Displaying publications 101 - 120 of 180 in total

Abstract:
Sort:
  1. Dirong G, Nematbakhsh S, Selamat J, Chong PP, Idris LH, Nordin N, et al.
    Molecules, 2021 Oct 28;26(21).
    PMID: 34770913 DOI: 10.3390/molecules26216502
    Chicken is known to be the most common meat type involved in food mislabeling and adulteration. Establishing a method to authenticate chicken content precisely and identifying chicken breeds as declared in processed food is crucial for protecting consumers' rights. Categorizing the authentication method into their respective omics disciplines, such as genomics, transcriptomics, proteomics, lipidomics, metabolomics, and glycomics, and the implementation of bioinformatics or chemometrics in data analysis can assist the researcher in improving the currently available techniques. Designing a vast range of instruments and analytical methods at the molecular level is vital for overcoming the technical drawback in discriminating chicken from other species and even within its breed. This review aims to provide insight and highlight previous and current approaches suitable for countering different circumstances in chicken authentication.
  2. Azhar Hilmy SH, Nordin N, Yusof MYPM, Soh TYT, Yusof N
    Nutr J, 2024 Jan 17;23(1):11.
    PMID: 38233923 DOI: 10.1186/s12937-023-00884-3
    Excessive sugar consumption is well documented as a common risk factor for many Non-Communicable Diseases (NCDs). Thus, an adequate intervention description is important to minimise research waste and improve research usability and reproducibility. A systematic review was conducted to identify components in published evidence interventions pertaining to the health promotions on reducing sugar intake among adults. The review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement and used the Mixed Methods Appraisal Tool (MMAT) for quality appraisal. The period for the selected study was from 2000 to 2022, and articles were retrieved from Web of Science (WOS), Medline, Scopus, and PubMed. The target population was adults aged 18 years old and above who underwent intervention to assess the changes in their sugar intake. Data sources and all human epidemiologic studies were included. Out of the 9,333 papers identified, 25 were included. The overall quality of evidence of the studies was considered moderate. Apart from the characteristics of the reviewed studies, components of interventions are including the basis of theoretical or model for the intervention, which majority use Social Cognitive Theory, followed by PRECEDE-PROCEED model, socio-ecological and process-improvement theories and Transtheoretical Model; providers, who are commercial provider, qualified nutritionist, professor of nutrigenomics and nutrigenetics, doctor, dietitian nutritionist, lifestyle coaches, and junior public health nurses; duration of the intervention and follow-up time, varies from as short as one month to as long as 24 months; material provided either softcopy or hardcopy; tailoring approach, based on the individual goals, the process of change, genotype analysis, beliefs, barriers, and sociocultural norms; delivery mechanism either face-to-face or technology-mediated; and tools to measure the sugar consumption outcome mostly used Food Frequency Questionnaire (FFQ), besides 24-h dietary recalls, and food diaries. There are various components in downstream health promotion to reduce sugar intake among adults that can be adapted according to the local health promotion and intervention context. More well-designed interventions using integration components are encouraged in further studies.
  3. Jaafar NF, Nordin N, Mohamed Haris NY, Mohd Halim NH, Lahuri AH, Samad WZ
    Environ Sci Pollut Res Int, 2023 Apr;30(16):47144-47157.
    PMID: 36732455 DOI: 10.1007/s11356-023-25623-3
    In recent years, previously reported studies revealed a high efficiency of pollutant degradation by coupling photocatalysis and electrochemical processes (PECs) using titanium dioxide (TiO2) photoelectrode rather than using photocatalysis or electrocatalysis alone. However, some of the TiO2 photoelectrodes that have been reported were not cost-effective. This is due to the use of expensive chemicals and certain expensive equipment in the fabrication process, other than involving complicated preparation steps. Therefore, this study is aimed at investigating the PEC performance and stability of low-cost TiO2-polyvinyl chloride (TiO2-PVC) composite photoelectrode for Reactive Orange 16 (RO16) degradation. The materials characterisation using the ATR-FTIR, XRD and UV-Vis DRS proved that TiO2 and TiO2-PVC were successfully synthesised. The micrograph obtained for the surface characterisation using the FESEM showed that the smooth surface of freshly prepared photoelectrodes turned slightly rough with tiny pits formation after five continuous PEC processes. Nevertheless, the photoelectrode retained its original shape in good condition for further PEC processes. By PEC process, the fabricated photoelectrode showed 99.4% and 51.1% of colour and total organic carbon (TOC) removal, respectively, at optimised PEC parameters (1.0 mol L-1 NaCl concentration, 10 V applied voltage, 120 min degradation time and initial pH 2). Moreover, the fabricated photoelectrode demonstrated sufficient reusability potential (~ 96.3%) after five cycles of PEC processes. In summary, a low-cost and stable composite photoelectrode with high efficiency in RO16 degradation was successfully fabricated and could be potentially applied for other emerging pollutants degradation via the PEC degradation technique.
  4. Hanis TM, Yaacob NM, Hairon SM, Abdullah S, Nordin N, Abdullah NH, et al.
    BMC Public Health, 2019 Dec 30;19(1):1754.
    PMID: 31888561 DOI: 10.1186/s12889-019-8113-2
    BACKGROUND: Measurement of breast cancer burden and identification of its influencing factors help in the development of public health policy and strategy against the disease. This study aimed to examine the variability of the excess mortality of female breast cancer patients in the North East Region of Peninsular Malaysia.

