Displaying publications 81 - 100 of 552 in total

Abstract:
Sort:
  1. Yee, Xing You, Suzana Shahar, Hasnah Haron, Hanis Mastura Yahya, Normah Che Din
    Jurnal Sains Kesihatan Malaysia, 2019;17(3):139-148.
    MyJurnal DOI: 10.17576/JSKM-2019-16
    Ulam is fresh traditional Malaysian vegetables which normally consumed in raw form or after a short blanching process.It contains high antioxidants and polyphenols. However, there is limited study about the relationship between ulam consumption and cognitive status. Thus, a cross sectional study was conducted to determine the relation with cognitive function among 132 middle-aged Malays adults (45-59 years old), ecruited by convenient sampling from low income residences in Klang Valley. Respondents were interviewed to obtain data on sociodemography, dietary intake and total ulam intake and also measured for anthropometric parameters at respective community centres. Cognitive status was measured using Digit Span (attention and working memory), Rey auditory verbal learning test (RAVLT) (verbal memory) and comprehensive trail making test (CTMT) (cognitive flexibility). The average ulam intake by the respondents was 15.1 ± 8.2g/day and the top five highest consumed ulam were petai (68.1%), pucuk paku (62.9%), ulam raja (56.8%), pegaga (54.6%) and kesum (44.7%).There was a significant correlation between ulam intake with Digit Span (r = 0.265, p = 0.006), total immediate recall of RAVLT (r = 0.427, p < 0.001) and CTMT (r = 0.257, p = 0.007). Analysis of multiple regression indicated that total ulam intake was a significant predictor for Digit Span (R2 = 0.152, p < 0.05), RAVLT (R2 = 0.335, p = 0.001) and CTMT (R2 = 0.310, p < 0.001). In conclusion, this study showed that ulam has the potential to protect against cognitive decline, however, randomized control trials should be conducted to determine the efficacy of the ulam as neuroprotective agent.
    Matched MeSH terms: Plants, Medicinal
  2. Gaddam A, Galla C, Thummisetti S, Marikanty RK, Palanisamy UD, Rao PV
    PMID: 26436069 DOI: 10.1186/s40200-015-0208-4
    BACKGROUND: It is hypothesized that dietary supplementation with Fenugreek modulates glucose homeostasis and potentially prevents diabetes mellitus in people with prediabetes. The objective of present study is to determine whether Fenugreek can prevent the outcome of T2DM in non diabetic people with prediabetes.
    METHODS: A 3-year randomized, controlled, parallel study for efficacy of Fenugreek (n = 66) and matched controls (n = 74) was conducted in men and women aged 30-70 years with criteria of prediabetes. Fenugreek powder, 5 g twice a day before meals, was given to study subjects and progression of type 2 diabetes mellitus (T2DM) was monitored at baseline and every 3 months for the 3-year study.
    RESULTS: By the end of intervention period, cumulative incidence rate of diabetes reduced significantly in Fenugreek group when compared to controls. The Fenugreek group also saw a significant reduction in fasting plasma glucose (FPG), postprandial plasma glucose (PPPG) and low density lipoprotein cholesterol (LDLc) whereas serum insulin increased significantly. It was observed that controls had 4.2 times higher chance of developing diabetes compared to subjects in the Fenugreek group. The outcome of diabetes in Fenugreek group was positively associated with serum insulin and negatively associated with insulin resistance (HOMA IR).
    CONCLUSIONS: Dietary supplementation of 10 g Fenugreek/day in prediabetes subjects was associated with lower conversion to diabetes with no adverse effects and beneficial possibly due to its decreased insulin resistance.
