Displaying publications 81 - 100 of 794 in total

Abstract:
Sort:
  1. Ali I, Jamaluddin MH, Gaya A, Rahim HA
    Sensors (Basel), 2020 Jan 26;20(3).
    PMID: 31991889 DOI: 10.3390/s20030675
    In this paper, a dielectric resonator antenna (DRA) with high gain and wide impedance bandwidth for fifth-generation (5G) wireless communication applications is proposed. The dielectric resonator antenna is designed to operate at higher-order TEδ15x mode to achieve high antenna gain, while a hollow cylinder at the center of the DRA is introduced to improve bandwidth by reducing the quality factor. The DRA is excited by a 50Ω microstrip line with a narrow aperture slot. The reflection coefficient, antenna gain, and radiation pattern of the proposed DRAs are analyzed using the commercially available full-wave electromagnetic simulation tool CST Microwave Studio (CST MWS). In order to verify the simulation results, the proposed antenna structures were fabricated and experimentally validated. Measured results of the fabricated prototypes show a 10-dB return loss impedance bandwidth of 10.7% (14.3-15.9GHz) and 16.1% (14.1-16.5 GHz) for DRA1 and DRA2, respectively, at the operating frequency of 15 GHz. The results show that the designed antenna structure can be used in the Internet of things (IoT) for device-to-device (D2D) communication in 5G systems.
    Matched MeSH terms: Wireless Technology
  2. Ali MS, AbuZaiter A, Schlosser C, Bycraft B, Takahata K
    Sensors (Basel), 2014 Jul 10;14(7):12399-409.
    PMID: 25014100 DOI: 10.3390/s140712399
    This paper reports a method that enables real-time displacement monitoring and control of micromachined resonant-type actuators using wireless radiofrequency (RF). The method is applied to an out-of-plane, spiral-coil microactuator based on shape-memory-alloy (SMA). The SMA spiral coil forms an inductor-capacitor resonant circuit that is excited using external RF magnetic fields to thermally actuate the coil. The actuation causes a shift in the circuit's resonance as the coil is displaced vertically, which is wirelessly monitored through an external antenna to track the displacements. Controlled actuation and displacement monitoring using the developed method is demonstrated with the microfabricated device. The device exhibits a frequency sensitivity to displacement of 10 kHz/µm or more for a full out-of-plane travel range of 466 µm and an average actuation velocity of up to 155 µm/s. The method described permits the actuator to have a self-sensing function that is passively operated, thereby eliminating the need for separate sensors and batteries on the device, thus realizing precise control while attaining a high level of miniaturization in the device.
    Matched MeSH terms: Wireless Technology/instrumentation*
  3. Ali Mamat
    The technology of deductive database is now mature enough due to the considerable research efforts that have been made on the field for the last ten years. This achievement is demonstrated by the emergence of efficient and easy to use systems with their capability of supporting a declarative, rule based style of expressing queries and applications on databases. This paper describes an overview of architecture of a query evaluation system for deductive databases that has been developed.
    Teknologi pangkalan data deduktif sudah matang hasil daripada penyelidikan yang telah banyak dilakukan dalam tempoh 10 tahun yang lepas. Pencapaian ini dibuktikan melalui kemunculan sistem yang cekap dan mudah guna serta mempunyai keupayaan untuk mengungkap pertanyaan dan penggunaan ke atas pangkalan data secara deklaratif menerusi penggunaan petua. Dalam kertas ini diterangkan suatu ringkasan mengenai senibina sistem penilaian pertanyaan untuk pangkalan data deduktif yang sudah dibangunkan.
    Matched MeSH terms: Technology
  4. Ali ZA, Roslan MA, Yahya R, Wan Sulaiman WY, Puteh R
    IET Nanobiotechnol, 2017 Mar;11(2):152-156.
    PMID: 28476997 DOI: 10.1049/iet-nbt.2015.0123
    In this study, larvicidal activity of silver nanoparticles (AgNPs) synthesised using apple extract against fourth instar larvae of Aedes aegypti was determined. As a result, the AgNPs showed moderate larvicidal effects against Ae. aegypti larvae (LC50 = 15.76 ppm and LC90 = 27.7 ppm). In addition, comparison of larvicidal activity performance of AgNPs at high concentration prepared using two different methods showed that Ae. aegypti larvae was fully eliminated within the duration of 2.5 h. From X-ray diffraction, the AgNP crystallites were found to exhibit face centred cubic structure. The average size of these AgNPs as estimated by particle size distribution was in the range of 50-120 nm. The absorption maxima of the synthesised Ag showed characteristic Ag surface plasmon resonance peak. This green synthesis provides an economic, eco-friendly and clean synthesis route to Ag.
