AIM OF THE STUDY: The present investigation was aimed to evaluate the potential toxic effects of the aqueous extract from the fruiting bodies of H. erinaceus in rats by a sub-chronic oral toxicity study.
MATERIALS AND METHODS: In this sub-chronic toxicity study, rats were orally administered with the aqueous extract of H. erinaceus (HEAE) at doses of 250, 500 and 1000mg/kg body weight (b.w.) for 90 days. Body weights were recorded on a weekly basis and general behavioural changes were observed. The blood samples were subjected to haematological, biochemical, serum electrolyte, and antioxidant enzyme estimations. The rats were sacrificed and organs were processed and examined for histopathological changes.
RESULTS: No mortality or morbidity was observed in all the treated and control rats. The results showed that the oral administration of HEAE daily at three different doses for 90 days had no adverse effect on the general behaviour, body weight, haematology, clinical biochemistry, and relative organ weights. Histopathological examination at the end of the study showed normal architecture except for few non-treatment related histopathological changes observed in liver, heart and spleen.
CONCLUSION: The results of this sub-chronic toxicity study provides evidence that oral administration of HEAE is safe up to 1000mg/kg and H. erinaceus consumption is relatively non-toxic.
MATERIALS AND METHODS: MicroRNA software predicted that miR21 targets VCL while miR29a targets CX3CL1. Twenty benign prostatic hyperplasia (BPH) and 16 high grade CaP formalinfixed paraffin embedded (FFPE) specimens were analysed. From the bone scan results, high grade CaP samples were further classified into CaP with no BM and CaP with BM. Transient transfection with respective microRNA inhibitors was done in both RWPE1 (normal) and PC3 cell lines. QPCR was performed in all FFPE samples and transfected cell lines to measure VCL and CX3CL1 levels.
RESULTS: QPCR confirmed that VCL messenger RNA (mRNA) was significantly down regulated while CX3CL1 was upregulated in all FFPE specimens. Transient transfection with microRNA inhibitors in PC3 cells followed by qPCR of the targeted genes showed that VCL mRNA was significantly up regulated while CX3CL1 mRNA was significantly downregulated compared to the RWPE1 case.
CONCLUSIONS: The downregulation of VCL in FFPE specimens is most likely regulated by miR21 based on the in vitro evidence but the exact mechanism of how miR21 can regulate VCL is unclear. Upregulated in CaP, CX3CL1 was found not regulated by miR29a. More microRNA screening is required to understand the regulation of this chemokine in CaP with bone metastasis. Understanding miRNAmRNA interactions may provide additional knowledge for individualized study of cancers.
METHODS: The feed solution was prepared using a PEO dissolved in water or a water-ethanol mixture. The PEO solution is blended with Bovine Serum Albumin protein (BSA) as a model drug to study the effect of the electrospinning process on the stability of the loaded protein. The polymer solution properties such as viscosity, surface tension, and conductivity were controlled by adjusting the solvent and salt content. The morphology and fiber size distribution of the nanofiber was analyzed using scanning electron microscopy.
RESULTS: The results show that the issue of a beaded nanofiber can be eliminated either by increasing the solution viscosity or by the addition of salt and ethanol to the PEO-water system. The addition of salt and solvent produced a high frequency of smaller fiber diameter ranging from 100 to 150 nm. The encapsulation of BSA in PEO nanofiber was characterized by three different spectroscopy techniques (i.e. circular dichroism, Fourier transform infrared, and fluorescence) and the results showed the BSA is well encapsulated in the PEO matrix with no changes in the protein structure.
CONCLUSION: This work may serve as a useful guide for a drug delivery industry to process a nanofiber at a large and continuous scale with a blend of drugs in nanofiber using a wire electrode electrospinning.
MATERIALS AND METHODS: An estimated 120 human root dentin disks were prepared, sterilized, and inoculated with E. faecalis strain (ATCC 29212) to develop a 3-weeks-old biofilm. The dentin discs were exposed to group I-control group: 5.25% sodium hypochlorite (NaOCl) (n = 20); group II-1% ALX + 5.25% NaOCl (n = 40); group III-1% alexidine (ALX) (n = 40) (Sigma-Aldrich, Mumbai, India); group IV-negative control: saline (n = 20). After exposure, the dentin disks were stained with the fluorescent live/dead dye and evaluated with a confocal scanning electron microscope to calculate the proportion of dead cells. Statistical analysis was done using the Kruskal-Wallis and Mann-Whitney U test (p < 0.05).