    Study site: Diabetes Day Care Center of the University Department of Endocrinology and Metabolism at Nizam's Institute of Medical Sciences, Hyderabad, India
    Matched MeSH terms: Plants, Medicinal
  3. Yob NJ, Jofrry SM, Affandi MM, Teh LK, Salleh MZ, Zakaria ZA
    PMID: 21584247 DOI: 10.1155/2011/543216
    Zingiber zerumbet Sm., locally known to the Malay as "Lempoyang," is a perennial herb found in many tropical countries, including Malaysia. The rhizomes of Z. zerumbet, particularly, have been regularly used as food flavouring and appetizer in various Malays' cuisines while the rhizomes extracts have been used in Malay traditional medicine to treat various types of ailments (e.g., inflammatory- and pain-mediated diseases, worm infestation and diarrhea). Research carried out using different in vitro and in vivo assays of biological evaluation support most of these claims. The active pharmacological component of Z. zerumbet rhizomes most widely studied is zerumbone. This paper presents the botany, traditional uses, chemistry, and pharmacology of this medicinal plant.
    Matched MeSH terms: Plants, Medicinal
  4. Sanusi SB, Abu Bakar MF, Mohamed M, Sabran SF, Mainasara MM
    PMID: 29081822 DOI: 10.1155/2017/7185649
    Despite all of the control strategies, tuberculosis (TB) is still a major cause of death globally and one-third of the world's population is infected with TB. The drugs used for TB treatment have drawbacks of causing adverse side effects and emergence of resistance strains. Plant-derived medicines have since been used in traditional medical system for the treatment of numerous ailments worldwide. There were nine major review publications on antimycobacteria from plants in the last 17 years. However, none is focused on Southeast Asian medicinal plants. Hence, this review is aimed at highlighting the medicinal plants of Southeast Asian origin evaluated for anti-TB. This review is based on literatures published in various electronic database. A total of 132 plants species representing 45 families and 107 genera were reviewed; 27 species representing 20.5% exhibited most significant in vitro anti-TB activity (crude extracts and/or bioactive compounds 0-<10 µg/ml). The findings may motivate various scientists to undertake the project that may result in the development of crude extract that will be consumed as complementary or alternative TB drug or as potential bioactive compounds for the development of novel anti-TB drug.
    Matched MeSH terms: Plants, Medicinal
  5. Babaei N, Abdullah NA, Saleh G, Abdullah TL
    ScientificWorldJournal, 2014;2014:275028.
    PMID: 24723799 DOI: 10.1155/2014/275028
    A procedure was developed for in vitro propagation of Curculigo latifolia through shoot tip culture. Direct regeneration and indirect scalp induction of Curculigo latifolia were obtained from shoot tip grown on MS medium supplemented with different concentrations and combinations of thidiazuron and indole-3-butyric acid. Maximum response for direct regeneration in terms of percentage of explants producing shoot, shoot number, and shoot length was obtained on MS medium supplemented with combination of thidiazuron (0.5 mg L(-1)) and indole-3-butyric acid (0.25 mg L(-1)) after both 10 and 14 weeks of cultures. Indole-3-butyric acid in combination with thidiazuron exhibited a synergistic effect on shoot regeneration. The shoot tips were able to induce maximum scalp from basal end of explants on the medium with 2 mg L(-1) thidiazuron. Cultures showed that shoot number, shoot length, and scalp size increased significantly after 14 weeks of culture. Transferring of the shoots onto the MS medium devoid of growth regulators resulted in the highest percentage of root induction and longer roots, while medium supplemented with 0.25 mg L(-1) IBA produced more numbers of roots.
    Matched MeSH terms: Plants, Medicinal/drug effects; Plants, Medicinal/growth & development*
  6. Subramaniam S, Sundarasekar J, Sahgal G, Murugaiyah V
    ScientificWorldJournal, 2014;2014:408306.
    PMID: 24895650 DOI: 10.1155/2014/408306
    The Hymenocallis littoralis, an ornamental and medicinal plant, had been traditionally used for wound healing. In the present study, an analytical method using HPLC with ultraviolet detection was developed for the quantification of lycorine in the extracts of different parts of wild plant and tissue culture samples of H. littoralis. The separation was achieved using a reversed-phase column. The method was found to be accurate, repeatable, and sensitive for the quantification of minute amount of lycorine present in the samples. The highest lycorine content was found in the bulb extract (2.54 ± 0.02 μg/mg) whereas the least was in the root extract (0.71 ± 0.02 μg/mg) of the wild plants. Few callus culture samples had high content of lycorine, comparable to that of wild plants. The results showed that plant growth regulators, 2,4-dichlorophenoxyacetic acid (2,4-D) alone at 4.5 μM (2.58 ± 0.38 μg/mg) or a combination of 2,4-D at 9.00 μM with 4.5 μM of 6-benzylaminopurine (BAP), were the optimum concentrations for the production of high lycorine (2.45 ± 0.15 μg/mg) content in callus culture. The present analytical method could be of value for routine quantification of lycorine in the tissue culture production and standardization of the raw material or extracts of H. littoralis.