    METHODS: This retrospective cohort study was conducted using breast cancer data from the Kelantan Cancer Registry between 2007 and 2011, and Kelantan general population mortality data. The breast cancer cases were followed up for 5 years until 2016. Out of 598 cases, 549 cases met the study criteria and were included in the analysis. Modelling of excess mortality was conducted using Poisson regression.

    RESULTS: Excess mortality of breast cancer varied according to age group (50 years old and below vs above 50 years old, Adj. EHR: 1.47; 95% CI: 1.31, 4.09; P = 0.004), ethnicity (Malay vs non-Malay, Adj. EHR: 2.31; 95% CI: 1.11, 1.96; P = 0.008), and stage (stage III and IV vs. stage I and II, Adj. EHR: 5.75; 95% CI: 4.24, 7.81; P 

  5. Azri FA, Selamat J, Sukor R, Yusof NA, Ahmad Raston NH, Nordin N, et al.
    Molecules, 2019 Aug 29;24(17).
    PMID: 31470528 DOI: 10.3390/molecules24173141
    This work presents a simple green synthesis of gold nanoparticles (AuNPs) by using an aqueous extract of Etlingera elatior (torch ginger). The metabolites present in E. elatior, including sugars, proteins, polyphenols, and flavonoids, were known to play important roles in reducing metal ions and supporting the subsequent stability of nanoparticles. The present work aimed to investigate the ability of the E. elatior extract to synthesise AuNPs via the reduction of gold (III) chloride hydrate and characterise the properties of the nanoparticles produced. The antioxidant properties of the E. elatior extract were evaluated by analysing the total phenolic and total flavonoid contents. To ascertain the formation of AuNPs, the synthesised particles were characterised using the ultraviolet-visible (UV-Vis) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray (EDX) microscopy, and dynamic light scattering (DLS) measurement. The properties of the green synthesised AuNPs were shown to be comparable to the AuNPs produced using a conventional reducing agent, sodium citrate. The UV-Vis measured the surface plasmon resonance of the AuNPs, and a band centered at 529 nm was obtained. The FTIR results proved that the extract contained the O-H functional group that is responsible for capping the nanoparticles. The HRTEM images showed that the green synthesized AuNPs were of various shapes and the average of the nanoparticles' hydrodynamic diameter was 31.5 ± 0.5 nm. Meanwhile, the zeta potential of -32.0 ± 0.4 mV indicates the high stability and negative charge of the AuNPs. We further successfully demonstrated that using the green synthesised AuNPs as the nanocomposite to modify the working surface of screen-printed carbon electrode (SPCE/Cs/AuNPs) enhanced the rate of electron transfer and provided a sensitive platform for the detection of Cu(II) ions.
  6. Shoesmith W, Awang Borhanuddin AFB, Pereira EJ, Nordin N, Giridharan B, Forman D, et al.
    BJPsych Open, 2019 Dec 12;6(1):e4.
    PMID: 31829292 DOI: 10.1192/bjo.2019.92
    BACKGROUND: The systems that help people with mental disorders in Malaysia include hospitals, primary care, traditional and religious systems, schools and colleges, employers, families and other community members.

    AIMS: To better understand collaboration between and within these systems and create a theoretical framework for system development.

