Displaying publications 1041 - 1060 of 1534 in total

Abstract:
Sort:
  1. Tham CL, Liew CY, Lam KW, Mohamad AS, Kim MK, Cheah YK, et al.
    Eur J Pharmacol, 2010 Feb 25;628(1-3):247-54.
    PMID: 19958764 DOI: 10.1016/j.ejphar.2009.11.053
    Curcumin is a highly pleiotropic molecule with significant regulatory effects upon inflammation and inflammatory related diseases. However curcumin has one major important limitation in which it has poor bioavailability. Design of synthetic structural derivatives of curcumin is but one approach that has been used to overcome its poor bioavailability while retaining, or further enhancing, its drug-like effects. We have synthesized a series of curcumin analogues and describe the effects of 2,6-bis-4-(hydroxyl-3-methoxy-benzylidine)-cyclohexanone or BHMC upon nitric oxide and cytokine synthesis in cellular models of inflammation. BHMC showed a significant dose-response inhibitory action upon the synthesis of NO and we have shown that this effect was due to suppression of both iNOS gene and enzyme expression without any effects upon scavenging of nitrite. We also demonstrated that BHMC has a very minimal effect upon iNOS activity with no effect at all upon the secretion of PGE(2) but has a strong inhibitory effect upon MCP-1 and IL-10 secretion and gene expression. Secretion and gene expression of TNF-alpha and IL-6 were moderately inhibited whereas IL-8 and IL-1beta were not altered. We conclude that BHMC selectively inhibits the synthesis of several inflammatory mediators. BHMC should be considered a promising drug lead for preclinical and further pharmacological studies.
    Matched MeSH terms: Cell Survival/drug effects
  2. Handayani T, Sakinah S, Nallappan M, Pihie AH
    Anticancer Res, 2007 Mar-Apr;27(2):965-71.
    PMID: 17465228
    Xanthorrhizol is a sesquiterpenoid compound extracted from the rhizome of Curcuma xanthorrhiza. This study investigated the antiproliferative effect and the mechanism of action of xanthorrhizol on human hepatoma cells, HepG2, and the mode of cell death. An antiproliferative assay using methylene blue staining revealed that xanthorrhizol inhibited the proliferation of the HepG2 cells with a 50% inhibition of cell growth (IC50) value of 4.17 +/- 0.053 microg/ml. The antiproliferative activity of xanthorrhizol was due to apoptosis induced in the HepG2 cells and not necrosis, which was confirmed by the Tdt-mediated dUTP nick end labeling (TUNEL) assay. The xanthorrhizol-treated HepG2 cells showed typical apoptotic morphology such as DNA fragmentation, cell shrinkage and elongated lamellipodia. The apoptosis mediated by xanthorrhizol in the HepG2 cells was associated with the activation of tumor suppressor p53 and down-regulation of antiapoptotic Bcl-2 protein expression, but not Bax. The levels of Bcl-2 protein expression decreased 24-h after treatment with xanthorrhizol and remained lower than controls throughout the experiment, resulting in a shift in the Bax to Bcl-2 ratio thus favouring apoptosis. The processing of the initiator procaspase-9 was detected. Caspase-3 was also found to be activated, but not caspase-7. Xanthorrhizol exerts antiproliferative effects on HepG2 cells by inducing apoptosis via the mitochondrial pathway.
    Matched MeSH terms: Cell Survival/drug effects
  3. Ahmad S, Israf DA, Lajis NH, Shaari K, Mohamed H, Wahab AA, et al.
    Eur J Pharmacol, 2006 May 24;538(1-3):188-94.
    PMID: 16650843
    Some chalcones, such as hydroxychalcones have been reported previously to inhibit major pro-inflammatory mediators such as nitric oxide (NO), prostaglandin E(2) (PGE(2)), tumor necrosis factor-alpha (TNF-alpha) and reactive oxygen species production by suppressing inducible enzyme expression via inhibition of the mitogen-activated protein kinase (MAPK) pathway and nuclear translocation of critical transcription factors. In this report, the effects of cardamonin (2',4'-dihydroxy-6'-methoxychalcone), a chalcone that we have previously isolated from Alpinia rafflesiana, was evaluated upon two cellular systems that are repeatedly used in the analysis of anti-inflammatory bioactive compounds namely RAW 264.7 cells and whole blood. Cardamonin inhibited NO and PGE(2) production from lipopolysaccharide- and interferon-gamma-induced RAW cells and whole blood with IC(50) values of 11.4 microM and 26.8 microM, respectively. Analysis of thromboxane B(2) (TxB(2)) secretion from whole blood either stimulated via the COX-1 or COX-2 pathway revealed that cardamonin inhibits the generation of TxB(2) via both pathways with IC(50) values of 2.9 and 1.1 microM, respectively. Analysis