Displaying publications 1101 - 1120 of 3311 in total

Abstract:
Sort:
  1. Wee AS, Lim CK, Tan SL, Ahmad TS, Kamarul T
    Tissue Eng Part C Methods, 2022 10;28(10):501-510.
    PMID: 36082992 DOI: 10.1089/ten.TEC.2022.0112
    Transforming growth factor-beta 1 (TGF-β1) has been reported to promote chondrogenic differentiation and proliferation in the multipotent stromal cell (MSCs), and the transforming growth factor-beta 3 (TGF-β3) tends to be exclusively in promoting cell differentiation alone. The objective of this study was to determine the effect of TGF-β1 and -β3 on the MSCs chondrogenic differentiation on the poly (vinyl alcohol)-chitosan-poly (ethylene glycol) (PVA-NOCC-PEG) scaffold, compared with that of monolayer and pellet cultures. In this study, P2 rabbit bone marrow-derived MSCs were seeded either on the untreated six-well plate (for monolayer culture) or onto the PVA-NOCC-PEG scaffold or cultured as a pellet culture. The cultures were maintained in a chemically defined serum-free medium supplemented with 10 ng/mL of either TGF-β1 or TGF-β3. Cell viability assay, biochemical assay, and real-time polymerase chain reaction were performed to determine the net effect of cell proliferation and chondrogenic differentiation of each of the growth factors. The results showed that the PVA-NOCC-PEG scaffold enhanced MSCs cell proliferation from day 12 to 30 (p  0.05). In terms of chondrogenic differentiation, the PVA-NOCC-PEG scaffold augmented the GAGs secretion in MSCs and the mRNA expression levels of Sox9, Col2a1, Acan, and Comp were elevated (p  0.05). In conclusion, TGF-β1 and TGF-β3 enhanced the chondrogenic differentiation of MSCs seeded on the PVA-NOCC-PEG scaffold; however, there was no significant difference between the effect of TGF-β1 and TGF-β3. Impact statement Transforming growth factor-beta (TGF-β) superfamily members is a key requirement for the in vitro chondrogenic differentiation of mesenchymal stem cells (MSCs). In this study, the effects of TGF-β1 and -β3 on MSC chondrogenic differentiation and proliferation on a novel three-dimensional scaffold, the poly(vinyl alcohol)-chitosan-poly(ethylene glycol) (PVA-NOCC-PEG) scaffold, was evaluated. In this study, the results showed both TGF-β1 and TGF-β3 can enhance the chondrogenic differentiation of MSCs seeded on the PVA-NOCC-PEG scaffold.
    Matched MeSH terms: Cells, Cultured; Mesenchymal Stromal Cells*
  2. Yousefi S, Bayat S, Rahman MB, Ibrahim Z, Abdulmalek E
    Chem Biodivers, 2017 Apr;14(4).
    PMID: 28036129 DOI: 10.1002/cbdv.201600362
    Inflammatory bowel disease (IBD) is the main risk factor for developing colorectal cancer which is common in patients of all ages. 5-Aminosalicylic acid (5-ASA), structurally related to the salicylates, is highly active in the treatment of IBD with minor side effects. In this study, the synthesis of galactose and fructose esters of 5-ASA was planned to evaluate the role of glycoconjugation on the bioactivity of the parent drug. The antibacterial activity of the new compounds were evaluated against two Gram-negative and two Gram-positive species of bacteria, with a notable effect observed against Staphylococcus aureus and Escherichia coli in comparisons with the 5-ASA. Cytotoxicity testing over HT-29 and 3T3 cell lines indicated that the toxicity of the new products against normal cells was significantly reduced compared with the original drug, whereas their activity against cancerous cells was slightly decreased. The anti-inflammatory activity test in RAW264.7 macrophage cells indicated that the inhibition of nitric oxide by both of the monosaccharide conjugated derivatives was slightly improved in comparison with the non-conjugated drug.
    Matched MeSH terms: RAW 264.7 Cells; 3T3 Cells; HT29 Cells
  3. Nor Arfuzir NN, Agarwal R, Iezhitsa I, Agarwal P, Sidek S, Spasov A, et al.
    Curr Eye Res, 2018 08;43(8):1032-1040.
    PMID: 29676937 DOI: 10.1080/02713683.2018.1467933
    PURPOSE: Retinal ganglion cell apoptosis in glaucoma is associated with elevated levels of endothelin-1 (ET1), a potent vasoconstrictor. ET1-induced retinal ischemia leads to altered expression of nitric oxide synthase (NOS) isoforms leading to increased formation of nitric oxide (NO) and retinal nitrosative stress. Since magnesium (Mg) is known to improve endothelial functions and reduce oxidative stress and taurine (TAU) possesses potent antioxidant properties, we investigated the protective effects of magnesium acetyltaurate (MgAT) against ET1-induced nitrosative stress and retinal damage in rats. We also compared the effects of MgAT with that of TAU alone.