    METHOD: A total of 26 focus groups and 27 individual interviews were undertaken with patients, carers, psychiatric hospital staff, primary care and district hospital staff, religious and traditional healers, community leaders, non-governmental organisation workers, and school and college counsellors. Grounded theory methods were used to analyse the data and create a theory of collaboration.

    RESULTS: Three themes both defined and enabled collaboration: (a) collaborative behaviours; (b) motivation towards a common goal or value; and (c) autonomy. Three other enablers of collaboration were identified: (d) relatedness (for example trusting, understanding and caring about the other); (e) resources (competence, time, physical resources and opportunities); and (f) motivation for collaboration (weighing up the personal costs versus benefits of acting collaboratively).

    CONCLUSIONS: The first three themes provided a definition of collaboration in this context: 'two or more parties working together towards a common goal or value, while maintaining autonomy'. The main barriers to collaboration were lack of autonomy, relatedness, motivation and resources, together with the potential cost of acting collaboratively without reciprocation. Finding ways to change these structural, cultural and organisational features is likely to improve collaboration in this system and improve access to care and outcomes for patients.

  7. Rahman MA, Ramli F, Karimian H, Dehghan F, Nordin N, Ali HM, et al.
    PLoS One, 2016;11(3):e0151466.
    PMID: 27019365 DOI: 10.1371/journal.pone.0151466
    Artonin E is a prenylated flavonoid isolated from the stem bark of Artocarpus elasticus Reinw.(Moraceae). This study aimed to investigate the apoptotic mechanisms induced by artonin E in a metastatic human ovarian cancer cell line SKOV-3 in vitro. MTT assay, clonogenic assay, acridine orange and propidium iodide double staining, cell cycle and annexin V analyses were performed to explore the mode of artonin E-induced cell death at different time points. DNA laddering, activation of caspases-3, -8, and -9, multi-parametric cytotoxicity-3 analysis by high-content screening, measurement of reactive oxygen species generation, and Western blot were employed to study the pathways involved in the apoptosis. MTT results showed that artonin E inhibited the growth of SKOV-3 cells, with IC50 values of 6.5±0.5 μg/mL after 72 h treatment, and showed less toxicity toward a normal human ovarian cell line T1074, with IC50 value of 32.5±0.5 μg/mL. Results showed that artonin E induced apoptosis and cell cycle arrest at the S phase. This compound also promoted the activation of caspases-3, -8, and -9. Further investigation into the depletion of mitochondrial membrane potential and release of cytochrome c revealed that artonin E treatment induced apoptosis via regulation of the expression of pro-survival and pro-apoptotic Bcl-2 family members. The expression levels of survivin and HSP70 proteins were also down regulated in SKOV-3 cells treated with artonin E. We propose that artonin E induced an antiproliferative effect that led to S phase cell cycle arrest and apoptosis through dysregulation of mitochondrial pathways, particularly the pro- and anti-apoptosis signaling pathways.
  8. Abdulwanis Mohamed Z, Mohamed Eliaser E, Jaafaru MS, Nordin N, Ioannides C, Abdull Razis AF
    Molecules, 2020 Aug 15;25(16).
    PMID: 32824120 DOI: 10.3390/molecules25163724
    Neurodegenerative diseases (NDDs) are chronic conditions that have drawn robust interest from the scientific community. Phytotherapeutic agents are becoming an important source of chemicals for the treatment and management of NDDs. Various secondary metabolites have been isolated from Melicope lunu-ankenda plant leaves, including phenolic acid derivatives. However, their neuroprotective activity remains unclear. Thus, the aim of this study is to elucidate the in vitro neuroprotective activity of 7-geranyloxycinnamic acid isolated from Melicope lunu-ankenda leaves. The neuroprotective activity was evaluated in differentiated human neuroblastoma (SH-SY5Y) cells by monitoring cell viability using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). Moreover, the potential to impair apoptosis in differentiated cells was investigated employing the Annexin V-FITC assay, acridine orange and propidium iodide (AO/PI) staining, and fluorescence microscopy. Morphological assessment and ultrastructural analysis were performed using scanning and transmission electron microscopy to evaluate the effect of 7-geranyloxycinnamic acid on surface morphology and internal features of the differentiated cells. Pre-treatment of neuronal cells with 7-geranyloxycinnamic acid significantly protected the differentiated SH-SY5Y cells against H2O2-induced apoptosis. Cytoskeleton and cytoplasmic inclusion were similarly protected by the 7-geranyloxycinnamic acid treatment. The present findings demonstrate the neuroprotective potential of 7-geranyloxycinnamic acid against H2O2-induced neurotoxicity in neuronal cells, which is an established hallmark of neuronal disorders.