    Matched MeSH terms: Plants, Medicinal/drug effects; Plants, Medicinal/chemistry*
  7. Ting A, Chow Y, Tan W
    J Tradit Chin Med, 2013 Feb;33(1):119-24.
    PMID: 23596824
    The increasing popularity and widespread use of traditional Chinese herbs as alternative medicine have sparked an interest in understanding their biosafety, especially in decoctions that are consumed. This study aimed to assess the level of microbial and heavy metal contamination in commonly consumed herbal medicine in Malaysia and the effects of boiling on these contamination levels.
    Matched MeSH terms: Plants, Medicinal/microbiology*; Plants, Medicinal/chemistry*
  8. Fung SY, Cheong PCH, Tan NH, Ng ST, Tan CS
    IUBMB Life, 2019 07;71(7):821-826.
    PMID: 30629799 DOI: 10.1002/iub.2006
    Sclerotial powder of a cultivated species of the Tiger Milk Mushroom, Lignosus cameronensis was analysed for its nutritional components and compared against species of the same genus, Lignosus rhinocerus and Lignosus tigris. All three species have been used by indigenous tribes in Peninsular Malaysia as medicinal mushrooms. Content of carbohydrate, fibre, mineral, amino acid, palatable index, fat, ash and moisture were determined. L. cameronensis sclerotial material consists of carbohydrate (79.7%), protein (12.4%) and dietary fibre (5.4%) with low fat (1.7%) and no free sugar. It has the highest content of total carbohydrate (791 g kg-1 ), energy value (3,700 kcal kg-1 ) and calcium (0.85 g kg-1 ). The crude protein content (123 g kg-1 ) is comparable to that of L. rhinocerus with its main amino acids consisting of glutamic acid, aspartic acid and leucine. The umami index is determined to be 0.27. The total essential amino acid (45 g kg-1 ) is comparable to that of L. tigris. The main mineral is potassium (1.51 g kg-1 ) and the Na/K ratio was <0.6. Heavy metals such as mercury, cadmium, lead and arsenic were absent. L. cameronensis has the highest amount of food energy, total carbohydrate and calcium compared to those of both L. rhinocerus and L. tigris. The essential amino acids comprised almost 40% of the total amino acid content, slightly more than that reported from sclerotial powder of the L. tigris. © 2019 IUBMB Life, 9999(9999):1-6, 2019.
    Matched MeSH terms: Plants, Medicinal/growth & development; Plants, Medicinal/metabolism*
  9. Mohd-Fuat AR, Kofi EA, Allan GG
    Trop Biomed, 2007 Dec;24(2):49-59.
    PMID: 18209708 MyJurnal
    Three popular medicinal plants regarded as improving human sexual function in some parts of Southeast Asia were analysed for their mutagenic properties using modified Ames test (fluctuation test). Extract of one of the plants, Tacca integrifolia Ker-Gawl., was found to be mutagenic using Salmonella typhimurium strains TA98 and TA100. Extract of T. integrifolia, Eurycoma longifolia Jack and Helmintostachys zeylanica (L.) Hook were cytotoxic to human cell lines, Hep2 and HFL1, with IC50 ranging from 11 mug/ml to 55 mug/ml. Extract of E. longifolia was the most cytotoxic with IC50 of 11 mug/ml and 13 mug/ml on Hep2 and HFL1 cell lines respectively. Combined extract of T. integrifolia and H. zeylanica was more cytotoxic than single extract on both Hep2 and HFL1 cell lines while combined extract of E. longifolia and H. zeylanica was more cytotoxic than single extract on Hep2 cell lines. Under the conditions of this study it can be concluded that T. integrifolia is mutagenic and the combined extracts of the medicinal plants was highly cytotoxic.
