81.18% for lane departure detection rate were achieved using the proposed frameworks. In addition, benchmark lane marking segmentation methods and Caltech lanes dataset were also considered for comparison evaluation in lane detection. Challenges to lane detection and lane departure detection such as worn lane markings, low illumination, arrow signs, and occluded lane markings are highlighted as the contributors to the false positive rates.
    Matched MeSH terms: Color
  12. Garba S, Sazili AQ, Mahadzir MF, Candyrine SCL, Jahromi MF, Ebrahimi M, et al.
    Meat Sci, 2019 Aug;154:61-68.
    PMID: 31004941 DOI: 10.1016/j.meatsci.2019.04.008
    This study investigated the carcass characteristics, physico-chemical properties, storage stability and cholesterol content of meat from goats fed with different levels of naturally-produced lovastatin used to mitigate enteric methane production. Twenty intact Saanen male goats of 5-6 months old with initial live weight of 25.8 ± 4.0 kg were randomly allotted into four dietary treatments containing 0 (Control), 2 (Low), 4 (Medium) and 6 mg (High) per kg live weight (LW) of naturally-produced lovastatin for 12 consecutive weeks. No differences were found in all the parameters measured except for full LW, hot and cold carcass weight, shear force, color and cholesterol content among the treatment groups. Aging had significant effects on all the parameters measured in this study except a* (redness) of meat. Meat samples in the Medium and High treatments were of higher lightness and yellowness, more tender and lower cholesterol levels. We conclude that, in addition to mitigate enteric methane emissions, dietary supplementation of naturally-produced lovastatin at 4 mg/kg LW could be a feasible feeding strategy to produce tender meat containing lower cholesterol.
    Matched MeSH terms: Color
  13. Pogorelov K, Suman S, Azmadi Hussin F, Saeed Malik A, Ostroukhova O, Riegler M, et al.
    J Appl Clin Med Phys, 2019 Aug;20(8):141-154.
    PMID: 31251460 DOI: 10.1002/acm2.12662
    Wireless capsule endoscopy (WCE) is an effective technology that can be used to make a gastrointestinal (GI) tract diagnosis of various lesions and abnormalities. Due to a long time required to pass through the GI tract, the resulting WCE data stream contains a large number of frames which leads to a tedious job for clinical experts to perform a visual check of each and every frame of a complete patient's video footage. In this paper, an automated technique for bleeding detection based on color and texture features is proposed. The approach combines the color information which is an essential feature for initial detection of frame with bleeding. Additionally, it uses the texture which plays an important role to extract more information from the lesion captured in the frames and allows the system to distinguish finely between borderline cases. The detection algorithm utilizes machine-learning-based classification methods, and it can efficiently distinguish between bleeding and nonbleeding frames and perform pixel-level segmentation of bleeding areas in WCE frames. The performed experimental studies demonstrate the performance of the proposed bleeding detection method in terms of detection accuracy, where we are at least as good as the state-of-the-art approaches. In this research, we have conducted a broad comparison of a number of different state-of-the-art features and classification methods that allows building an efficient and flexible WCE video processing system.
    Matched MeSH terms: Color*
  14. Wahi R, Bidin ER, Mohamed Asif NM, Nor Hamizat NA, Ngaini Z, Omar R, et al.
    Environ Sci Pollut Res Int, 2019 Aug;26(22):22246-22253.
    PMID: 31152421 DOI: 10.1007/s11356-019-05548-6
    Sago bark (SB) and empty fruit bunch (EFB) are available abundantly as agricultural waste in Sarawak. This study was conducted to investigate the physicochemical characteristics of SB and EFB as composting materials and used as a plant growth medium. The SB and EFB composts were prepared in a separate container by mixing chicken manure as compost accelerator and wood chips as a bulking agent in dry weight equivalent ratio (1:1:1). The maturity and stability of compost in 60-day composting periods were evaluated via physicochemical characterization of the composts in terms of pH, elemental content, total ash content, moisture content and nutrient analyses. The effect of the compost usage as growth medium was assessed towards water spinach and green mustard via seed germination and pot study. After 2 months, the colour of both composts was dark brown with an earthy smell. The acidic pH of the initial composting stage has changed into alkaline pH after 60 days of composting. Total NPK present in the SB and EFB composts were 0.96% and 1.21%, respectively. The germination index (GI) for the studied vegetables was above 100%, while the pot study showed that vegetables in compost media has higher growth compared to the control, after 14 days. SB and EFB are renewable waste which can be used as an excellent compost and able to improve the quality of the soil.
    Matched MeSH terms: Color
  15. Li BJ, Zhu ZX, Gu XH, Lin HR, Xia JH
    Mar Biotechnol (NY), 2019 Jun;21(3):384-395.