    Matched MeSH terms: Green Chemistry Technology/methods*
  5. Almahdi EM, Zaidan AA, Zaidan BB, Alsalem MA, Albahri OS, Albahri AS
    J Med Syst, 2019 Jun 06;43(7):219.
    PMID: 31172296 DOI: 10.1007/s10916-019-1339-9
    This study presents a prioritisation framework for mobile patient monitoring systems (MPMSs) based on multicriteria analysis in architectural components. This framework selects the most appropriate system amongst available MPMSs for the telemedicine environment. Prioritisation of MPMSs is a challenging task due to (a) multiple evaluation criteria, (b) importance of criteria, (c) data variation and (d) unmeasurable values. The secondary data presented as the decision evaluation matrix include six systems (namely, Yale-National Aeronautics and Space Administration (NASA), advanced health and disaster aid network, personalised health monitoring, CMS, MobiHealth and NTU) as alternatives and 13 criteria (namely, supported number of sensors, sensor front-end (SFE) communication, SFE to mobile base unit (MBU) communications, display of biosignals on the MBU, storage of biosignals on the MBU, intra-body area network (BAN) communication problems, extra-BAN communication problems, extra-BAN communication technology, extra-BAN communication protocols, back-end system communication technology, intended geographic area of use, end-to-end security and reported trial problems) based on the architectural components of MPMSs. These criteria are adopted from the most relevant studies and are found to be applicable to this study. The prioritisation framework is developed in three stages. (1) The unmeasurable values of the MPMS evaluation criteria in the adopted decision evaluation matrix based on expert opinion are represented by using the best-worst method (BWM). (2) The importance of the evaluation criteria based on the architectural components of the MPMS is determined by using the BWM. (3) The VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) method is utilised to rank the MPMSs according to the determined importance of the evaluation criteria and the adopted decision matrix. For validation, mean ± standard deviation is used to verify the similarity of systematic prioritisations objectively. The following results are obtained. (1) The BWM represents the unmeasurable values of the MPMS evaluation criteria. (2) The BWM is suitable for weighing the evaluation criteria based on the architectural components of the MPMS. (3) VIKOR is suitable for solving the MPMS prioritisation problem. Moreover, the internal and external VIKOR group decision making are approximately the same, with the best MPMS being 'Yale-NASA' and the worst MPMS being 'NTU'. (4) For the objective validation, remarkable differences are observed between the group scores, which indicate the similarity of internal and external prioritisation results.
    Matched MeSH terms: Wireless Technology*
  6. Almazroi AA, Alqarni MA, Al-Shareeda MA, Manickam S
    PLoS One, 2023;18(10):e0292690.
    PMID: 37889892 DOI: 10.1371/journal.pone.0292690
    The role that vehicular fog computing based on the Fifth Generation (5G) can play in improving traffic management and motorist safety is growing quickly. The use of wireless technology within a vehicle raises issues of confidentiality and safety. Such concerns are optimal targets for conditional privacy-preserving authentication (CPPA) methods. However, current CPPA-based systems face a challenge when subjected to attacks from quantum computers. Because of the need for security and anti-piracy features in fog computing when using a 5G-enabled vehicle system, the L-CPPA scheme is proposed in this article. Using a fog server, secret keys are generated and transmitted to each registered car via a 5G-Base Station (5G-BS) in the proposed L-CPPA system. In the proposed L-CPPA method, the trusted authority, rather than the vehicle's Onboard Unit (OBU), stores the vehicle's master secret data to each fog server. Finally, the computation cost of the suggested L-CPPA system regards message signing, single verification and batch verification is 694.161 ms, 60.118 ms, and 1348.218 ms, respectively. Meanwhile, the communication cost is 7757 bytes.
    Matched MeSH terms: Wireless Technology
  7. Almomani E, Alabbadi I, Fasseeh A, Al-Qutob R, Al-Sharu E, Hayek N, et al.
    Value Health Reg Issues, 2021 Sep;25:126-134.