of IC(50) ratios determined that cardamonin was more COX-2 selective in its inhibition of TxB(2) with a ratio of 0.39. Cardamonin also inhibited the generation of intracellular reactive oxygen species and secretion of TNF-alpha from RAW 264.7 cells in a dose responsive manner with IC(50) values of 12.8 microM and 4.6 microM, respectively. However, cardamonin was a moderate inhibitor of lipoxygenase activity when tested in an enzymatic assay system, in which not a single concentration tested was able to cause an inhibition of more than 50%. Our results suggest that cardamonin acts upon major pro-inflammatory mediators in a similar fashion as described by previous work on other closely related synthetic hydroxychalcones and strengthens the conclusion of the importance of the methoxyl moiety substitution on the 4' or 6' locations of the A benzene ring.
    Matched MeSH terms: Cell Survival/drug effects
  4. Utami R, Khalid N, Sukari MA, Rahmani M, Abdul AB, Dachriyanus
    Pak J Pharm Sci, 2013 Mar;26(2):245-50.
    PMID: 23455191
    Elaeocarpus floribundus is higher plant that has been used as traditional medicine for treating several diseases. There is no previous report on phytochemicals and bioactivity studies of this species. In this investigation, triterpenoids friedelin, epifriedelanol and β-sitosterol were isolated from its leaves and stem bark. Determination of total phenolic content of methanolic extract of leaves and stem bark was carried out using Folin-Ciocalteu reagent. All extracts and isolated compounds were subjected to screening of antioxidant activity using DPPH free radical scavenging method and cytotoxic activities by MTT assay towards human T4 lymphoblastoid (CEM-SS) and human cervical (HeLa) cancer cells. In the total phenolic content determination, methanolic extract of leaves gave higher value of 503.08±16.71 mg GAE/g DW than stem bark with value of 161.5±24.81 mg GAE/g DW. Polar extracts of leaves and stem bark possessed promising antioxidant activity with methanol extract of stem bark exhibited strongest activity with IC50 value of 7.36±0.01 μg/ml. In the cytotoxic activity assay, only chloroform extract of leaves showed significant activity with IC50 value of 25.6±0.06 μg/ml against CEM-SS cancer cell, while friedelin and epifriedelanol were found to be active against the two cancer cells with IC50 values ranging from 3.54 to 11.45 μg/ml.
    Matched MeSH terms: Cell Survival/drug effects
  5. Mustahil NA, Sukari MA, Abdul AB, Ali NA, Lian GE
    Pak J Pharm Sci, 2013 Mar;26(2):391-5.
    PMID: 23455212
    Phytochemicals investigation on rhizomes of Alpinia mutica has afforded five compounds namely 5,6-dehydrokawain (1), flavokawin B (2), pinostrobin (3) and pinocembrin (4) together with β-sitosterol (5). All crude extracts of the plant demonstrated strong cytotoxicity against CEMss (human T4 lymphoblastoid) cancer cells with IC50 values less than 19 μg/mL, while flavokawin B (2) was the most cytotoxic isolate with IC50 value 1.86±0.37 μg/mL. Most of the crude extracts and isolated compounds showed weak activity in antimicrobial and diphenylpicrylhydrazyl (DPPH) radical scavenging activity tests.
    Matched MeSH terms: Cell Survival/drug effects
  6. Stone EL, Citossi F, Singh R, Kaur B, Gaskell M, Farmer PB, et al.
    Bioorg Med Chem, 2015 Nov 01;23(21):6891-9.
    PMID: 26474663 DOI: 10.1016/j.bmc.2015.09.052
    Potent, selective antitumour AhR ligands 5F 203 and GW 610 are bioactivated by CYPs 1A1 and 2W1. Herein we reason that DNA adducts' generation resulting in lethal DNA double strand breaks (DSBs) underlies benzothiazoles' activity. Treatment of sensitive carcinoma cell lines with GW 610 generated co-eluting DNA adducts (R(2)>0.7). Time-dependent appearance of γ-H2AX foci revealed subsequent DNA double strand breaks. Propensity for systemic toxicity of benzothiazoles steered development of prodrugs' hydrogels for localised delivery. Clinical applications of targeted therapies include prevention or treatment of recurrent disease after surgical resection of solid tumours. In vitro evaluation of 5F 203 prodrugs' activity demonstrated nanomolar potency against MCF-7 breast and IGROV-1 ovarian carcinoma cell lines.
    Matched MeSH terms: Cell Survival/drug effects
  7. Rothan HA, Ambikabothy J, Abdulrahman AY, Bahrani H, Golpich M, Amini E, et al.
    PLoS One, 2015;10(9):e0139248.
    PMID: 26418816 DOI: 10.1371/journal.pone.0139248