    Matched MeSH terms: Plants, Medicinal/classification; Plants, Medicinal/chemistry*
  10. Mohanty SK, Swamy MK, Sinniah UR, Anuradha M
    Molecules, 2017 06 19;22(6).
    PMID: 28629185 DOI: 10.3390/molecules22061019
    Leptadenia reticulata (Retz.) Wight & Arn. (Apocynaceae), is a traditional medicinal plant species widely used to treat various ailments such as tuberculosis, hematopoiesis, emaciation, cough, dyspnea, fever, burning sensation, night blindness, cancer, and dysentery. In Ayurveda, it is known for its revitalizing, rejuvenating, and lactogenic properties. This plant is one of the major ingredients in many commercial herbal formulations, including Speman, Envirocare, Calshakti, Antisept, and Chyawanprash. The therapeutic potential of this herb is because of the presence of diverse bioactive compounds such as α-amyrin, β-amyrin, ferulic acid, luteolin, diosmetin, rutin, β-sitosterol, stigmasterol, hentricontanol, a triterpene alcohol simiarenol, apigenin, reticulin, deniculatin, and leptaculatin. However, most biological studies on L. reticulata are restricted to crude extracts, and many biologically active compounds are yet to be identified in order to base the traditional uses of L. reticulata on evidence-based data. At present, L. reticulata is a threatened endangered plant because of overexploitation, unscientific harvesting, and habitat loss. The increased demand from pharmaceutical, nutraceutical, and veterinary industries has prompted its large-scale propagation. However, its commercial cultivation is hampered because of the non-availability of genuine planting material and the lack of knowledge about its agronomical practices. In this regard, micropropagation techniques will be useful to obtain true-to-type L. reticulata planting materials from an elite germplasm to meet the current demand. Adopting other biotechnological approaches such as synthetic seed technology, cryopreservation, cell culture, and genetic transformation can help conservation as well as increased metabolite production from L. reticulata. The present review summarizes scientific information on the botanical, agronomical, phytochemical, pharmacological, and biotechnological aspects of L. reticulata. This comprehensive information will certainly allow better utilization of this industrially important herb towards the discovery of lead drug molecules.
    Matched MeSH terms: Plants, Medicinal/classification; Plants, Medicinal/chemistry*
  11. Abiri R, Abdul-Hamid H, Sytar O, Abiri R, Bezerra de Almeida E, Sharma SK, et al.
    Molecules, 2021 Jun 24;26(13).
    PMID: 34202844 DOI: 10.3390/molecules26133868
    The COVID-19 pandemic, as well as the more general global increase in viral diseases, has led researchers to look to the plant kingdom as a potential source for antiviral compounds. Since ancient times, herbal medicines have been extensively applied in the treatment and prevention of various infectious diseases in different traditional systems. The purpose of this review is to highlight the potential antiviral activity of plant compounds as effective and reliable agents against viral infections, especially by viruses from the coronavirus group. Various antiviral mechanisms shown by crude plant extracts and plant-derived bioactive compounds are discussed. The understanding of the action mechanisms of complex plant extract and isolated plant-derived compounds will help pave the way towards the combat of this life-threatening disease. Further, molecular docking studies, in silico analyses of extracted compounds, and future prospects are included. The in vitro production of antiviral chemical compounds from plants using molecular pharming is also considered. Notably, hairy root cultures represent a promising and sustainable way to obtain a range of biologically active compounds that may be applied in the development of novel antiviral agents.
    Matched MeSH terms: Plants, Medicinal/immunology; Plants, Medicinal/chemistry*
  12. Foong LC, Chai JY, Ho ASH, Yeo BPH, Lim YM, Tam SM
    Sci Rep, 2020 09 30;10(1):16123.