    PMID: 34015521 DOI: 10.1016/j.vhri.2021.01.003
    OBJECTIVES: Health technology assessment (HTA) can increase the appropriateness and transparency of pricing and reimbursement decisions. Jordan is still in the early phase of its HTA implementation, although the country has very limited public resources for the coverage of healthcare technologies. The study objective was to explore and validate priorities in the HTA road map for Jordan and propose to facilitate the preferred HTA status.

    METHODS: Health policy experts from the public and private sectors were asked to participate in a survey to explore the current and future status of HTA implementation in Jordan. Semistructured interviews with senior policy makers supported by literature review were conducted to validate survey results and make recommendations for specific actions.

    RESULTS: Survey and interview results indicated a need for increased HTA training, including both short courses and academic programs and gradually increasing public funding for technology assessment and appraisal. Multiple HTA bodies with central coordination can be the most feasible format of HTA institutionalization. The weight of cost-effectiveness criterion based on local data with published reports and explicit decision thresholds should be increased in policy decisions of pharmaceutical and nonpharmaceutical technologies.

    CONCLUSION: Currently, HTA has limited impact on health policy decisions in Jordan, and when it is used to support pharmaceutical reimbursement decisions, it is mainly based on results from other countries without considering transferability of international evidence. Policy makers should facilitate HTA institutionalization and use in policy decisions by increasing the weight of local evidence in HTA recommendations.

    Matched MeSH terms: Technology Assessment, Biomedical*
  8. Alnoor A, Chew X, Khaw KW, Muhsen YR, Sadaa AM
    Environ Sci Pollut Res Int, 2024 Jan;31(4):5762-5783.
    PMID: 38133762 DOI: 10.1007/s11356-023-31645-8
    Greenhouse gas emissions and global warming are recent issues of upward trend. This study sought to underline the causal relationships between engagement modes with green technology, environmental, social, and governance (ESG) ratio, and circular economy. Our investigation also captured benchmarking of energy companies' circular economy behaviors. A hybrid-stage partial least squares structural equation modeling (PLS-SEM) and multi-criteria decision-making (MCDM) analysis have been adopted. This study collected 713 questionnaires from heads of departments and managers of energy companies. The findings of this study claimed that engagement modes with green technology affect the circular economy and sustainability. The findings revealed that ESG ratings have a mediating role in the nexus among engagement modes with green technology and circular economy. The results of the MCDM application revealed the identification of the best and worst energy companies of circular economy behaviours. This study is exceptional because it is among the first to address the issues of greenhouse gas emissions by providing decisive evidence about the level of circular economy behaviors in energy companies.
    Matched MeSH terms: Technology
  9. Alshami IH, Ahmad NA, Sahibuddin S, Firdaus F
    Sensors (Basel), 2017 Aug 05;17(8).
    PMID: 28783047 DOI: 10.3390/s17081789
    The Global Positioning System demonstrates the significance of Location Based Services but it cannot be used indoors due to the lack of line of sight between satellites and receivers. Indoor Positioning Systems are needed to provide indoor Location Based Services. Wireless LAN fingerprints are one of the best choices for Indoor Positioning Systems because of their low cost, and high accuracy, however they have many drawbacks: creating radio maps is time consuming, the radio maps will become outdated with any environmental change, different mobile devices read the received signal strength (RSS) differently, and peoples' presence in LOS between access points and mobile device affects the RSS. This research proposes a new Adaptive Indoor Positioning System model (called DIPS) based on: a dynamic radio map generator, RSS certainty technique and peoples' presence effect integration for dynamic and multi-floor environments. Dynamic in our context refers to the effects of people and device heterogeneity. DIPS can achieve 98% and 92% positioning accuracy for floor and room positioning, and it achieves 1.2 m for point positioning error. RSS certainty enhanced the positioning accuracy for floor and room for different mobile devices by 11% and 9%. Then by considering the peoples' presence effect, the error is reduced by 0.2 m. In comparison with other works, DIPS achieves better positioning without extra devices.
    Matched MeSH terms: Wireless Technology
  10. Alwi AR, Mahat NA, Mohd Salleh F, Ishar SM, Kamaluddin MR, Rashid MRA
    J Forensic Sci, 2023 Nov;68(6):2103-2115.