    METHODS: Sprague Dawley rats were intravitreally injected with ET1. MgAT and TAU were administered as pre-, co-, or posttreatment. Subsequently, the expression of NOS isoforms was detected in retina by immunohistochemistry, retinal nitrotyrosine level was estimated using ELISA, and retinal cell apoptosis was detected by TUNEL staining.

    RESULTS: Intravitreal ET1 caused a significant increase in the expressions of nNOS and iNOS while eNOS expression was significantly reduced compared to vehicle treated group. Administration of both MgAT and TAU restored the altered levels of NOS isoform expression, reduced retinal nitrosative stress and retinal cell apoptosis. The effect of MgAT, however, was greater than that of TAU alone.

    CONCLUSIONS: MgAT and TAU prevent ET1-induced retinal cell apoptosis by reducing retinal nitrosative stress in Sprague Dawley rats. Addition of TAU to Mg seems to enhance the efficacy of TAU compared to when given alone. Moreover, the pretreatment with MgAT/TAU showed higher efficacy compared to co- or posttreatment.

    Matched MeSH terms: Retinal Ganglion Cells/drug effects; Retinal Ganglion Cells/metabolism*
  4. Al-Maleki AR, Loke MF, Lui SY, Ramli NSK, Khosravi Y, Ng CG, et al.
    Cell. Microbiol., 2017 12;19(12).
    PMID: 28776327 DOI: 10.1111/cmi.12771
    Outer inflammatory protein A (OipA) is an important virulence factor associated with gastric cancer and ulcer development; however, the results have not been well established and turned out to be controversial. This study aims to elucidate the role of OipA in Helicobacter pylori infection using clinical strains harbouring oipA "on" and "off" motifs. Proteomics analysis was performed on AGS cell pre-infection and postinfection with H. pylori oipA "on" and "off" strains, using liquid chromatography/mass spectrometry. AGS apoptosis and cell cycle assays were performed. Moreover, expression of vacuolating cytotoxin A (VacA) was screened using Western blotting. AGS proteins that have been suggested previously to play a role or associated with gastric disease were down-regulated postinfection with oipA "off" strains comparing to oipA "on" strains. Furthermore, oipA "off" and ΔoipA cause higher level of AGS cells apoptosis and G0/G1 cell-cycle arrest than oipA "on" strains. Interestingly, deletion of oipA increased bacterial VacA production. The capability of H. pylori to induce apoptosis and suppress expression of proteins having roles in human disease in the absence of oipA suggests that strains not expressing OipA may be less virulent or may even be protective against carcinogenesis compared those expressing OipA. This potentially explains the higher incidence of gastric cancer in East Asia where oipA "on" strains predominates.
    Matched MeSH terms: Epithelial Cells/microbiology*; Epithelial Cells/physiology*
  5. Ding SLS, Kumar S, Mok PL
    Int J Mol Sci, 2017 Jul 28;18(8).
    PMID: 28788088 DOI: 10.3390/ijms18081406
    The use of multipotent mesenchymal stem cells (MSCs) has been reported as promising for the treatment of numerous degenerative disorders including the eye. In retinal degenerative diseases, MSCs exhibit the potential to regenerate into retinal neurons and retinal pigmented epithelial cells in both in vitro and in vivo studies. Delivery of MSCs was found to improve retinal morphology and function and delay retinal degeneration. In this review, we revisit the therapeutic role of MSCs in the diseased eye. Furthermore, we reveal the possible cellular mechanisms and identify the associated signaling pathways of MSCs in reversing the pathological conditions of various ocular disorders such as age-related macular degeneration (AMD), retinitis pigmentosa, diabetic retinopathy, and glaucoma. Current stem cell treatment can be dispensed as an independent cell treatment format or with the combination of other approaches. Hence, the improvement of the treatment strategy is largely subjected by our understanding of MSCs mechanism of action.
    Matched MeSH terms: Mesenchymal Stromal Cells/cytology*; Mesenchymal Stromal Cells/metabolism*
  6. Iqbal B, Sarfaraz Z, Muhammad N, Ahmad P, Iqbal J, Khan ZUH, et al.
    J Biomater Sci Polym Ed, 2018 07;29(10):1168-1184.
    PMID: 29460709 DOI: 10.1080/09205063.2018.1443604
    In this study, collagen/alginate/hydroxyapatite beads having different proportions were prepared as bone fillers for the restoration of osteological defects. Ionic liquid was used to dissolve the collagen and subsequently the solution was mixed with sodium alginate solution. Hydroxyapatite was added in different proportions, with the rationale to enhance mechanical as well as biological properties. The prepared solutions were given characteristic bead shapes by dropwise addition into calcium chloride solution. The prepared beads were characterized using FTIR, XRD, TGA and SEM analysis. Microhardness testing was used to evaluate the mechanical properties. The prepared beads were investigated for water adsorption behavior to ascertain its ability for body fluid uptake and adjusted accordingly to the bone cavity. Drug loading and subsequently the antibacterial activity was investigated for the prepared beads. The biocompatibility was assessed using the hemolysis testing and cell proliferation assay. The prepared collagen-alginate-HA beads, having biocompatibility and good mechanical properties, have showed an option of promising biologically active bone fillers for bone regeneration.
    Matched MeSH terms: Mesenchymal Stromal Cells/cytology; Mesenchymal Stromal Cells/drug effects
  7. Gangoda SVS, Avadhanam B, Jufri NF, Sohn EH, Butlin M, Gupta V, et al.
    Sci Rep, 2018 01 26;8(1):1689.
    PMID: 29374229 DOI: 10.1038/s41598-018-20117-6
    Amyloid β (Aβ) deposition is a hallmark of Alzheimer's disease (AD). Vascular modifications, including altered brain endothelial cell function and structural viability of the blood-brain barrier due to vascular pulsatility, are implicated in AD pathology. Pulsatility of phenomena in the cerebral vasculature are often not considered in in vitro models of the blood-brain barrier. We demonstrate, for the first time, that pulsatile stretch of brain vascular endothelial cells modulates amyloid precursor protein (APP) expression and the APP processing enzyme, β-secretase 1, eventuating increased-Aβ generation and secretion. Concurrent modulation of intercellular adhesion molecule 1 and endothelial nitric oxide synthase (eNOS) signaling (expression and phosphorylation of eNOS) in response to pulsatile stretch indicates parallel activation of endothelial inflammatory pathways. These findings mechanistically support vascular pulsatility contributing towards cerebral Aβ levels.
    Matched MeSH terms: Cells, Cultured; Endothelial Cells/pathology*
  8. Chong YS, Mai CW, Leong CO, Wong LC
    Cutan Ocul Toxicol, 2018 Mar;37(1):52-60.
    PMID: 28554225 DOI: 10.1080/15569527.2017.1335748
    PURPOSE: Dysfunction of the microRNA (miRNA)-processing enzyme DICER1 and Alu RNA accumulation are linked to the pathogenesis of age-related macular degeneration (AMD). This study determined the optimal dose of lutein (LUT) and zeaxanthin (ZEA) to protect human retinal pigment epithelium (RPE) cells against hydrogen peroxide (H2O2). The effect of the optimal dose of LUT and ZEA as DICER1 and Alu RNA modulators in cultured human RPE cells challenged with H2O2 was investigated.

    MATERIALS AND METHODS: ARPE-19 cells were pre-treated with LUT, ZEA, or both for 24 h before 200 μM H2O2 challenge. Cell viability was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. DICER1 and Alu RNA were quantified by western blotting and real-time polymerase chain reaction, respectively.