    PMID: 30863905 DOI: 10.1007/s10126-019-09888-9
    Body color is an interesting economic trait in fish. Red tilapia with red blotches may decrease its commercial values. Conventional selection of pure red color lines is a time-consuming and labor-intensive process. To accelerate selection of pure lines through marker-assisted selection, in this study, double-digest restriction site-associated DNA sequencing (ddRAD-seq) technology was applied to genotype a full-sib mapping family of Malaysia red tilapia (Oreochromis spp.) (N = 192). Genome-wide significant quantitative trait locus (QTL)-controlling red blotches were mapped onto two chromosomes (chrLG5 and chrLG15) explaining 9.7% and 8.2% of phenotypic variances by a genome-wide association study (GWAS) and linkage-based QTL mapping. Six SNPs from the chromosome chrLG5 (four), chrLG15 (one), and unplaced supercontig GL831288-1 (one) were significantly associated to the red blotch trait in GWAS analysis. We developed nine microsatellite markers and validated significant correlations between genotypes and blotch data (p colors and carrying out genetic improvement for color quality in tilapia.
    Matched MeSH terms: Color
  16. Yousof Y, Salleh NM, Yusof F
    J Prosthet Dent, 2019 Jun;121(6):916-921.
    PMID: 30745100 DOI: 10.1016/j.prosdent.2018.09.005
    STATEMENT OF PROBLEM: The 2-color mixing ability test has been recently introduced for objective assessment of masticatory performance. However, the ideal bicolor specimens have not yet been identified, and the color analysis of digital images requires improvement.

    PURPOSE: The purpose of this clinical study was to formulate a custom-made, 2-color chewing gum for the mixing ability test and to develop an image-processing method for color mixing analysis.

    MATERIAL AND METHODS: Specimens of red-green (RG) chewing gum were prepared as a test food. Twenty dentate participants (10 men, 10 women; mean age 21 years) took part in this study. Each participant masticated 1 piece of RG gum for 3, 6, 9, 15, and 25 cycles, and this task was repeated 3 times consecutively (total n=15 for each participant). The boluses were retrieved and flattened to 1-mm-thick wafers and scanned with a flatbed scanner. The digital images were analyzed using ImageJ software equipped with a custom-built plug-in to measure the geometric dispersion (GD) of baseline red segment. The predictive criterion validity of this method was determined by correlating GD to the number of mastication cycles. The hardness and mass of RG chewing gum were measured before and after mastication. Hardness loss (%) and mass loss (%) were then calculated and compared with those of a commercially available chewing gum.

    RESULTS: The 2-way repeated-measures ANOVA with post hoc Bonferroni test showed that GD was able to discriminate among the groups of different numbers of mastication cycles (Pcolor mixture and quantified the mixing ability.

    Matched MeSH terms: Color
  17. Ang LF, Darwis Y, Koh RY, Gah Leong KV, Yew MY, Por LY, et al.
    Pharmaceutics, 2019 May 01;11(5).
    PMID: 31052413 DOI: 10.3390/pharmaceutics11050205
    Curcuminoids have been used for the management of burns and wound healing in traditional Chinese medicine practices but the wide application of curcuminoids as a healing agent for wounds has always been a known problem due to their poor solubility, bioavailability, colour staining properties, as well as due to their intense photosensitivity and the need for further formulation approaches to maximise their various properties in order for them to considerably contribute towards the wound healing process. In the present study, a complex coacervation microencapsulation was used to encapsulate curcuminoids using gelatin B and chitosan. This study also focused on studying and confirming the potential of curcuminoids in a microencapsulated form as a wound healing agent. The potential of curcuminoids for wound management was evaluated using an in vitro human keratinocyte cell (HaCaT) model and the in vivo heater-inflicted burn wound model, providing evidence that the antioxidant activities of both forms of curcuminoids, encapsulated or not, are higher than those of butylated hydroxyanisole and butylated hydroxytoluene in trolox equivalent antioxidant capacity (TEAC) and (2,2-diphenyl-1-picryl-hydrazyl-hydrate) (DPPH) studies. However, curcuminoids did not have much impact towards cell migration and proliferation in comparison with the negative control in the in vitro HaCaT study. The micoencapsulation formulation was shown to significantly influence wound healing in terms of increasing the wound contraction rate, hydroxyproline synthesis, and greater epithelialisation, which in turn provides strong justification for the incorporation of the microencapsulated formulation of curcuminoids as a topical treatment for burns and wound healing management as it has the potential to act as a crucial wound healing agent in healthcare settings.
    Matched MeSH terms: Color
  18. Wan Mohtar WHM, Abdul Maulud KN, Muhammad NS, Sharil S, Yaseen ZM
    Environ Pollut, 2019 May;248:133-144.