    PMID: 37646344 DOI: 10.1111/1556-4029.15370
    The onus of proof in criminal cases is beyond any reasonable doubt, and the issue on the lack of complete internal validation data can be manipulated when it comes to justifying the validity and reliability of the X-chromosomal short tandem repeats analysis for court representation. Therefore, this research evaluated the efficiency of the optimized 60% reduced volumes for polymerase chain reaction (PCR) amplification using the Qiagen Investigator® Argus X-12 QS Kit, as well as the capillary electrophoresis (CE) sample preparation for blood samples on Flinder's Technology Associates (FTA) cards. Good-quality DNA profile (3000-12,000 RFU) from the purified blood sample on FTA card (1.2 mm) were obtained using the optimized PCR (10.0 μL of PCR reaction volume and 21 cycles) and CE (9.0 μL Hi-Di™ Formamide and 0.3 μL DNA Size Standard 550 [BTO] and 27 s injection time) conditions. The analytical and stochastic thresholds were 100 and 200 RFU, respectively. Hence, the internal validation data supported the use of the optimized 60% reduced PCR amplification reaction volume of the Qiagen Investigator® Argus X-12 QS Kit as well as the CE sample preparation for producing reliable DNA profiles that comply with the quality assurance standards for forensic DNA testing laboratories, while optimizing the analytical cost.
    Matched MeSH terms: Technology
  11. Amiri IS, Azzuhri SRB, Jalil MA, Hairi HM, Ali J, Bunruangses M, et al.
    Micromachines (Basel), 2018 Sep 11;9(9).
    PMID: 30424385 DOI: 10.3390/mi9090452
    Light has found applications in data transmission, such as optical fibers and waveguides and in optoelectronics. It consists of a series of electromagnetic waves, with particle behavior. Photonics involves the proper use of light as a tool for the benefit of humans. It is derived from the root word "photon", which connotes the tiniest entity of light analogous to an electron in electricity. Photonics have a broad range of scientific and technological applications that are practically limitless and include medical diagnostics, organic synthesis, communications, as well as fusion energy. This will enhance the quality of life in many areas such as communications and information technology, advanced manufacturing, defense, health, medicine, and energy. The signal transmission methods used in wireless photonic systems are digital baseband and RoF (Radio-over-Fiber) optical communication. Microwave photonics is considered to be one of the emerging research fields. The mid infrared (mid-IR) spectroscopy offers a principal means for biological structure analysis as well as nonintrusive measurements. There is a lower loss in the propagations involving waveguides. Waveguides have simple structures and are cost-efficient in comparison with optical fibers. These are important components due to their compactness, low profile, and many advantages over conventional metallic waveguides. Among the waveguides, optofluidic waveguides have been found to provide a very powerful foundation for building optofluidic sensors. These can be used to fabricate the biosensors based on fluorescence. In an optical fiber, the evanescent field excitation is employed to sense the environmental refractive index changes. Optical fibers as waveguides can be used as sensors to measure strain, temperature, pressure, displacements, vibrations, and other quantities by modifying a fiber. For some application areas, however, fiber-optic sensors are increasingly recognized as a technology with very interesting possibilities. In this review, we present the most common and recent applications of the optical fiber-based sensors. These kinds of sensors can be fabricated by a modification of the waveguide structures to enhance the evanescent field; therefore, direct interactions of the measurand with electromagnetic waves can be performed. In this research, the most recent applications of photonics components are studied and discussed.
    Matched MeSH terms: Fiber Optic Technology
  12. An H, Razzaq A, Haseeb M, Mihardjo LWW
    Environ Sci Pollut Res Int, 2021 Feb;28(5):5254-5270.