    The production of short anticancer peptides in recombinant form is an alternative method for costly chemical manufacturing. However, the limitations of host toxicity, bioactivity and column purification have impaired production in mass quantities. In this study, short cationic peptides were produced in aggregated inclusion bodies by double fusion with a central protein that has anti-cancer activity. The anticancer peptides Tachiplicin I (TACH) and Latarcin 1 (LATA) were fused with the N- and C-terminus of the MAP30 protein, respectively. We successfully produced the recombinant TACH-MAP30-LATA protein and MAP30 alone in E. coli that represented 59% and 68% of the inclusion bodies. The purified form of the inclusion bodies was prepared by eliminating host cell proteins through multiple washing steps and semi-solubilization in alkaline buffer. The purified active protein was recovered by inclusive solubilization at pH 12.5 in the presence of 2 M urea and refolded in alkaline buffer containing oxides and reduced glutathione. The peptide-fusion protein showed lower CC50 values against cancer cells (HepG2, 0.35±0.1 μM and MCF-7, 0.58±0.1 μM) compared with normal cells (WRL68, 1.83±0.2 μM and ARPE19, 2.5±0.1 μM) with outstanding activity compared with its individual components. The presence of the short peptides facilitated the entry of the peptide fusion protein into cancer cells (1.8 to 2.2-fold) compared with MAP30 alone through direct interaction with the cell membrane. The cancer chemotherapy agent doxorubicin showed higher efficiency and selectivity against cancer cells in combination with the peptide- fusion protein. This study provides new data on the mass production of short anticancer peptides as inclusion bodies in E. coli by fusion with a central protein that has similar activity. The product was biologically active against cancer cells compared with normal cells and enhanced the activity and selective delivery of an anticancer chemotherapy agent.
    Matched MeSH terms: Cell Survival/drug effects
  8. Phan CW, Sabaratnam V, Bovicelli P, Righi G, Saso L
    Biofactors, 2016 Nov 12;42(6):591-599.
    PMID: 27193378 DOI: 10.1002/biof.1296
    Negletein has been shown to have therapeutic potential for inflammation-associated diseases, but its effect on neurite outgrowth is still unknown. The present study showed that negletein alone did not trigger PC12 cells to differentiate and extend neurites. When compared with the cells in the untreated control, a significant (P 
    Matched MeSH terms: Cell Survival/drug effects
  9. Nairismägi ML, Tan J, Lim JQ, Nagarajan S, Ng CC, Rajasegaran V, et al.
    Leukemia, 2016 06;30(6):1311-9.
    PMID: 26854024 DOI: 10.1038/leu.2016.13
    Epitheliotropic intestinal T-cell lymphoma (EITL, also known as type II enteropathy-associated T-cell lymphoma) is an aggressive intestinal disease with poor prognosis and its molecular alterations have not been comprehensively characterized. We aimed to identify actionable easy-to-screen alterations that would allow better diagnostics and/or treatment of this deadly disease. By performing whole-exome sequencing of four EITL tumor-normal pairs, followed by amplicon deep sequencing of 42 tumor samples, frequent alterations of the JAK-STAT and G-protein-coupled receptor (GPCR) signaling pathways were discovered in a large portion of samples. Specifically, STAT5B was mutated in a remarkable 63% of cases, JAK3 in 35% and GNAI2 in 24%, with the majority occurring at known activating hotspots in key functional domains. Moreover, STAT5B locus carried copy-neutral loss of heterozygosity resulting in the duplication of the mutant copy, suggesting the importance of mutant STAT5B dosage for the development of EITL. Dysregulation of the JAK-STAT and GPCR pathways was also supported by gene expression profiling and further verified in patient tumor samples. In vitro overexpression of GNAI2 mutants led to the upregulation of pERK1/2, a member of MEK-ERK pathway. Notably, inhibitors of both JAK-STAT and MEK-ERK pathways effectively reduced viability of patient-derived primary EITL cells, indicating potential therapeutic strategies for this neoplasm with no effective treatment currently available.
    Matched MeSH terms: Cell Survival/drug effects
  10. Kim SJ, Yoon DH, Jaccard A, Chng WJ, Lim ST, Hong H, et al.
    Lancet Oncol, 2016 Mar;17(3):389-400.
    PMID: 26873565 DOI: 10.1016/S1470-2045(15)00533-1
    BACKGROUND: The clinical outcome of extranodal natural killer T-cell lymphoma (ENKTL) has improved substantially as a result of new treatment strategies with non-anthracycline-based chemotherapies and upfront use of concurrent chemoradiotherapy or radiotherapy. A new prognostic model based on the outcomes obtained with these contemporary treatments was warranted.