    PMID: 30784832 DOI: 10.1016/j.envpol.2019.02.011
    Malaysia depends heavily on rivers as a source for water supply, irrigation, and sustaining the livelihood of local communities. The evolution of land use in urban areas due to rapid development and the continuous problem of illegal discharge have had a serious adverse impact on the health of the country's waterways. Klang River requires extensive rehabilitation and remediation before its water could be utilised for a variety of purposes. A reliable and rigorous remediation work plan is needed to identify the sources and locations of streams that are constantly polluted. This study attempts to investigate the feasibility of utilising a temporal and spatial risk quotient (RQ) based analysis to make an accurate assessment of the current condition of the tributaries in the Klang River catchment area. The study relies on existing data sets on Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Total Suspended Solids (TSS), and Ammonia (NH3) to evaluate the water quality at thirty strategic locations. Analysis of ammonia pollution is not only based on the limit established for river health but was expanded to include the feasibility of using the water for water intake, recreational activities, and sustaining fish population. The temporal health of Klang River was evaluated using the Risk Matrix Approach (RMA) based on the frequency of RQ > 1 and associated colour-coded hazard impacts. By using the developed RMA, the hazard level for each parameter at each location was assessed and individually mapped using Geographic Information System (GIS). The developed risk hazard mapping has high potential as one of the essential tools in making decisions for a cost-effective river restoration and rehabilitation.
    Matched MeSH terms: Color
  19. Matthew TJH, Tharakan J, Tai E, Hussein A
    Cureus, 2019 Apr 27;11(4):e4553.
    PMID: 31275777 DOI: 10.7759/cureus.4553
    Objective Epilepsy is a debilitating disease. Visual function changes have been reported and may be attributed to the epileptic changes or as a result of medication side effect. Sodium valproate and carbamazepine are both first line anti-epileptic medications used in Malaysian health care. Sodium valproate inhibits glutamate and γ-aminobutyric acid (GABA) transaminase while carbamazepine acts on the sodium channel - both are an important part of the retina. This study aimed to compare the visual functions of epilepsy patients on carbamazepine or sodium valproate monotherapy. Design A cross-sectional study was conducted at a tertiary hospital between June 2016 and November 2018. Methods Patients with idiopathic epilepsy that fulfill the inclusion and exclusion criteria were recruited from the neurology clinic. They were divided into two groups and underwent complete eye examinations. Visual functions such as color vision testing, contrast sensitivity, visual field and retinal nerve fiber layer measurement were subsequently performed. Statistical analysis was done using Statistical Package for the Social Science, version 24 (SPSS Inc, Chicago, IL, USA). Results A total of 100 patients (sodium valproate: 50 patients; carbamazepine: 50 patients) were recruited for the study. There were no statistically significant changes in anatomical or visual function between the sodium valproate and carbamazepine group. However, patients from both groups displayed color vision defect in the blue and green axes. Changes in color vision could indicate early retina toxicity secondary to the medication. Although there were no visual field changes, patients recorded a slight reduction of mean deviation. Changes of mean deviation could be attributed to the side effect of medication or the disease process. Conclusions Epileptic patients taking sodium valproate or carbamazepine did not demonstrate statistically significant change in visual function.
    Matched MeSH terms: Color Vision Defects; Color Vision
  20. Mohd-Ilham IM, Ahmad-Kamal GR, Wan Hitam WH, Shatriah I
    Cureus, 2019 Apr 08;11(4):e4407.
    PMID: 31205829 DOI: 10.7759/cureus.4407
    Purpose To describe the visual presentation and factors affecting visual outcome in pediatric patients treated for craniopharyngioma at a referral center in the East Coast states of Peninsular Malaysia. Methodology A retrospective review of medical records of children aged 17 years and below who had been treated for craniopharyngioma in Hospital Universiti Sains Malaysia from January 2014 to December 2018. The data collected included age, gender, presenting symptoms and duration, visual acuity, visual fields, color vision, light brightness, relative afferent pupillary defects, fundus examination and cranial nerves examination. The best corrected visual acuity during presentation, and after a one-year post-operative period, was documented. Records on investigations, surgical procedures, therapeutic modalities and recurrences were also reviewed. Results A total of 11 pediatric patients (22 eyes) were recruited. Fifty percent presented with optic atrophy. The mean duration of the onset of symptoms before consultation was 22.3 (24.5) months. A final best corrected visual acuity of 6/12 (20/40) or better was observed in 50% of the patients. There was a statistically significant association between presenting visual acuity, optic nerve function and visual field defects, and the final visual outcome. Conclusions Visual presentations in our study were fairly similar to previous reported studies. One-third presented late with permanent visual loss. Almost half had significant visual impairment after one-year post-operative period. Significant associations were observed between presenting visual acuity, duration of symptoms, impairment of optic nerve function tests, and visual field defects during presentation, and final visual acuity at one year after treatment.
    Matched MeSH terms: Color Vision
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links