    PMID: 32960444 DOI: 10.1007/s11356-020-10775-3
    The Belt and Road Initiative (BRI) is closely linked to the ecological sustainability of the infrastructure ventures that intrinsically include the aspects of climate change and pollution. Though there exists literature on the environmental Kuznets curve (EKC) and pollution haven hypothesis (PHH), very few explore the scope in the light of Belt and Road host countries (B&RCs). Therefore, the study examines the income-induced EKC and Chinese outward foreign direct investment (FDI)-based PHH in the multivariate framework of people's connectivity and technology innovation in B&RCs from 2003 to 2018. The outcome of the study reveals that the observed relationship is quantile-dependent, which may disclose misleading results in previous studies using traditional methodologies that address the averages. Utilizing the novel "Method of Moments Quantile Regression (MMQR)" of Machado and Silva (J Econom 213:145-173, 2019), the findings confirm an inverted U-shape association between economic growth and CO2 emissions only at lower to medium emission countries, thus validating the EKC hypothesis. The Chinese outward FDI flows increase carbon emissions at medium to high emission countries, thereby confirming PHH. The findings also indicate that people's connectivity contributes to increasing emissions while innovation mitigates carbon emissions at lower to medium polluted countries. Moreover, the outcomes of Granger causality confirm one-way causality between economic growth and CO2 emissions, between FDI and CO2 emissions, between people's connectivity and CO2 emissions, and between innovation and CO2 emissions. The results offer valuable insight for legislators to counteract CO2 emissions in B&RCs through innovation-led energy conservation in infrastructure projects while adopting green and sustainable financing mechanisms to materialize mega construction projects under the BRI.
    Matched MeSH terms: Technology
  13. Anbu P, Murugan K, Madhiyazhagan P, Dinesh D, Subramaniam J, Panneerselvam C, et al.
    Nat Prod Res, 2016 Sep;30(18):2077-84.
    PMID: 26679526 DOI: 10.1080/14786419.2015.1114935
    The impact of green-synthesised mosquitocidal nanoparticles on non-target aquatic predators is poorly studied. In this research, we proposed a single-step method to synthesise silver nanoparticles (Ag NP) using the seed extract of Melia azedarach. Ag NP were characterised using a variety of biophysical methods, including UV-vis spectrophotometry, scanning electron microscopy, energy-dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy. In laboratory assays on Anopheles stephensi, Ag NP showed LC50 ranging from 2.897 (I instar larvae) to 14.548 ppm (pupae). In the field, the application of Ag NP (10 × LC50) lead to complete elimination of larval populations after 72 h. The application of Ag NP in the aquatic environment did not show negative adverse effects on predatory efficiency of the mosquito natural enemy Cyclops vernalis. Overall, this study highlights the concrete possibility to employ M. azedarach-synthesised Ag NP on young instars of malaria vectors.
    Matched MeSH terms: Green Chemistry Technology/methods*
  14. Andra S, Balu SK, Jeevanandham J, Muthalagu M, Vidyavathy M, Chan YS, et al.
    Naunyn Schmiedebergs Arch Pharmacol, 2019 07;392(7):755-771.
    PMID: 31098696 DOI: 10.1007/s00210-019-01666-7
    Developments in nanotechnology field, specifically, metal oxide nanoparticles have attracted the attention of researchers due to their unique sensing, electronic, drug delivery, catalysis, optoelectronics, cosmetics, and space applications. Physicochemical methods are used to fabricate nanosized metal oxides; however, drawbacks such as high cost and toxic chemical involvement prevail. Recent researches focus on synthesizing metal oxide nanoparticles through green chemistry which helps in avoiding the involvement of toxic chemicals in the synthesis process. Bacteria, fungi, and plants are the biological sources that are utilized for the green nanoparticle synthesis. Due to drawbacks such as tedious maintenance and the time needed for the nanoparticle formation, plant extracts are widely used in nanoparticle production. In addition, plants are available all over the world and phytosynthesized nanoparticles show comparatively less toxicity towards mammalian cells. Secondary metabolites including flavonoids, terpenoids, and saponins are present in plant extracts, and these are highly responsible for nanoparticle formation and reduction of toxicity. Hence, this article gives an overview of recent developments in the phytosynthesis of metal oxide nanoparticles and their toxic analysis in various cells and animal models. Also, their possible mechanism in normal and cancer cells, pharmaceutical applications, and their efficiency in disease treatment are also discussed.
    Matched MeSH terms: Green Chemistry Technology/methods*
  15. Anis SN, Nurhezreen MI, Sudesh K, Amirul AA
    Appl Biochem Biotechnol, 2012 Jun;167(3):524-35.