  9. Nordin N, Kanagesan S, Zamberi NR, Yeap SK, Abu N, Tamilselvan S, et al.
    IET Nanobiotechnol, 2017 Apr;11(3):343-348.
    PMID: 28476993 DOI: 10.1049/iet-nbt.2016.0007
    In this study, nanocrystalline magnesium zinc ferrite nanoparticles were successfully prepared by a simple sol-gel method using copper nitrate and ferric nitrate as raw materials. The calcined samples were characterised by differential thermal analysis/thermogravimetric analysis, Fourier transform infrared spectroscopy and X-ray diffraction. Transmission electron microscopy revealed that the average particle size of the calcined sample was in a range of 17-41 nm with an average of 29 nm and has spherical size. A cytotoxicity test was performed on human breast cancer cells (MDA MB-231) and (MCF-7) at various concentrations starting from (0 µg/ml) to (800 µg/ml). The sample possessed a mild toxic effect toward MDA MB-231 and MCF-7 after being examined with MTT (3-[4, 5-dimethylthiazol-2-yl]-2, 5 diphenyltetrazolium bromide) assay for up to 72 h of incubation. Higher reduction of cells viability was observed as the concentration of sample was increased in MDA MB-231 cell line than in MCF-7. Therefore, further cytotoxicity tests were performed on MDA MB-231 cell line.
  10. Rahman MB, Hussain M, Kabiraz MP, Nordin N, Siddiqui SA, Bhowmik S, et al.
    Food Chem, 2023 Nov 30;427:136761.
    PMID: 37406446 DOI: 10.1016/j.foodchem.2023.136761
    Formaldehyde is added illegally to food to extend its shelf life due to its antiseptic and preservation properties. Several research has been conducted to examine the consequences of adulteration with formaldehyde in food items. These findings suggest that adding formaldehyde to food is considered harmful as it accumulates in the body with long-term consumption. In this review includes study findings on food adulteration with formaldehyde and their assessment of food safety based on the analytical method applied to various geographical regions, food matrix types, and their sources in food items. Additionally, this review sought to assess the risk of formaldehyde-tainted food and the understanding of its development in food and its impacts on food safety in light of the widespread formaldehyde adulteration. Finally, the study would be useful as a manual for implementing adequate and successful risk assessment to increase food safety.
  11. Azmi N, Mustaffa Al Bakri SS, Khor W, Hamzah SN, Ferdaos N, Ling KH, et al.
    IBRO Neurosci Rep, 2023 Jun;14:235-243.
    PMID: 37388489 DOI: 10.1016/j.ibneur.2023.01.003
    Full-term amniotic fluid stem cell (AFSC) is an underexplored reserve of broadly multipotent stem cells with potential applications in cell replacement therapy. One aspect worth exploring is the potential of AFSCs to differentiate into neural lineages. Previously, we have shown that full-term AFSC lines established from term gestation amniotic fluid, known as R3 and R2, differentiated into neural lineage through the monolayer adherent method suggesting their neurogenic potential. The neural commitment of the cells through the formation of multicellular aggregates has never been shown before. Here, we explored the ability of R3 to commit to neural fate via the formation of three-dimensional multicellular aggregates, namely embryoid bodies (EBs) and neurospheres, exhibiting distinct characteristics resembling EBs and neurospheres as obtained from other published pluripotent and neural stem cells (NSCs), respectively. Different cell seeding densities of the cells cultured in their respective induction medium generated two distinct types of aggregates with the appropriate sizes for EBs (300-350 µm) and neurospheres (50-100 µm). The neurospheres expressed a significantly high level of Nestin than EBs. However, EBs stained positive for TUJ1, suggesting the presence of early post-mitotic neurons representing the ectodermal lineage. In contrast, the presence of the NSC population in neurosphere culture was validated with positive expression of Sox1. Notably, dissociated cells from both aggregates differentiated into MAP2-positive neural cells, highlighting the ability of both types of multicellular aggregates to commit to the neural fate. In conclusion, this study highlights the first evidence of neurosphere formation from full-term AFSCs in addition to neural fate commitment via EBs formation. Findings from this study allow researchers to select the suitable approach for neural cell generation and expansion according to research needs.
  12. Mansor NI, Ling KH, Rosli R, Hassan Z, Adenan MI, Nordin N
    J Alzheimers Dis, 2023;94(s1):S21-S44.
    PMID: 37334592 DOI: 10.3233/JAD-221233
    BACKGROUND: Centella asiatica (L.) (C. asiatica) is commonly known in South East and South East Asia communities for its nutritional and medicinal benefits. Besides being traditionally used to enhance memory and accelerate wound healing, its phytochemicals have been extensively documented for their neuroprotective, neuroregenerative, and antioxidant properties.