    RESULTS: H2O2 increased cell Alu RNA expression and decreased cell viability of ARPE-19, but had no significant impact on the DICER1 protein level. LUT, alone and in combination with ZEA pre-treatment, prior to H2O2 challenge significantly improved cell viability of ARPE-19 and reduced the level of Alu RNA compared to the negative control.

    CONCLUSIONS: These results support the use of LUT alone, and in combination with ZEA, in AMD prevention and treatment. This study is also the first to report LUT modulating effects on Alu RNA.

    Matched MeSH terms: Epithelial Cells/drug effects*; Epithelial Cells/metabolism
  9. Barahuie F, Saifullah B, Dorniani D, Fakurazi S, Karthivashan G, Hussein MZ, et al.
    Mater Sci Eng C Mater Biol Appl, 2017 May 01;74:177-185.
    PMID: 28254283 DOI: 10.1016/j.msec.2016.11.114
    We have synthesized graphene oxide using improved Hummer's method in order to explore the potential use of the resulting graphene oxide as a nanocarrier for an active anticancer agent, chlorogenic acid (CA). The synthesized graphene oxide and chlorogenic acid-graphene oxide nanocomposite (CAGO) were characterized using Fourier transform infrared (FTIR) spectroscopy, thermogravimetry and differential thermogravimetry analysis, Raman spectroscopy, powder X-ray diffraction (PXRD), UV-vis spectroscopy and high resolution transmission electron microscopy (HRTEM) techniques. The successful conjugation of chlorogenic acid onto graphene oxide through hydrogen bonding and π-π interaction was confirmed by Raman spectroscopy, FTIR analysis and X-ray diffraction patterns. The loading of CA in the nanohybrid was estimated to be around 13.1% by UV-vis spectroscopy. The release profiles showed favourable, sustained and pH-dependent release of CA from CAGO nanocomposite and conformed well to the pseudo-second order kinetic model. Furthermore, the designed anticancer nanohybrid was thermally more stable than its counterpart. The in vitro cytotoxicity results revealed insignificant toxicity effect towards normal cell line, with a viability of >80% even at higher concentration of 50μg/mL. Contrarily, CAGO nanocomposite revealed enhanced toxic effect towards evaluated cancer cell lines (HepG2 human liver hepatocellular carcinoma cell line, A549 human lung adenocarcinoma epithelial cell line, and HeLa human cervical cancer cell line) compared to its free form.
    Matched MeSH terms: HeLa Cells; Hep G2 Cells; A549 Cells
  10. Rayagiri SS, Ranaldi D, Raven A, Mohamad Azhar NIF, Lefebvre O, Zammit PS, et al.
    Nat Commun, 2018 03 14;9(1):1075.
    PMID: 29540680 DOI: 10.1038/s41467-018-03425-3
    A central question in stem cell biology is the relationship between stem cells and their niche. Although previous reports have uncovered how signaling molecules released by niche cells support stem cell function, the role of the extra-cellular matrix (ECM) within the niche is unclear. Here, we show that upon activation, skeletal muscle stem cells (satellite cells) induce local remodeling of the ECM and the deposition of laminin-α1 and laminin-α5 into the basal lamina of the satellite cell niche. Genetic ablation of laminin-α1, disruption of integrin-α6 signaling or blocking matrix metalloproteinase activity impairs satellite cell expansion and self-renewal. Collectively, our findings establish that remodeling of the ECM is an integral process of stem cell activity to support propagation and self-renewal, and may explain the effect laminin-α1-containing supports have on embryonic and adult stem cells, as well as the regenerative activity of exogenous laminin-111 therapy.
    Matched MeSH terms: Satellite Cells, Skeletal Muscle/cytology*; Satellite Cells, Skeletal Muscle/metabolism
  11. Volak A, LeRoy SG, Natasan JS, Park DJ, Cheah PS, Maus A, et al.
    J Neurooncol, 2018 Sep;139(2):293-305.
