Displaying publications 101 - 120 of 177 in total

Abstract:
Sort:
  1. Kia Y, Osman H, Suresh Kumar R, Basiri A, Murugaiyah V
    Bioorg Med Chem Lett, 2014 Apr 1;24(7):1815-9.
    PMID: 24594354 DOI: 10.1016/j.bmcl.2014.02.019
    Novel mono and bis spiropyrrolidine derivatives were synthesized via an efficient ionic liquid mediated, 1,3-dipolar cycloaddition methodology and evaluated in vitro for their AChE and BChE inhibitory activities in search for potent cholinesterase enzyme inhibitors. Most of the synthesized compounds displayed remarkable AChE inhibitory activities with IC50 values ranging from 1.68 to 21.85 μM, wherein compounds 8d and 8j were found to be most active inhibitors against AChE and BChE with IC50 values of 1.68 and 2.75 μM, respectively. Molecular modeling simulation on Torpedo californica AChE and human BChE receptors, showed good correlation between IC50 values and binding interaction template of the most active inhibitors docked into the active site of their relevant enzymes.
    Matched MeSH terms: Drug Discovery*
  2. Shahcheraghi SH, Aljabali AAA, Al Zoubi MS, Mishra V, Charbe NB, Haggag YA, et al.
    Life Sci, 2021 Aug 01;278:119632.
    PMID: 34019900 DOI: 10.1016/j.lfs.2021.119632
    Diabetes epidemiological quantities are demonstrating one of the most important communities' health worries. The essential diabetic difficulties are including cardiomyopathy, nephropathy, inflammation, and retinopathy. Despite developments in glucose decreasing treatments and drugs, these diabetic complications are still ineffectively reversed or prohibited. Several signaling and molecular pathways are vital targets in the new therapies of diabetes. This review assesses the newest researches about the key molecules and signaling pathways as targets of molecular pharmacology in diabetes and diseases related to it for better treatment based on molecular sciences. The disease is not cured by current pharmacological strategies for type 2 diabetes. While several drug combinations are accessible that can efficiently modulate glycemia and mitigate long-term complications, these agents do not reverse pathogenesis, and in practice, they are not established to modify the patient's specific molecular profiling. Therapeutic companies have benefited from human genetics. Genome exploration, which is agnostic to the information that exists, has revealed tens of loci that impact glycemic modulation. The physiological report has begun to examine subtypes of diseases, illustrate heterogeneity and propose biochemical therapeutic pathways.
    Matched MeSH terms: Drug Discovery*
  3. Venkateskumar K, Parasuraman S, Chuen LY, Ravichandran V, Balamurgan S
    Curr Drug Discov Technol, 2020;17(4):507-514.
    PMID: 31424372 DOI: 10.2174/1570163816666190819141344
    About 95% of earth living space lies deep below the ocean's surface and it harbors extraordinary diversity of marine organisms. Marine biodiversity is an exceptional reservoir of natural products, bioactive compounds, nutraceuticals and other potential compounds of commercial value. Timeline for the development of the drug from a plant, synthetic and other alternative sources is too lengthy. Exploration of the marine environment for potential bioactive compounds has gained focus and huge opportunity lies ahead for the exploration of such vast resources in the ocean. Further, the evolution of superbugs with increasing resistance to the currently available drugs is alarming and it needs coordinated efforts to resolve them. World Health Organization recommends the need and necessity to develop effective bioactive compounds to combat problems associated with antimicrobial resistance. Based on these factors, it is imperative to shift the focus towards the marine environment for potential bioactive compounds that could be utilized to tackle antimicrobial resistance. Current research trends also indicate the huge strides in research involving marine environment for drug discovery. The objective of this review article is to provide an overview of marine resources, recently reported research from marine resources, challenges, future research prospects in the marine environment.
    Matched MeSH terms: Drug Discovery/methods*
  4. Ashraf MI, Ong SK, Mujawar S, Pawar S, More P, Paul S, et al.
    Sci Rep, 2018 04 27;8(1):6669.
    PMID: 29703908 DOI: 10.1038/s41598-018-25042-2
    Identifying effective drug targets, with little or no side effects, remains an ever challenging task. A potential pitfall of failing to uncover the correct drug targets, due to side effect of pleiotropic genes, might lead the potential drugs to be illicit and withdrawn. Simplifying disease complexity, for the investigation of the mechanistic aspects and identification of effective drug targets, have been done through several approaches of protein interactome analysis. Of these, centrality measures have always gained importance in identifying candidate drug targets. Here, we put forward an integrated method of analysing a complex network of cancer and depict the importance of k-core, functional connectivity and centrality (KFC) for identifying effective drug targets. Essentially, we have extracted the proteins involved in the pathways leading to cancer from the pathway databases which enlist real experimental datasets. The interactions between these proteins were mapped to build an interactome. Integrative analyses of the interactome enabled us to unearth plausible reasons for drugs being rendered withdrawn, thereby giving future scope to pharmaceutical industries to potentially avoid them (e.g. ESR1, HDAC2, F2, PLG, PPARA, RXRA, etc). Based upon our KFC criteria, we have shortlisted ten proteins (GRB2, FYN, PIK3R1, CBL, JAK2, LCK, LYN, SYK, JAK1 and SOCS3) as effective candidates for drug development.