    OBJECTIVE: The present study aims to investigate the effects of a standardized raw extract of C. asiatica (RECA) on hydrogen peroxide (H2O2)-induced oxidative stress and apoptotic death in neural-like cells derived from mouse embryonic stem (ES) cell line.

    METHODS: A transgenic mouse ES cell (46C) was differentiated into neural-like cells using 4-/4+ protocol with addition of all-trans retinoic acid. These cells were then exposed to H2O2 for 24 h. The effects of RECA on H2O2-induced neural-like cells were assessed through cell viability, apoptosis, and reactive oxygen species (ROS) assays, as well as neurite length measurement. The gene expression levels of neuronal-specific and antioxidant markers were assessed by RT-qPCR analysis.

    RESULTS: Pre-treatment with H2O2 for 24 hours, in a dose-dependent manner, damaged neural-like cells as marked by a decrease in cell viability, substantial increase in intracellular ROS accumulation, and increase in apoptotic rate compared to untreated cells. These cells were used to treat with RECA. Treatment with RECA for 48 h remarkably restored cell survival and promoted neurite outgrowth in the H2O2- damaged neurons by increasing cell viability and decreasing ROS activity. RT-qPCR analysis revealed that RECA upregulated the level of antioxidant genes such as thioredoxin-1 (Trx-1) and heme oxygenase-1 (HO-1) of treated cells, as well as the expression level of neuronal-specific markers such as Tuj1 and MAP2 genes, suggesting their contribution in neuritogenic effect.

    CONCLUSION: Our findings indicate that RECA promotes neuroregenerative effects and exhibits antioxidant properties, suggesting a valuable synergistic activity of its phytochemical constituents, thus, making the extract a promising candidate in preventing or treating oxidative stress-associated Alzheimer's disease.

  13. Yahaya MAF, Bakar ARA, Stanslas J, Nordin N, Zainol M, Mehat MZ
    BMC Biotechnol, 2021 06 05;21(1):38.
    PMID: 34090414 DOI: 10.1186/s12896-021-00697-4
    BACKGROUND: Neuroinflammation has been identified to be the key player in most neurodegenerative diseases. If neuroinflammation is left to be unresolved, chronic neuroinflammation will be establish. Such situation is due to the overly-activated microglia which have the tendency to secrete an abundance amount of pro-inflammatory cytokines into the neuron microenvironment. The abundance of pro-inflammatory cytokines will later cause toxic and death to neurons. Toll-like receptor 4 (TLR4)/MD-2 complex found on the cell surface of microglia is responsible for the attachment of LPS and activation of nuclear factor-κB (NF-κB) downstream signalling pathway. Albeit vitexin has been shown to possess anti-inflammatory property, however, little is known on its ability to bind at the binding site of TLR4/MD-2 complex of microglia as well as to be an antagonist for LPS.

    RESULTS: The present study reveals that both vitexin and donepezil are able to bind at the close proximity of LPS binding site located at the TLR4/MD-2 complex with the binding energy of - 4.35 and - 9.14 kcal/mol, respectively. During molecular dynamic simulations, both vitexin and donepezil formed stable complex with TLR4/MD-2 throughout the 100 ns time length with the root mean square deviation (RMSD) values of 2.5 Å and 4.0 Å, respectively. The root mean square fluctuation (RMSF) reveals that both compounds are stable. Interestingly, the radius of gyration (rGyr) for donepezil shows notable fluctuations when compare with vitexin. The MM-GBSA results showed that vitexin has higher binding energy in comparison with donepezil.

    CONCLUSIONS: Taken together, the findings suggest that vitexin is able to bind at the binding site of TLR4/MD-2 complex with more stability than donepezil throughout the course of 100 ns simulation. Hence, vitexin has the potential to be an antagonist candidate for LPS.