    PMID: 29767307 DOI: 10.1007/s11060-018-2889-2
    The malignant primary brain tumor, glioblastoma (GBM) is generally incurable. New approaches are desperately needed. Adeno-associated virus (AAV) vector-mediated delivery of anti-tumor transgenes is a promising strategy, however direct injection leads to focal transgene spread in tumor and rapid tumor division dilutes out the extra-chromosomal AAV genome, limiting duration of transgene expression. Intravenous (IV) injection gives widespread distribution of AAV in normal brain, however poor transgene expression in tumor, and high expression in non-target cells which may lead to ineffective therapy and high toxicity, respectively. Delivery of transgenes encoding secreted, anti-tumor proteins to tumor stromal cells may provide a more stable and localized reservoir of therapy as they are more differentiated than fast-dividing tumor cells. Reactive astrocytes and tumor-associated macrophage/microglia (TAMs) are stromal cells that comprise a large portion of the tumor mass and are associated with tumorigenesis. In mouse models of GBM, we used IV delivery of exosome-associated AAV vectors driving green fluorescent protein expression by specific promoters (NF-κB-responsive promoter and a truncated glial fibrillary acidic protein promoter), to obtain targeted transduction of TAMs and reactive astrocytes, respectively, while avoiding transgene expression in the periphery. We used our approach to express the potent, yet toxic anti-tumor cytokine, interferon beta, in tumor stroma of a mouse model of GBM, and achieved a modest, yet significant enhancement in survival compared to controls. Noninvasive genetic modification of tumor microenvironment represents a promising approach for therapy against cancers. Additionally, the vectors described here may facilitate basic research in the study of tumor stromal cells in situ.
    Matched MeSH terms: Stromal Cells/cytology; Stromal Cells/metabolism*
  12. Balasubramaniam SD, Balakrishnan V, Oon CE, Kaur G
    Medicina (Kaunas), 2019 Jul 17;55(7).
    PMID: 31319555 DOI: 10.3390/medicina55070384
    Cervical cancer is the fourth most common cancer among women. Infection by high-risk human papillomavirus (HPV) is the main aetiology for the development of cervical cancer. Infection by high-risk human papillomavirus (HPV) and the integration of the HPV genome into the host chromosome of cervical epithelial cells are key early events in the neoplastic progression of cervical lesions. The viral oncoproteins, mainly E6 and E7, are responsible for the initial changes in epithelial cells. The viral proteins inactivate two main tumour suppressor proteins, p53, and retinoblastoma (pRb). Inactivation of these host proteins disrupts both the DNA repair mechanisms and apoptosis, leading to rapid cell proliferation. Multiple genes involved in DNA repair, cell proliferation, growth factor activity, angiogenesis, as well as mitogenesis genes become highly expressed in cervical intraepithelial neoplasia (CIN) and cancer. This genomic instability encourages HPV-infected cells to progress towards invasive carcinoma. The key molecular events involved in cervical carcinogenesis will be discussed in this review.
    Matched MeSH terms: Epithelial Cells/pathology*; Epithelial Cells/virology
  13. Rabbolini DJ, Morel-Kopp MC, Chen Q, Gabrielli S, Dunlop LC, Chew LP, et al.
    J Thromb Haemost, 2017 Nov;15(11):2245-2258.
    PMID: 28880435 DOI: 10.1111/jth.13843
    Essentials The phenotypes of different growth factor-independent 1B (GFI1B) variants are not established. GFI1B variants produce heterogeneous clinical phenotypes dependent on the site of mutation. Mutation of the first non-DNA-binding zinc-finger causes a mild platelet and clinical phenotype. GFI1B regulates the CD34 promoter; platelet CD34 expression is an indicator of GFI1B mutation.