    METHODS: We did a retrospective study of patients with newly diagnosed ENKTL without any previous treatment history for the disease who were given non-anthracycline-based chemotherapies with or without upfront concurrent chemoradiotherapy or radiotherapy with curative intent. A prognostic model to predict overall survival and progression-free survival on the basis of pretreatment clinical and laboratory characteristics was developed by filling a multivariable model on the basis of the dataset with complete data for the selected risk factors for an unbiased prediction model. The final model was applied to the patients who had complete data for the selected risk factors. We did a validation analysis of the prognostic model in an independent cohort.

    FINDINGS: We did multivariate analyses of 527 patients who were included from 38 hospitals in 11 countries in the training cohort. Analyses showed that age greater than 60 years, stage III or IV disease, distant lymph-node involvement, and non-nasal type disease were significantly associated with overall survival and progression-free survival. We used these data as the basis for the prognostic index of natural killer lymphoma (PINK), in which patients are stratified into low-risk (no risk factors), intermediate-risk (one risk factor), or high-risk (two or more risk factors) groups, which were associated with 3-year overall survival of 81% (95% CI 75-86), 62% (55-70), and 25% (20-34), respectively. In the 328 patients with data for Epstein-Barr virus DNA, a detectable viral DNA titre was an independent prognostic factor for overall survival. When these data were added to PINK as the basis for another prognostic index (PINK-E)-which had similar low-risk (zero or one risk factor), intermediate-risk (two risk factors), and high-risk (three or more risk factors) categories-significant associations with overall survival were noted (81% [95% CI 75-87%], 55% (44-66), and 28% (18-40%), respectively). These results were validated and confirmed in an independent cohort, although the PINK-E model was only significantly associated with the high-risk group compared with the low-risk group.