RESULTS: The maximum proportion of dead cells were seen in the groups treated with the combination of 1% ALX + 5.25% NaOCl (94.89%) and in the control group 5.25% NaOCl (93.14%). The proportion of dead cells presented in the 1% ALX group (51.79%) and negative control group saline (15.10%) were comparatively less.
CONCLUSION: The antibacterial efficiency of a combination of 1% ALX and 5.25% NaOCl was more effective when compared with 1% ALX alone.
CLINICAL SIGNIFICANCE: Alexidine at 1% could be used as an alternative endodontic irrigant to chlorhexidine, as alexidine does not form any toxic precipitates with sodium hypochlorite. The disinfection regimen comprising a combination of 1% ALX and 5.25% NaOCl is effective in eliminating E. faecalis biofilms.
METHODS: Patients with primary hip and knee OA were recruited, and 3 mL of bone marrow was harvested during joint replacement surgery. Bone marrow stromal cells (BMSC) was isolated and cultured in a culture flask for three passages. Later experiment was then sub-cultured in a well plate labeled as the control group and H2O2 (0.1 mM) treated group. ProcartaPlex® Multiplex Immunoassay was performed to measure cytokine levels produced by the BMSC at 0 h, as well as 72 h.
RESULTS: Cytokines such as tumor necrosis factor-alpha, interleukin (IL)-6, IL-8, and IL-1β generally exhibited higher cytokine levels in subjects with DM than in nonDM subjects at 0 and 72 h. For IL-17, its expression was similar in nonDM and DM groups at 0 and 72 h. Cytokine IL-10 showed no significant difference in both the groups while DM and nonDM groups treated with H2O2 showed decreased IL-4 levels compared to control groups at 72 h. Bone marrow cells from DM-OA are more vulnerable to chemical insult and are associated with higher levels of proinflammatory cytokines production and lower IL-4 level production.
CONCLUSIONS: This study provides a clue that management of OA with co-morbidity like DM needs future studies.
MATERIALS AND METHODS: Using a stainless-steel mold, disc-shaped wax patterns with dimensions of 10 mm in diameter and 2 mm thick (in accordance with ADA Specification No. 12) were created and prepared for a total of 75 acrylic samples. Dimensions of all 75 acrylic samples were checked with a digital Vernier caliper. About 25 samples of denture base material were immersed in three different chemical disinfectants: Group I: immersed in chlorhexidine gluconate solution, group II: immersed in sodium hypochlorite solution, and group III: immersed in glutaraldehyde solution. All samples were scrubbed daily for 1 minute with the appropriate disinfectant and submerged for 10 minutes in the same disinfectant. Between disinfection cycles, samples were kept in distilled water at 37°C. Color stability was measured using a reflection spectrophotometer. Surface roughness values were measured by a profilometer at baseline following 15 days and 30 days.
RESULTS: After 15 days, the color stability was better in chlorhexidine gluconate solution group (4.88 ± 0.24) than sodium hypochlorite solution (4.74 ± 0.18) and glutaraldehyde solution group (4.46 ± 0.16). The mean surface roughness was less in glutaraldehyde solution group (2.10 ± 0.19), followed by chlorhexidine gluconate solution group (2.48 ± 0.09) and sodium hypochlorite solution group (2.64 ± 0.03). After 30 days, the color stability was significantly better in chlorhexidine gluconate solution group (4.40 ± 0.02), followed by sodium hypochlorite solution (4.06 ± 0.16) and glutaraldehyde solution group (3.87 ± 0.17). The mean surface roughness was significantly lesser in glutaraldehyde solution group (2.41 ± 0.14), followed by chlorhexidine gluconate solution group (2.94 ± 0.08) and sodium hypochlorite solution group (3.02 ± 0.13).
CONCLUSION: In conclusion, the color stability was significantly better in chlorhexidine gluconate solution group than sodium hypochlorite solution and glutaraldehyde solution group. But the surface roughness was significantly lesser in the glutaraldehyde solution group, followed by the chlorhexidine gluconate and sodium hypochlorite solution group.
CLINICAL SIGNIFICANCE: The maintenance of the prosthesis requires the use of a denture disinfectant; therefore, it is crucial to select one that is effective but would not have a negative impact on the denture base resin's inherent characteristics over time. How to cite this article: Kannaiyan K, Rakshit P, Bhat MPS, et al. Effect of Different Disinfecting Agents on Surface Roughness and Color Stability of Heat-cure Acrylic Denture Material: An In Vitro Study. J Contemp Dent Pract 2023;24(11):891-894.