    SUMMARY: Background Mutation of the growth factor-independent 1B (GFI1B) fifth DNA-binding zinc-finger domain causes macrothrombocytopenia and α-granule deficiency leading to clinical bleeding. The phenotypes associated with GFI1B variants disrupting non-DNA-binding zinc-fingers remain uncharacterized. Objectives To determine the functional and phenotypic consequences of GFI1B variants disrupting non-DNA-binding zinc-finger domains. Methods The GFI1B C168F variant and a novel GFI1B c.2520 + 1_2520 + 8delGTGGGCAC splice variant were identified in four unrelated families. Phenotypic features, DNA-binding properties and transcriptional effects were determined and compared with those in individuals with a GFI1B H294 fs mutation of the fifth DNA-binding zinc-finger. Patient-specific induced pluripotent stem cell (iPSC)-derived megakaryocytes were generated to facilitate disease modeling. Results The DNA-binding GFI1B variant C168F, which is predicted to disrupt the first non-DNA-binding zinc-finger domain, is associated with macrothrombocytopenia without α-granule deficiency or bleeding symptoms. A GFI1B splice variant, c.2520 + 1_2520 + 8delGTGGGCAC, which generates a short GFI1B isoform that lacks non-DNA-binding zinc-fingers 1 and 2, is associated with increased platelet CD34 expression only, without quantitative or morphologic platelet abnormalities. GFI1B represses the CD34 promoter, and this repression is attenuated by different GFI1B zinc-finger mutations, suggesting that deregulation of CD34 expression occurs at a direct transcriptional level. Patient-specific iPSC-derived megakaryocytes phenocopy these observations. Conclusions Disruption of GFI1B non-DNA-binding zinc-finger 1 is associated with mild to moderate thrombocytopenia without α-granule deficiency or bleeding symptomatology, indicating that the site of GFI1B mutation has important phenotypic implications. Platelet CD34 expression appears to be a common feature of perturbed GFI1B function, and may have diagnostic utility.