    INTERPRETATION: PINK and PINK-E are new prognostic models that can be used to develop risk-adapted treatment approaches for patients with ENKTL being treated in the contemporary era of non-anthracycline-based therapy.

    FUNDING: Samsung Biomedical Research Institute.

    Matched MeSH terms: Survival Analysis; Disease-Free Survival
  11. Phang CW, Karsani SA, Sethi G, Abd Malek SN
    PLoS One, 2016;11(2):e0148775.
    PMID: 26859847 DOI: 10.1371/journal.pone.0148775
    Flavokawain C (FKC) is a naturally occurring chalcone which can be found in Kava (Piper methysticum Forst) root. The present study evaluated the effect of FKC on the growth of various human cancer cell lines and the underlying associated mechanisms. FKC showed higher cytotoxic activity against HCT 116 cells in a time- and dose-dependent manner in comparison to other cell lines (MCF-7, HT-29, A549 and CaSki), with minimal toxicity on normal human colon cells. The apoptosis-inducing capability of FKC on HCT 116 cells was evidenced by cell shrinkage, chromatin condensation, DNA fragmentation and increased phosphatidylserine externalization. FKC was found to disrupt mitochondrial membrane potential, resulting in the release of Smac/DIABLO, AIF and cytochrome c into the cytoplasm. Our results also revealed that FKC induced intrinsic and extrinsic apoptosis via upregulation of the levels of pro-apoptotic proteins (Bak) and death receptors (DR5), while downregulation of the levels of anti-apoptotic proteins (XIAP, cIAP-1, c-FlipL, Bcl-xL and survivin), resulting in the activation of caspase-3, -8 and -9 and cleavage of poly(ADP-ribose) polymerase (PARP). FKC was also found to cause endoplasmic reticulum (ER) stress, as suggested by the elevation of GADD153 protein after FKC treatment. After the cells were exposed to FKC (60μM) over 18hrs, there was a substantial increase in the phosphorylation of ERK 1/2. The expression of phosphorylated Akt was also reduced. FKC also caused cell cycle arrest in the S phase in HCT 116 cells in a time- and dose-dependent manner and with accumulation of cells in the sub-G1 phase. This was accompanied by the downregulation of cyclin-dependent kinases (CDK2 and CDK4), consistent with the upregulation of CDK inhibitors (p21Cip1 and p27Kip1), and hypophosphorylation of Rb.
    Matched MeSH terms: Cell Survival/drug effects
  12. Rati Selvaraju T, Khaza'ai H, Vidyadaran S, Sokhini Abd Mutalib M, Ramachandran V, Hamdan Y
    Int J Vitam Nutr Res, 2014;84(3-4):140-51.
    PMID: 26098478 DOI: 10.1024/0300-9831/a000201
    Glutamate is the major mediator of excitatory signals in the mammalian central nervous system. Extreme amounts of glutamate in the extracellular spaces can lead to numerous neurodegenerative diseases. We aimed to clarify the potential of the following vitamin E isomers, tocotrienol-rich fraction (TRF) and α-tocopherol (α-TCP), as potent neuroprotective agents against glutamate-induced injury in neuronal SK-N-SH cells. Cells were treated before and after glutamate injury (pre- and post-treatment, respectively) with 100-300 ng/ml TRF/α-TCP. Exposure to 120 mM glutamate significantly reduced cell viability to 76% and 79% in the pre- and post-treatment studies, respectively; however, pre- and post-treatment with TRF/α-TCP attenuated the cytotoxic effect of glutamate. Compared to the positive control (glutamate-injured cells not treated with TRF/α-TCP), pre-treatment with 100, 200, and 300 ng/ml TRF significantly improved cell viability following glutamate injury to 95.2%, 95.0%, and 95.6%, respectively (p<0.05).The isomers not only conferred neuroprotection by enhancing mitochondrial activity and depleting free radical production, but also increased cell viability and recovery upon glutamate insult. Our results suggest that vitamin E has potent antioxidant potential for protecting against glutamate injury and recovering glutamate-injured neuronal cells. Our findings also indicate that both TRF and α-TCP could play key roles as anti-apoptotic agents with neuroprotective properties.