    PMID: 32999341 DOI: 10.1038/s41598-020-72997-2
    Impatiens balsamina L. is a tropical ornamental and traditional medicinal herb rich in natural compounds, especially 2-methoxy-1,4-naphthoquinone (MNQ) which is a bioactive compound with tested anticancer activities. Characterization of key genes involved in the shikimate and 1,4-dihydroxy-2-naphthoate (DHNA) pathways responsible for MNQ biosynthesis and their expression profiles in I. balsamina will facilitate adoption of genetic/metabolic engineering or synthetic biology approaches to further increase production for pre-commercialization. In this study, HPLC analysis showed that MNQ was present in significantly higher quantities in the capsule pericarps throughout three developmental stages (early-, mature- and postbreaker stages) whilst its immediate precursor, 2-hydroxy-1,4-naphthoquinone (lawsone) was mainly detected in mature leaves. Transcriptomes of I. balsamina derived from leaf, flower, and three capsule developmental stages were generated, totalling 59.643 Gb of raw reads that were assembled into 94,659 unigenes (595,828 transcripts). A total of 73.96% of unigenes were functionally annotated against seven public databases and 50,786 differentially expressed genes (DEGs) were identified. Expression profiles of 20 selected genes from four major secondary metabolism pathways were studied and validated using qRT-PCR method. Majority of the DHNA pathway genes were found to be significantly upregulated in early stage capsule compared to flower and leaf, suggesting tissue-specific synthesis of MNQ. Correlation analysis identified 11 candidate unigenes related to three enzymes (NADH-quinone oxidoreductase, UDP-glycosyltransferases and S-adenosylmethionine-dependent O-methyltransferase) important in the final steps of MNQ biosynthesis based on genes expression profiles consistent with MNQ content. This study provides the first molecular insight into the dynamics of MNQ biosynthesis and accumulation across different tissues of I. balsamina and serves as a valuable resource to facilitate further manipulation to increase production of MNQ.
    Matched MeSH terms: Plants, Medicinal/genetics; Plants, Medicinal/metabolism
  13. Chan YS, Cheah YH, Chong PZ, Khor HL, Teh WS, Khoo KS, et al.
    Pak J Pharm Sci, 2018 Jan;31(1):119-127.
    PMID: 29348093
    This study was conducted to investigate the antifungal potential and cytotoxicity of selected medicinal plants from Malaysia. The extracts from the stem of Cissus quadrangularis and the leaves of Asplenium nidus, Pereskia bleo, Persicaria odorata and Sauropus androgynus were assayed against six fungi using p-iodonitrotetrazolium-based on colorimetric broth microdilution method. All the plant extracts were found to be fungicidal against at least one type of fungus. The strongest fungicidal activity (minimum fungicidal concentration=0.16 mg/mL) were exhibited by the hexane extract of C. quadrangularis, the hexane, chloroform, ethanol and methanol extracts of P. bleo, the hexane and ethyl acetate extracts of P. odorata, and the water extract of A. nidus. In terms of cytotoxicity on the African monkey kidney epithelial (Vero) cells, the chloroform extract of P. odorata produced the lowest 50% cytotoxic concentration (100.3 ± 4.2 μ g/mL). In contrast, none of the water extracts from the studied plants caused significant toxicity on the cells. The water extract of A. nidus warrants further investigation since it showed the strongest fungicidal activity and the highest total activity (179.22 L/g) against Issatchenkia orientalis, and did not cause any toxicity to the Vero cells.
    Matched MeSH terms: Plants, Medicinal/growth & development; Plants, Medicinal/chemistry*
  14. de Costa F, Barber CJ, Reed DW, Covello PS
    Methods Mol Biol, 2016;1405:43-8.
    PMID: 26843164 DOI: 10.1007/978-1-4939-3393-8_5
    Centella asiatica (L.) Urban (Apiaceae), a small annual plant that grows in India, Sri Lanka, Malaysia, and other parts of Asia, is well-known as a medicinal herb with a long history of therapeutic uses. The bioactive compounds present in C. asiatica leaves include ursane-type triterpene sapogenins and saponins-asiatic acid, madecassic acid, asiaticoside, and madecassoside. Various bioactivities have been shown for these compounds, although most of the steps in the biosynthesis of triterpene saponins, including glycosylation, remain uncharacterized at the molecular level. This chapter describes an approach that integrates partial enzyme purification, proteomics methods, and transcriptomics, with the aim of reducing the number of cDNA candidates encoding for a glucosyltransferase involved in saponin biosynthesis and facilitating the elucidation of the pathway in this medicinal plant.