    Matched MeSH terms: Cells, Cultured; Induced Pluripotent Stem Cells/metabolism*
  14. Yeo GEC, Ng MH, Nordin FB, Law JX
    Int J Mol Sci, 2021 May 27;22(11).
    PMID: 34072224 DOI: 10.3390/ijms22115749
    Rapid growth of the geriatric population has been made possible with advancements in pharmaceutical and health sciences. Hence, age-associated diseases are becoming more common. Aging encompasses deterioration of the immune system, known as immunosenescence. Dysregulation of the immune cell production, differentiation, and functioning lead to a chronic subclinical inflammatory state termed inflammaging. The hallmarks of the aging immune system are decreased naïve cells, increased memory cells, and increased serum levels of pro-inflammatory cytokines. Mesenchymal stem cell (MSC) transplantation is a promising solution to halt immunosenescence as the cells have excellent immunomodulatory functions and low immunogenicity. This review compiles the present knowledge of the causes and changes of the aging immune system and the potential of MSC transplantation as a regenerative therapy for immunosenescence.
    Matched MeSH terms: Mesenchymal Stromal Cells/cytology*; Mesenchymal Stromal Cells/metabolism*
  15. Liew SK, Azmi MN, In L, Awang K, Nagoor NH
    Drug Des Devel Ther, 2017;11:2763-2776.
    PMID: 29075101 DOI: 10.2147/DDDT.S130349
    Nine analogs of 1'S-1'-acetoxychavicol acetate (ACA) were hemi-synthesized and evaluated for their anticancer activities against seven human cancer cell lines. The aim of this study was to investigate the anti-proliferative, apoptotic, and anti-migration effects of these compounds and to explore the plausible underlying mechanisms of action. We found that ACA and all nine analogs were non toxic to human mammary epithelial cells (HMECs) used as normal control cells, and only ACA, 1'-acetoxyeugenol acetate (AEA), and 1'-acetoxy-3,5-dimethoxychavicol acetate (AMCA) inhibited the growth of MDA-MB-231 breast cancer cells with a half-maximal inhibitory concentration (IC50) value of <30.0 μM based on 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay results, and were selected for further investigation. DNA fragmentation assays showed that these three compounds markedly induced apoptosis of MDA-MB-231 cells. Western blot analysis revealed increased expression levels of cleaved PARP, p53, and Bax, while decreased expression levels of Bcl-2 and Bcl-xL were seen after treatment, indicating that apoptosis was induced via the mitochondrial pathway. Moreover, ACA, AEA, and AMCA effectively inhibited the migration of MDA-MB-231 cells. They also downregulated the expression levels of pFAK/FAK and pAkt/Akt via the integrin β1-mediated signaling pathway. Collectively, ACA and its hemi-synthetic analogs, AEA and AMCA are seen as potential anticancer agents following their abilities to suppress growth, induce apoptosis, and inhibit migration of breast cancer cells.
    Matched MeSH terms: Epithelial Cells/drug effects; Epithelial Cells/metabolism
  16. Abd Rani NZ, Lam KW, Jalil J, Mohamad HF, Mat Ali MS, Husain K
    Molecules, 2021 Jan 28;26(3).
    PMID: 33525733 DOI: 10.3390/molecules26030695
    Phyllanthus amarus Schum. & Thonn. (Phyllanthaceae) is a medicinal plant that is commonly used to treat diseases such as asthma, diabetes, and anemia. This study aimed to examine the antiallergic activity of P. amarus extract and its compounds. The antiallergic activity was determined by measuring the concentration of allergy markers release from rat basophilic leukemia (RBL-2H3) cells with ketotifen fumarate as the positive control. As a result, P. amarus did not stabilize mast cell degranulation but exhibited antihistamine activity. The antihistamine activity was evaluated by conducting a competition radioligand binding assay on the histamine 1 receptor (H1R). Four compounds were identified from the high performance liquid chromatography (HPLC) analysis which were phyllanthin (1), hypophyllanthin (2), niranthin (3), and corilagin (4). To gain insights into the binding interactions of the most active compound hypophyllanthin (2), molecular docking was conducted and found that hypophyllanthin (2) exhibited favorable binding in the H1R binding site. In conclusion, P. amarus and hypophyllanthin (2) could potentially exhibit antiallergic activity by preventing the activation of the H1 receptor.
    Matched MeSH terms: Mast Cells/drug effects; Mast Cells/metabolism
  17. Tan SN, Sim SP
    BMC Cancer, 2018 04 12;18(1):409.
    PMID: 29649994 DOI: 10.1186/s12885-018-4327-4
    BACKGROUND: Chronic rhinosinusitis (CRS) increases the risk of developing nasopharyngeal carcinoma (NPC) while nasopharyngeal reflux is known to be one of the major aetiological factors of CRS. Bile acid (BA), the component of gastric duodenal contents, has been recognised as a carcinogen. BA-induced apoptosis was suggested to be involved in human malignancies. Cells have the potential and tendency to survive apoptosis. However, cells that evade apoptosis upon erroneous DNA repair may carry chromosome rearrangements. Apoptotic nuclease, caspase-activated deoxyribonuclease (CAD) has been implicated in mediating translocation in leukaemia. We hypothesised that BA-induced apoptosis may cause chromosome breaks mediated by CAD leading to chromosome rearrangement in NPC. This study targeted the AF9 gene located at 9p22 because 9p22 is one of the most common deletion sites in NPC.