    Matched MeSH terms: Cell Survival/drug effects
  13. Kadir NH, David R, Rossiter JT, Gooderham NJ
    Toxicology, 2015 Aug 6;334:59-71.
    PMID: 26066520 DOI: 10.1016/j.tox.2015.06.002
    Cruciferous vegetable consumption correlates with reduced risk of cancer. This chemopreventative activity may involve glucosinolates and their hydrolysis products. Glucosinolate-derived isothiocyanates have been studied for their toxicity and chemopreventative properties, but other hydrolysis products (epithionitriles and nitriles) have not been thoroughly examined. We report that these hydrolysis products differ in their cytotoxicity to human cells, with toxicity most strongly associated with isothiocyanates rather than epithionitriles and nitriles. We explored mechanisms of this differential cytotoxicity by examining the role of oxidative metabolism, oxidative stress, mitochondrial permeability, reduced glutathione levels, cell cycle arrest and apoptosis. 2-Propenylisothiocyanate and 3-butenylisothiocyanate both inhibited cytochome P450 1A (CYP1A) enzyme activity in CYP expressing MCL-5 cells at high cytotoxic doses. Incubation of MCL-5 cells with non-cytotoxic doses of 2-propenylisothiocyanate for 24h resulted in a dose-dependent inhibition of ethoxyresorufin O-deethylase, yet failed to affect CYP1A1 mRNA expression indicating interference with enzyme activity rather than inhibition of transcription. Increased reactive oxygen species (ROS) production was observed only for 2-propenylisothiocyanate treatment. 2-Propenylisothiocyanate treatment lowered reduced glutathione levels whereas no changes were noted with 3,4-epithiobutylnitrile. Cell cycle analysis showed that 2-propenylisothiocyanate induced a G2/M block whereas other hydrolysis products showed only marginal effects. We found that 2-propenylisothiocyanate and 3-butenylisothiocyanate induced cell death predominantly via necrosis whereas, 3,4-epithiobutylnitrile promoted both necrosis and apoptosis. Thus the activity of glucosinolate hydrolysis products includes cytotoxicity that is compound-class specific and may contribute to their putative chemoprotection properties.
    Matched MeSH terms: Cell Survival/drug effects
  14. Harun A, Vidyadaran S, Lim SM, Cole AL, Ramasamy K
    PMID: 26047814 DOI: 10.1186/s12906-015-0685-5
    Excessive production of inflammatory mediators such as nitric oxide (NO) and proinflammatory cytokines like tumour necrosis factor-alpha (TNF-α) from activated microglia contributes to uncontrolled inflammation in neurodegenerative diseases. This study investigated the protective role of five endophytic extracts (HAB16R12, HAB16R13, HAB16R14, HAB16R18 and HAB8R24) against LPS-induced inflammatory events in vitro. These endophytic extracts were previously found to exhibit potent neuroprotective effect against LPS-challenged microglial cells.
    Matched MeSH terms: Cell Survival/drug effects
  15. Wu YL, Zhou C, Liam CK, Wu G, Liu X, Zhong Z, et al.
    Ann Oncol, 2015 Sep;26(9):1883-1889.
    PMID: 26105600 DOI: 10.1093/annonc/mdv270
    BACKGROUND: The phase III, randomized, open-label ENSURE study (NCT01342965) evaluated first-line erlotinib versus gemcitabine/cisplatin (GP) in patients from China, Malaysia and the Philippines with epidermal growth factor receptor (EGFR) mutation-positive non-small-cell lung cancer (NSCLC).