    PMID: 22569781 DOI: 10.1007/s12010-012-9677-9
    A simple, efficient and economical method for the recovery of P(3HB-co-3HHx) was developed using various chemicals and parameters. The initial content of P(3HB-co-3HHx) in bacterial cells was 50-60 wt%, whereas the monomer composition of 3HHx used in this experiments was 3-5 mol%. It was found that sodium hydroxide (NaOH) was the most effective chemical for the recovery of biodegradable polymer. High polyhydroxyalkanoate purity and recovery yield both in the range of 80-90 wt% were obtained when 10-30 mg/ml of cells were incubated in NaOH at the concentration of 0.1 M for 60-180 min at 30 °C and polished using 20 % (v/v) of ethanol.
    Matched MeSH terms: Green Chemistry Technology/economics; Green Chemistry Technology/methods*
  16. Anisi MH, Abdullah AH, Razak SA, Ngadi MA
    Sensors (Basel), 2012 03 27;12(4):3964-96.
    PMID: 23443040 DOI: 10.3390/s120403964
    Recent years have witnessed a growing interest in deploying large populations of microsensors that collaborate in a distributed manner to gather and process sensory data and deliver them to a sink node through wireless communications systems. Currently, there is a lot of interest in data routing for Wireless Sensor Networks (WSNs) due to their unique challenges compared to conventional routing in wired networks. In WSNs, each data routing approach follows a specific goal (goals) according to the application. Although the general goal of every data routing approach in WSNs is to extend the network lifetime and every approach should be aware of the energy level of the nodes, data routing approaches may focus on one (or some) specific goal(s) depending on the application. Thus, existing approaches can be categorized according to their routing goals. In this paper, the main goals of data routing approaches in sensor networks are described. Then, the best known and most recent data routing approaches in WSNs are classified and studied according to their specific goals.
    Matched MeSH terms: Wireless Technology*
  17. Ansary RH, Rahman MM, Awang MB, Katas H, Hadi H, Doolaanea AA
    Drug Deliv Transl Res, 2016 06;6(3):308-18.
    PMID: 26817478 DOI: 10.1007/s13346-016-0278-y
    The purpose of this study was to fabricate insulin-loaded double-walled and single-polymer poly(lactide-co-glycolide) (PLGA) microspheres using a fast degrading glucose core, hydroxyl-terminated poly(lactide-co-glycolide) (Glu-PLGA), and a moderate degrading carboxyl-terminated PLGA polymers. A modified water-in-oil-in-oil-in-water (w/o/o/w) emulsion solvent evaporation technique was employed to prepare double-walled microspheres, whereas single-polymer microspheres were fabricated by a conventional water-in-oil-in-water (w/o/w) emulsion solvent evaporation method. The effect of fabrication techniques and polymer characteristics on microspheres size, morphology, encapsulation efficiency, in vitro release, and insulin stability was evaluated. The prepared double-walled microspheres were essentially non-porous, smooth surfaced, and spherical in shape, whereas single-polymer microspheres were highly porous. Double-walled microspheres exhibited a significantly reduced initial burst followed by sustained and almost complete release of insulin compared to single-polymer microspheres. Initial burst release was further suppressed from double-walled microspheres when the mass ratio of the component polymers was increased. In conclusion, double-walled microspheres made of Glu-PLGA and PLGA can be a potential delivery system of therapeutic insulin.
    Matched MeSH terms: Technology, Pharmaceutical/methods
  18. Anuar NK, Wui WT, Ghodgaonkar DK, Taib MN
    J Pharm Biomed Anal, 2007 Jan 17;43(2):549-57.
    PMID: 16978823
    The applicability of microwave non-destructive testing (NDT) technique in characterization of matrix property of pharmaceutical films was investigated. Hydroxypropylmethylcellulose and loratadine were selected as model matrix polymer and drug, respectively. Both blank and drug loaded hydroxypropylmethylcellulose films were prepared using the solvent-evaporation method and were conditioned at the relative humidity of 25, 50 and 75% prior to physicochemical characterization using microwave NDT technique as well as ultraviolet spectrophotometry, differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FT-IR) techniques. The results indicated that blank hydroxypropylmethylcellulose film exhibited a greater propensity of polymer-polymer interaction at the O-H and C-H domains of the polymer chains upon conditioned at a lower level of relative humidity. In the case of loratadine loaded films, a greater propensity of polymer-polymer and/or drug-polymer interaction via the O-H moiety was mediated in samples conditioned at the lower level of relative humidity, and via the C-H moiety when 50% relative humidity was selected as the condition for sample storage. Apparently, the absorption and transmission characteristics of both blank and drug loaded films for microwave varied with the state of polymer-polymer and/or drug-polymer interaction involving the O-H and C-H moieties. The measurement of microwave NDT test at 8GHz was sensitive to the chemical environment involving O-H moiety while it was greatly governed by the C-H moiety in test conducted at a higher frequency band of microwave. Similar observation was obtained with respect to the profiles of microwave NDT measurements against the state of polymer-polymer and/or drug-polymer interaction of hydroxypropylmethylcellulose films containing chlorpheniramine maleate. The microwave NDT measurement is potentially suitable for use as an apparent indicator of the state of polymer-polymer and drug-polymer interaction of the matrix.