    METHODS: We tested the ability of BA at neutral and acidic pH in inducing phosphatidylserine (PS) externalisation, reactive oxygen species (ROS) production, mitochondrial membrane potential (MMP) disruption, and caspase 3/7 activity in normal nasopharyngeal epithelial (NP69) and NPC (TWO4) cells. Inverse-PCR (IPCR) was employed to detect AF9 gene cleavages. To investigate the role of CAD in mediating these cleavages, caspase inhibition was performed. IPCR bands representing AF9 cleaved fragments were sequenced.

    RESULTS: BA-treated cells showed higher levels of PS externalisation, ROS production, MMP loss and caspase 3/7 activity than untreated control cells. The effect of BA in the induction of these intracellular events was enhanced by acid. BA at neutral and acidic pH also induced significant cleavage of the AF9 gene. These BA-induced gene cleavages were inhibited by Z-DEVD-FMK, a caspase-3 inhibitor. Intriguingly, a few chromosome breaks were identified within the AF9 region that was previously reported to participate in reciprocal translocation between the mixed lineage leukaemia (MLL) and AF9 genes in an acute lymphoblastic leukaemia (ALL) patient.

    CONCLUSIONS: These findings suggest a role for BA-induced apoptosis in mediating chromosome rearrangements in NPC. In addition, CAD may be a key player in chromosome cleavages mediated by BA-induced apoptosis. Persistent exposure of sinonasal tract to gastric duodenal refluxate may increase genomic instability in surviving cells.