    PATIENTS AND METHODS: Patients ≥18 years old with histologically/cytologically confirmed stage IIIB/IV EGFR mutation-positive NSCLC and Eastern Cooperative Oncology Group performance status 0-2 were randomized 1:1 to receive erlotinib (oral; 150 mg once daily until progression/unacceptable toxicity) or GP [G 1250 mg/m(2) i.v. days 1 and 8 (3-weekly cycle); P 75 mg/m(2) i.v. day 1, (3-weekly cycle) for up to four cycles]. Primary end point: investigator-assessed progression-free survival (PFS). Other end points include objective response rate (ORR), overall survival (OS), and safety.

    RESULTS: A total of 217 patients were randomized: 110 to erlotinib and 107 to GP. Investigator-assessed median PFS was 11.0 months versus 5.5 months, erlotinib versus GP, respectively [hazard ratio (HR), 0.34, 95% confidence interval (CI) 0.22-0.51; log-rank P < 0.0001]. Independent Review Committee-assessed median PFS was consistent (HR, 0.42). Median OS was 26.3 versus 25.5 months, erlotinib versus GP, respectively (HR, 0.91, 95% CI 0.63-1.31; log-rank P = .607). ORR was 62.7% for erlotinib and 33.6% for GP. Treatment-related serious adverse events (AEs) occurred in 2.7% versus 10.6% of erlotinib and GP patients, respectively. The most common grade ≥3 AEs were rash (6.4%) with erlotinib, and neutropenia (25.0%), leukopenia (14.4%), and anemia (12.5%) with GP.

    CONCLUSION: These analyses demonstrate that first-line erlotinib provides a statistically significant improvement in PFS versus GP in Asian patients with EGFR mutation-positive NSCLC (NCT01342965).

    Matched MeSH terms: Survival Analysis; Disease-Free Survival
  16. Katouah H, Chen A, Othman I, Gieseg SP
    Int J Biochem Cell Biol, 2015 Oct;67:34-42.
    PMID: 26255116 DOI: 10.1016/j.biocel.2015.08.001
    Oxidised low density lipoprotein (oxLDL) is thought to be a significant contributor to the death of macrophage cells observed in advanced atherosclerotic plaques. Using human-derived U937 cells we have examined the effect of cytotoxic oxLDL on oxidative stress and cellular catabolism. Within 3h of the addition of oxLDL, there was a rapid, concentration dependent rise in cellular reactive oxygen species followed by the loss of cellular GSH, and the enzyme activity of both glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and aconitase. The loss of these catabolic enzymes was accompanied by the loss of cellular ATP and lower lactate generation. Addition of the macrophage antioxidant 7,8-dihydroneopterin inhibited the ROS generation, glutathione loss and catabolic inactivation. NOX was shown to be activated by oxLDL addition while apocynin inhibited the loss of GSH and cell viability. The data suggests that oxLDL triggers an excess of ROS production through NOX activation, and catabolic failure through thiol oxidation resulting in cell death.
    Matched MeSH terms: Cell Survival/drug effects
  17. Zahedifard M, Faraj FL, Paydar M, Yeng Looi C, Hajrezaei M, Hasanpourghadi M, et al.
    Sci Rep, 2015 Jun 25;5:11544.
    PMID: 26108872 DOI: 10.1038/srep11544
    The current study investigated the cytotoxic effect of 3-(5-chloro-2-hydroxybenzylideneamino)-2-(5-chloro-2-hydroxyphenyl)-2,3-dihydroquinazolin-41(H)-one (A) and 3-(5-nitro-2-hydroxybenzylideneamino)-2-(5-nitro-2-hydroxyphenyl)-2,3-dihydroquinazolin-4(1H)-one (B) on MCF-7, MDA-MB-231, MCF-10A and WRL-68 cells. The mechanism involved in apoptosis was assessed to evaluate the possible pathways induced by compound A and B. MTT assay results using A and B showed significant inhibition of MCF-7 cell viability, with IC50 values of 3. 27 ± 0.171 and 4.36 ± 0.219 μg/mL, respectively, after a 72 hour treatment period. Compound A and B did not demonstrate significant cytotoxic effects towards MDA-MB-231, WRL-68 and MCF-10A cells. Acute toxicity tests also revealed an absence of toxic effects on mice. Fluorescent microscopic studies confirmed distinct morphological changes (membrane blebbing and chromosome condensation) corresponding to typical apoptotic features in treated MCF-7 cells. Using Cellomics High Content Screening (HCS), we found that compound A and B could trigger the release of cytochrome c from mitochondria to the cytosol. The release of cytochrome c activated the expression of caspases-9 and then stimulated downstream executioner caspase-3/7. In addition, caspase-8 showed remarkable activity, followed by inhibition of NF-κB activation in A-and B-treated MCF-7 cells. The results indicated that A and B could induce apoptosis via a mechanism that involves either extrinsic or intrinsic pathways.
    Matched MeSH terms: Cell Survival/drug effects
  18. Chan CK, Supriady H, Goh BH, Kadir HA
    J Ethnopharmacol, 2015 Jun 20;168:291-304.
    PMID: 25861953 DOI: 10.1016/j.jep.2015.03.072
    Elephantopus scaber also known as Elephant's foot (Asteraceae family) has a plethora of traditional applications including dysuria, diarrhea, dysentery, leukemia and cancer. This study aimed to investigate the apoptosis inducing effects of E. scaber and the underlying mechanisms in HCT116 colorectal cell line.
    Matched MeSH terms: Cell Survival/drug effects
  19. Lam KL, Yang KL, Sunderasan E, Ong MT
    Cell Prolif, 2012 Dec;45(6):577-85.
    PMID: 23046445 DOI: 10.1111/j.1365-2184.2012.00841.x
    OBJECTIVES: Latex from Hevea brasiliensis (natural rubber tree primarily cultivated for its rubber particles) has no known primary metabolic function, although its biological role is as a plant defence system. The present study has evaluated specific anti-proliferative effects of latex whole C-serum and its subfractions, on human cancer cell lines.