  14. Ab Rahim SN, Nordin N, Wan Omar WFA, Zulkarnain S, Kumar S, Sinha S, et al.
    Cureus, 2023 Dec;15(12):e49835.
    PMID: 38045630 DOI: 10.7759/cureus.49835
    Magnesium (Mg2+) is a predominantly intracellular cation that plays significant roles in various enzymatic, membrane, and structural body functions. As a calcium (Ca2+) antagonist, it is imperative for numerous neuromuscular activities. The imbalance of body Mg2+  concentration leads to clinical manifestations ranging from asymptomatic to severe life-threatening complications. Therefore, the contribution of Mg2+ measurement regarding various laboratory and clinical aspects cannot be ignored. Mg2+ is often described as the forgotten analyte. However, its close relationship with body potassium (K+), Ca2+, and phosphate homeostasis proves that Mg2+ imbalance could co-exist as the root cause or the consequence of other electrolyte disorders. Meanwhile, several preanalytical, analytical, and postanalytical aspects could influence Mg2+ measurement. This review highlights Mg2+ measurement's laboratory and clinical issues and some analyte disturbances associated with its imbalance. Understanding this basis could aid clinicians and laboratory professionals in Mg2+ result interpretation and patient management.
  15. Nematbakhsh S, Pei CP, Nordin N, Selamat J, Idris LH, Razis AFA
    Poult Sci, 2024 Jul 31;103(11):104128.
    PMID: 39180779 DOI: 10.1016/j.psj.2024.104128
    Local village chicken, or "Ayam kampung" as it's known in Malaysia, is considered a premium chicken breed with a higher price than other chicken breeds. As a result of their comparable appearances and sizes, colored broiler chickens are often sold as village chickens, which is a form of food fraud that can result in a 3- to 4-fold rise in profit. Therefore, developing a breed-specific authentication method is crucial for preventing food fraud in the poultry industry. This study aims to investigate the genetic diversity of village chickens from other commercial chicken breed populations available in the market (broiler [Cobb], colored broiler [Hubbard], and layer [DeKalb]) to identify breed-specific DNA fragments as biomarkers for village chicken authentication. The Whole-genome sequencing and mutation calling of 12 chickens (3 chickens/breed) led to the identification of a total of 73,454,654 single nucleotide polymorphisms (SNP) and 8,762,338 insertion and deletions (InDel) variants, with more variants detected in the village chicken population (6,346,704 SNPs; 752,408 InDels) compared to commercial breeds. Therefore, this study revealed that village chickens were more genetically variable compared to other breeds in Malaysia. Furthermore, the breed-specific genomic region located on chromosome 1 (1:84,405,652) harboring SNP (C-T) with high discrimination power was discovered and validated which can be considered as a novel breed-specific biomarker to develop a method for accurate authentication of village chickens in Malaysia. This authentication method offers potentialw applications in the chicken industry and food safety.
  16. Nordin N, W M Afifi WAF, Majid SR, Abu Bakar N
    Int J Biol Macromol, 2024 Dec;282(Pt 4):137202.
    PMID: 39489246 DOI: 10.1016/j.ijbiomac.2024.137202
    Frequent droughts significantly affect agricultural productivity and highlight the need for effective solutions to improve water availability for crops. This study investigates the potential of chitosan-based hydrogels, biodegradable biopolymers known for their water-retaining properties, to improve soil moisture and promote plant growth during drought periods. Chitosan hydrogels were synthesized using Pluronic F127 and compared with chitosan and chitosan in combination with sodium alginate (CS/Alg-Na). Comprehensive chemical characterizations were performed by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR) and field emission scanning electron microscopy (FESEM). The CS/Pl-F127 hydrogels showed high porosity and a water absorption capacity of 81.5 %, while the CS/Alg-Na exhibited a denser network with a capacity of 93.35 % and improved mechanical strength. Plants in the CS/Pl-F127 hydrogel had a shoot elongation rate of 5.9 mm/day on Day 9, which continued until Day 40. In contrast, shoot elongation in the CS/Alg-Na hydrogel peaked at 7.1 mm/day on Day 20 and maintained growth under drought conditions until Day 33. These results show that all chitosan-based hydrogels improve water use efficiency. CS/Alg-Na provides the best support for plant growth under drought conditions, followed by CS/Pl-F127 and pure chitosan.