    Matched MeSH terms: Epithelial Cells/drug effects; Epithelial Cells/metabolism*
  18. Hasan M, Kumolosasi E, Jasamai M, Jamal JA, Azmi N, Rajab NF
    Daru, 2020 Jun;28(1):97-108.
    PMID: 31912375 DOI: 10.1007/s40199-019-00320-0
    BACKGROUND: Phytoestrogens are plant compounds that are structurally similar to estrogen and that possess anti-cancer properties. Previous studies have reported that coumestrol, daidzein and genistein could induce cell death by reducing Annexin A1 protein in leukemic cell lines. Annexin A1 (ANXA1) is involved in cell progression, metastasis, and apoptosis in several types of cancer cells. The present study sought to investigate if the effects of phytoestrogens on apoptosis, cell cycle arrest and phagocytosis in ANXA1-knockdown leukemic cells are mediated through ANXA1 or occurred independently.

    METHODS: Transfection of ANXA1 siRNA was conducted to downregulate ANXA1 expression in Jurkat, K562 and U937 cells. Apoptosis and cell cycle assays were conducted using flow cytometry. Western blot was performed to evaluate ANXA1, caspases and Bcl-2 proteins expression. Phagocytosis was determined using hematoxylin and eosin staining.

    RESULTS: The expression of ANXA1 after the knockdown was significantly downregulated in all cell lines. Genistein significantly induced apoptosis associated with an upregulation of procaspase-3, -9, and - 1 in Jurkat cells. The Bcl-2 expression showed no significant difference in Jurkat, K562 and U937 cells. Treatment with phytoestrogens increased procaspase-1 expression in Jurkat and U937 cells while no changes were detected in K562 cells. Flow cytometry analysis demonstrated that after ANXA1 knockdown, coumestrol and genistein caused cell cycle arrest at G2/M phase in selected type of cells. The percentage of phagocytosis and phagocytosis index increased after the treatment with phytoestrogens in all cell lines.

    CONCLUSION: Phytoestrogens induced cell death in ANXA1-knockdown leukemia cells, mediated by Annexin A1 proteins. Graphical abstract.

    Matched MeSH terms: Jurkat Cells; K562 Cells; U937 Cells
  19. Clayton BA, Middleton D, Bergfeld J, Haining J, Arkinstall R, Wang L, et al.
    Emerg Infect Dis, 2012 Dec;18(12):1983-93.
    PMID: 23171621 DOI: 10.3201/eid1812.120875
    Human infections with Nipah virus in Malaysia and Bangladesh are associated with markedly different patterns of transmission and pathogenicity. To compare the 2 strains, we conducted an in vivo study in which 2 groups of ferrets were oronasally exposed to either the Malaysia or Bangladesh strain of Nipah virus. Viral shedding and tissue tropism were compared between the 2 groups. Over the course of infection, significantly higher levels of viral RNA were recovered from oral secretions of ferrets infected with the Bangladesh strain. Higher levels of oral shedding of the Bangladesh strain of Nipah virus might be a key factor in onward transmission in outbreaks among humans.
    Matched MeSH terms: Endothelial Cells/metabolism; Endothelial Cells/pathology
  20. Rahman HS, Tan BL, Othman HH, Chartrand MS, Pathak Y, Mohan S, et al.
    Biomed Res Int, 2020;2020:8857428.
    PMID: 33381591 DOI: 10.1155/2020/8857428
    Angiogenesis is a crucial area in scientific research because it involves many important physiological and pathological processes. Indeed, angiogenesis is critical for normal physiological processes, including wound healing and embryonic development, as well as being a component of many disorders, such as rheumatoid arthritis, obesity, and diabetic retinopathies. Investigations of angiogenic mechanisms require assays that can activate the critical steps of angiogenesis as well as provide a tool for assessing the efficacy of therapeutic agents. Thus, angiogenesis assays are key tools for studying the mechanisms of angiogenesis and identifying the potential therapeutic strategies to modulate neovascularization. However, the regulation of angiogenesis is highly complex and not fully understood. Difficulties in assessing the regulators of angiogenic response have necessitated the development of an alternative approach. In this paper, we review the standard models for the study of tumor angiogenesis on the macroscopic scale that include in vitro, in vivo, and computational models. We also highlight the differences in several modeling approaches and describe key advances in understanding the computational models that contributed to the knowledge base of the field.
    Matched MeSH terms: Endothelial Cells/metabolism; Human Umbilical Vein Endothelial Cells
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links