    MATERIALS AND METHODS: Cell viability assay using MTT, DNA fragmentation assay and real-time PCR were used to evaluate the cytotoxic effects of latex whole C-serum and its subfractions on the cell lines.

    RESULTS: MTT assay revealed very low LC(50) values, 2.0 and 280 ng/ml, for DCS and DCP treatments, respectively. DCS was proven to be more potent compared to DCP, in conferring specific anti-proliferative effects on the cancer cell lines. The study also indicated that anti-proliferative activity of pre-heated C-serum fractions diminished significantly.

    CONCLUSION: Although noteworthy cell death was reported, DNA fragmentation assay and real-time PCR confirmed that that induced by latex C-serum subfractions was not promoted via the classical apoptotic signalling pathway.

    Matched MeSH terms: Cell Survival/drug effects
  20. Haque N, Kasim NHA, Kassim NLA, Rahman MT
    Cell Prolif, 2017 Aug;50(4).
    PMID: 28682474 DOI: 10.1111/cpr.12354
    OBJECTIVES: Foetal bovine serum (FBS) is often the serum supplement of choice for in vitro human cell culture. This study compares the effect of FBS and autologous human serum (AuHS) supplement in human peripheral blood mononuclear cell (PBMC) culture to prepare secretome.

    MATERIALS AND METHODS: The PBMC (n = 7) were cultured either in RPMI-1640 containing L-glutamine and 50 units/ml Penicillin-Streptomycin (BM) or in BM with either AuHS or FBS. Viability, proliferation and differentiation of PBMC were evaluated. Paracrine factors present in the secretomes (n = 6) were analysed using ProcartaPlex Human Cytokine panel (17 plex). Ingenuity Pathway Analysis (IPA) was performed to predict activation or inhibition of biological functions related to tissue regeneration.

    RESULTS: The viability of PBMC that were cultured with FBS supplement was significantly reduced at 96 h compared to those at 0 and 24 h (P 

    Matched MeSH terms: Cell Survival/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links