    Matched MeSH terms: Plants, Medicinal
  15. Choong YK, Lan J, Lee HL, Chen XD, Wang XG, Yang YP
    PMID: 26186395 DOI: 10.1016/j.saa.2015.07.054
    Many macrofungus sclerotia are well-known medicinal herbs, health food and nutritional supplements. However, the prevalent adulterant commercial products are major hindrances to their incorporation into mainstream medical use in many countries. The mushroom sclerotia of Lignosus rhinocerotis, Poria cocos, Polyporus umbellatus, Pleurotus tuber-regium and Omphalia lapidescens are commonly used in traditional Chinese medicine. In this study, IR macro-fingerprint method was used in the identification of these sclerotia. The results showed that the spectrum of L. rhinocerotis (LR) was comparable with P. cocos with 94.4% correlation, except that the peak at 1543cm(-1) of LR appeared in lower intensity. The spectrum of P. umbellatus and P. tuber-regium was also correlated (91.5%), as both spectra could be clearly discriminated in that P. umbellatus spectrum has small base peaks located at the range of 1680-1500cm(-1). O. lapidescens was not comparable with all the other sclerotia as its spectrum was totally different. Its base peak was broad and derivated equally along the range. The first IR has revealed the dissimilarity among five mushrooms sclerotia. The second derivative and 2DIR further enhanced the identification in detail.
    Matched MeSH terms: Plants, Medicinal
  16. Roheem FO, Mat Soad SZ, Ahmed QU, Ali Shah SA, Latip J, Zakaria ZA
    Molecules, 2019 Mar 13;24(6).
    PMID: 30871172 DOI: 10.3390/molecules24061006
    Digestive enzymes and free radical inhibitors are used to prevent complications resulting from diabetes. Entadaspiralis (family Leguminosae), which is a well-known medicinal plant in herbal medicine due to its various traditional and medicinal applications, was studied. Crude extracts were successively obtained from the stem bark using petroleum ether, chloroform and methanol as extracting solvents. The antioxidant activity of all the extracts, fractions and isolated compounds were estimated using 2,2-diphenyl-1-picrylhydrazyl (DPPH), β-carotene and 2,2'-azinobis(-3-ethylbenzothiazine-6-sulfonic acid) (ABTS) assays, while digestive enzymes inhibitory activity was assessed using α-amylase and α-glucosidase inhibitory methods. Structure elucidation of pure compounds was achieved through different spectroscopic analysis methods. Fractionation and purification of the most active methanol extract resulted in the isolation of a ferulic ester namely; (e)-hexyl 3-(4-hydroxy-3-methoxyphenyl) acrylate (FEQ-2) together with five known phenolic constituents, identified as kaempferol (FEQ-3), 5,4'-dihydroxy-3,7,3'-trimethoxyflavone (FEQ-2), gallic acid (FEQ-5), (+)-catechin (FEQ-7) and (-)-epicatechin (FEQ-8). FEQ-5 exhibited the strongest antioxidant and enzyme inhibitory activities followed by FEQ-3 and FEQ-4. FEQ-2 also displayed potent free radical scavenging activity with IC50 values of 13.79 ± 2.13 (DPPH) and 4.69 ± 1.25 (ABTS) µg/mL, respectively. All other compounds were found active either against free radicals or digestive enzymes.
    Matched MeSH terms: Plants, Medicinal
  17. Poobathy, Ranjetta, Rahmad Zakaria, Syed Mohd. Edzham Syed Hamzah, Subramaniam, Sreeramanan
    Trop Life Sci Res, 2016;27(11):15-19.