  17. Goh D, Abdull Razis AF, Yusof NA, Mazlan N, Nordin N, Yu CY
    Heliyon, 2025 Jan 15;11(1):e41154.
    PMID: 39801999 DOI: 10.1016/j.heliyon.2024.e41154
    Pyrethroid pesticides are essential for modern agriculture, helping to control pests and protect crops. However, due to growing concerns about their potential impact on human health and the environment, reliable detection methods are essential to ensure food safety. In this literature review, we explore the techniques used over the past decade to detect pyrethroid residues in agricultural products. Until now, various methods have been developed for detecting pyrethroid pesticides, ranging from conventional analytical approaches to innovative approaches. The conventional analytical approaches include gas, liquid, and supercritical fluid chromatography, micellar electrokinetic capillary chromatography, and enzyme-linked immunosorbent assay. Whereas innovative approaches refer to various optical-based and electrochemical-based sensors. For each method, we evaluate its strengths, limitations, and practical applications. Recent innovations are highlighted, focusing on sensitivity, selectivity, and practical applicability. By summarizing the current state of research, this review serves as a valuable resource for researchers and practitioners, providing insights into the evolving technology and strategy for detecting pyrethroid residue.
  18. Bahar N, Ismail WS, Hussain N, Haniff J, Bujang MA, Hamid AM, et al.
    Asia Pac Psychiatry, 2015 Jun;7(2):223-9.
    PMID: 25367507 DOI: 10.1111/appy.12162
    This article aims to study the pattern of youth suicide cases in Malaysia, following which preventive actions can then be planned and practiced to reduce these suicide cases.
  19. Nazarbahjat N, Nordin N, Abdullah Z, Abdulla MA, Yehye WA, Halim SN, et al.
    Molecules, 2014;19(8):11520-37.
    PMID: 25093989 DOI: 10.3390/molecules190811520
    New thiosemicarbazide derivatives 2-6 were synthesised by reacting 2-(ethylsulfanyl)benzohydrazide with various aryl isothiocyanates. The cyclisation of compounds 2-6 under reflux conditions in a basic medium (aqueous NaOH, 4 N) yielded compounds 7-11 that contain a 1,2,4-triazole ring. All of the synthesised compounds were screened for their antioxidant activities. Compounds 2, 3, and 7 showed better radical scavenging in a 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, with IC50 values of 1.08, 0.22, and 0.74 µg/mL, respectively, compared to gallic acid (IC50, 1.2 µg/mL). Compound 3 also showed superior results in a ferric reducing antioxidant power (FRAP) assay (3054 µM/100 g) compared to those of ascorbic acid (1207 µM/100 g).
  20. Nordin N, Fadaeinasab M, Mohan S, Mohd Hashim N, Othman R, Karimian H, et al.
    PLoS One, 2016;11(5):e0154023.
    PMID: 27136097 DOI: 10.1371/journal.pone.0154023
    Drug resistance presents a challenge in chemotherapy and has attracted research interest worldwide and particular attention has been given to natural compounds to overcome this difficulty. Pulchrin A, a new compound isolated from natural products has demonstrated novel potential for development as a drug. The identification of pulchrin A was conducted using several spectroscopic techniques such as nuclear magnetic resonance, liquid chromatography mass spectrometer, infrared and ultraviolet spectrometry. The cytotoxicity effects on CAOV-3 cells indicates that pulchrin A is more active than cisplatin, which has an IC50 of 22.3 μM. Significant changes in cell morphology were present, such as cell membrane blebbing and formation of apoptotic bodies. The involvement of phosphatidylserine (PS) in apoptosis was confirmed by Annexin V-FITC after a 24 h treatment. Apoptosis was activated through the intrinsic pathway by activation of procaspases 3 and 9 as well as cleaved caspases 3 and 9 and ended at the executioner pathway, with the occurrence of DNA laddering. Apoptosis was further confirmed via gene and protein expression levels, in which Bcl-2 protein was down-regulated and Bax protein was up-regulated. Furthermore, the CAOV-3 cell cycle was disrupted at the G0/G1 phase, leading to apoptosis. Molecular modeling of Bcl-2 proteins demonstrated a high- binding affinity, which inhibited the function of Bcl-2 proteins and led to cell death. Results of the current study can shed light on the development of new therapeutic agents, particularly, human ovarian cancer treatments.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links