    Matched MeSH terms: Technology, Pharmaceutical/instrumentation; Technology, Pharmaceutical/methods*
  19. Anwar A, Liew J, Othman M, Latif M
    Sains Malaysiana, 2010;39:169-174.
    Biomass burning is one of the main sources of air pollution in South East Asia, predominantly during the dry period between June and October each year. Sumatra and Kalimantan, Indonesia, have been identified as the regions connected to biomass burning due to their involvement in agricultural activities. In Sumatra, the Province of Riau has always been found to have had the highest number of hotspots during haze episodes. This study aims to determine the concentration of five major pollutants (PM10, SO2, NO2, CO and O3) in Riau, Indonesia, for 2006 and 2007. It will also correlate the level of air pollutants to the number of hotspots recorded, using the hotspot information system introduced by the Malaysian Centre for Remote Sensing (MACRES). Overall, the concentration of air pollutants recorded was found to increase with the number of hotspots. Nevertheless, only the concentration of PM10 during a haze episode is significantly different when compared to its concentration in non-haze conditions. In fact, in August 2006, when the highest number of hotspots was recorded the concentration of PM10 was found to increase by more than 20% from its normal concentration. The dispersion pattern, as simulated by the Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT), showed that the distribution of PM10 was greatly influenced by the wind direction. Furthermore, the particles had the capacity to reach the Peninsular Malaysia within 42 hours of emission from the point sources as a consequence of the South West monsoon.
    Matched MeSH terms: Remote Sensing Technology
  20. Anwar A, Masri A, Rao K, Rajendran K, Khan NA, Shah MR, et al.
    Sci Rep, 2019 02 28;9(1):3122.
    PMID: 30816269 DOI: 10.1038/s41598-019-39528-0
    Herein, we report green synthesized nanoparticles based on stabilization by plant gums, loaded with citrus fruits flavonoids Hesperidin (HDN) and Naringin (NRG) as novel antimicrobial agents against brain-eating amoebae and multi-drug resistant bacteria. Nanoparticles were thoroughly characterized by using zetasizer, zeta potential, atomic force microscopy, ultravoilet-visible and Fourier transform-infrared spectroscopic techniques. The size of these spherical nanoparticles was found to be in the range of 100-225 nm. The antiamoebic effects of these green synthesized Silver and Gold nanoparticles loaded with HDN and NRG were tested against Acanthamoeba castellanii and Naegleria fowleri, while antibacterial effects were evaluated against methicillin-resistant Staphylococcus aureus (MRSA) and neuropathogenic Escherichia coli K1. Amoebicidal assays revealed that HDN loaded Silver nanoparticles stabilized by gum acacia (GA-AgNPs-HDN) quantitatively abolished amoeba viability by 100%, while NRG loaded Gold nanoparticles stabilized by gum tragacanth (GT-AuNPs-NRG) significantly reduced the viability of A. castellanii and N. fowleri at 50 µg per mL. Furthermore, these nanoparticles inhibited the encystation and excystation by more than 85%, as well as GA-AgNPs-HDN only completely obliterated amoeba-mediated host cells cytopathogenicity. Whereas, GA-AgNPs-HDN exhibited significant bactericidal effects against MRSA and E. coli K1 and reduced bacterial-mediated host cells cytotoxicity. Notably, when tested against human cells, these nanoparticles showed minimal (23%) cytotoxicity at even higher concentration of 100 µg per mL as compared to 50 µg per mL used for antimicrobial assays. Hence, these novel nanoparticles formulations hold potential as therapeutic agents against infections caused by brain-eating amoebae, as well as multi-drug resistant bacteria, and recommend a step forward in drug development.
    Matched MeSH terms: Green Chemistry Technology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links