    MyJurnal
    The terrestrial Ludisia discolor, also referred to as the jewel orchid is prized for
    the quality of its leaves. L. discolor is known as a medicinal herb and is touted for its heatand
    pathogen-resisting qualities. L. discolor is valuable in the production of both flavonoids
    and anthocyanins, antioxidants that are exalted in the health industry. Plant cell cultures
    have emerged as alternative sources of anthocyanin production. Plant protoplast cultures
    are used frequently in transient gene expression studies and in the establishment of callus
    and cell suspension cultures. Benefits of plant protoplast system include similarity to cells
    found in plant tissues, reproduction under controlled conditions, and prevention of masking
    of stress responses to previous handling techniques. A study was conducted to assess the
    amenability of the stem and leaves of L. discolor to protoplast isolation. The stem and leaf
    segments were weighed, sliced into thin layers, immersed in a digestion medium, washed
    and then cultured onto a recovery medium. Results indicated that the production of plant
    protoplasts from L. discolor may be viewed as an alternative in the generation of cell
    cultures and ultimately in the production of anthocyanins from the cell cultures.
    Matched MeSH terms: Plants, Medicinal
  18. Abubakar IB, Lim SW, Loh HS
    Trop Life Sci Res, 2018 Mar;29(1):229-238.
    PMID: 29644026 MyJurnal DOI: 10.21315/tlsr2018.29.1.15
    Recent studies suggested that combined treatment approaches can be used to improve anticancer potency and circumvent the limitations of high-dose tocotrienols administration. Acalypha wilkesiana is a medicinal plant that has been used as an adjunct treatment for cancers in traditional medicine. Herein, the effects of single and combined treatments of β-, γ- and δ-tocotrienols and ethyl acetate extract (9EA) of Acalypha wilkesiana on lung (A549) and brain (U87MG) cancer cells were investigated. γ- and δ-tocotrienols exhibited higher potent antiproliferative effects against A549 (12.1 μg/ml and 13.6 μg/ml) and U87MG cells (3.3 μg/ml and 5.2 μg/ml) compared to β-tocotrienols (9.4 μg/ml and 92.4 μg/ml), respectively. Whereas, 9EA induced potent antiproliferative effects against U87MG cells only (2.0 μg/ml). Combined treatments of tocotrienols and 9EA induced a synergistic growth inhibition with up to 8.4-fold reduction in potent doses of β-, γ- and δ-tocotrienols on A549 cells. Apoptotic features were also evidenced on A549 cells receiving single and combined treatments. The synergism may greatly improve the therapeutic outcome for lung cancer.
    Matched MeSH terms: Plants, Medicinal
  19. Zhou, Wenxin
    MyJurnal
    Chinese medicine is one of the most famous traditional medicines in the world with a glorious and long written history of at least 2000 years. Recently, acupuncture and the use of other herbal medicine are being gradually accepted globally. In 2011,the International Medical University (IMU) started the Chinese Medicine programme which is the first of its kind in a western medicine university in Malaysia.The author introduced the background of Chinese medicine and the curriculum of the Chinese Medicine programme established in IMU, analyzed the situation regarding the quality of lectures given by internal and
    external lecturers in this programme and also discussed on ways to integrate western and traditional medicine in IMU or in Malaysia. The launching of Chinese medicine in IMU is a great step in the development of IMU and also an important step in the development of medical education in Malaysia or even in South-east Asia.
    Matched MeSH terms: Plants, Medicinal
  20. Tan, M. C., Tan, C. P., Ho, C. W
    MyJurnal
    Henna plant (Lawsonia inermis) is an Indian medicinal plant used in traditional medicine for the treatment of various diseases, besides its popularity as a natural dye to colour hand and hair. Research in the recent past has accumulated enormous evidence revealing henna plant to be an excellent source of antioxidants such as total phenolics. In this study, the extraction of total phenolics from henna stems was evaluated using the Folin-Ciocalteu assay. A set of single factor experiments was carried out for identifying the optimum condition of each independent variable affecting total phenolic content (TPC) extraction efficiency of henna stems, namely the solvent type, solvent concentration (v/v, %), extraction time (min) and extraction temperature (oC). Generally, high extraction yield was obtained using aqueous acetone (about 40%) as solvent and the extraction yield could further be increased using a prolonged time of 270 min and a higher incubation temperature of 55°C. Under these optimized conditions, the experimental maximum yield of TPC of 5554.15 ± 73.04 mg GAE/100 g DW was obtained.
    Matched MeSH terms: Plants, Medicinal
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links