    Matched MeSH terms: Drug Discovery/methods*
  5. Al-Nema M, Gaurav A, Akowuah G
    Comput Biol Chem, 2018 Dec;77:52-63.
    PMID: 30240986 DOI: 10.1016/j.compbiolchem.2018.09.001
    The major complaint that most of the schizophrenic patients' face is the cognitive impairment which affects the patient's quality of life. The current antipsychotic drugs treat only the positive symptoms without alleviating the negative or cognitive symptoms of the disease. In addition, the existing therapies are known to produce extrapyramidal side effects that affect the patient adherence to the treatment. PDE10A inhibitor is the new therapeutic approach which has been proven to be effective in alleviating the negative and cognitive symptoms of the disease. A number of PDE10A inhibitors have been developed, but no inhibitor has made it beyond the clinical trials so far. Thus, the present study has been conducted to identify a PDE10A inhibitor from natural sources to be used as a lead compound for the designing of novel selective PDE10A inhibitors. Ligand and structure-based pharmacophore models for PDE10A inhibitors were generated and employed for virtual screening of universal natural products database. From the virtual screening results, 37 compounds were docked into the active site of the PDE10A. Out of 37 compounds, three inhibitors showed the highest affinity for PDE10A where UNPD216549 showed the lowest binding energy and has been chosen as starting point for designing of novel PDE10A inhibitors. The structure-activity-relationship studies assisted in designing of selective PDE10A inhibitors. The optimization of the substituents on the phenyl ring resulted in 26 derivatives with lower binding energy with PDE10A as compared to the lead compound. Among these, MA 8 and MA 98 exhibited the highest affinity for PDE10A with binding energy (-10.90 Kcal/mol).
    Matched MeSH terms: Drug Discovery*
  6. Girish S, Kumar S, Aminudin N, Hashim NM
    Sci Rep, 2021 04 09;11(1):7833.
    PMID: 33837230 DOI: 10.1038/s41598-021-81418-x
    Blastocystis sp. infection, although many remain asymptomatic, there is growing data in recent studies that suggests it is a frequent cause of gastrointestinal symptoms in children and adults. This proposes that treatment against this infection is necessary however metronidazole (MTZ), which is the current choice of treatment, has expressed non-uniformity in its efficacy in combating this infection which has led to the study of alternative treatment. In our previous study, it was established that Tongkat Ali fractions exhibited promising anti-protozoal properties which leads to the current aim of the study, to further narrow down the purification process in order to identify the specific active compound promoting the anti-protozoal effect through HPLC analysis. Based on the data analysis and in-vitro susceptibility assay, the collected Tongkat Ali fraction that demonstrated anti-blastocystis property was shown to contain eurycomanone. Previous studies have suggested that there is a mechanism in Blastocystis sp. that regulates the apoptotic process to produce higher number of viable cells when treated. In reference to this, our current study also aims to investigate the apoptotic response of Tongkat Ali extract and eurycomanone across different subtype groups with comparison to MTZ. Based on our investigation, both Tongkat Ali extract and eurycomanone induced the high apoptotic rate however exhibited a reduction in viable cell count (p 
    Matched MeSH terms: Drug Discovery/methods
  7. Takhi M, Sreenivas K, Reddy CK, Munikumar M, Praveena K, Sudheer P, et al.
    Eur J Med Chem, 2014 Sep 12;84:382-94.
    PMID: 25036796 DOI: 10.1016/j.ejmech.2014.07.036
    A novel and potent series of ene-amides featuring azetidines has been developed as FabI inhibitors active against drug resistant Gram-positive pathogens particularly staphylococcal organisms. Most of the compounds from the series possessed excellent biochemical inhibition of Staphylococcus aureus FabI enzyme and whole cell activity against clinically relevant MRSA, MSSA and MRSE organisms which are responsible for significant morbidity and mortality in community as well as hospital settings. The binding mode of one of the leads, AEA16, in Escherichia coli FabI enzyme was determined unambiguously using X-ray crystallography. The lead compounds displayed good metabolic stability in mice liver microsomes and pharmacokinetic profile in mice. The in vivo efficacy of lead AEA16 has been demonstrated in a lethal murine systemic infection model.
    Matched MeSH terms: Drug Discovery*
  8. Yoneda M
    Uirusu, 2014;64(1):105-12.
    PMID: 25765986 DOI: 10.2222/jsv.64.105
    Nipah virus (NiV), a paramyxovirus, was first discovered in Malaysia in 1998 in an outbreak of infection in pigs and humans, and incurred a high fatality rate in humans. We established a system that enabled the rescue of replicating NiVs from a cloned DNA. Using the system, we analyzed the functions of accessory proteins in infected cells and the implications in in vivo pathogenicity. Further, we have developed a recombinant measles virus (rMV) vaccine expressing NiV envelope glycoproteins, which appeared to be an appropriate to NiV vaccine candidate for use in humans.
    Matched MeSH terms: Drug Discovery*
  9. Asad M, Oo CW, Kumar RS, Osman H, Ali MA
    Acta Pol Pharm, 2013 Mar-Apr;70(2):221-8.
    PMID: 23614277
    A series of some new bisadducts possessing five, six membered and coumarin subunits were synthesized by the condensation of heterocyclic aldehydes with active methylene compounds and characterized by IR, NMR and X-ray crystallographic studies and were assayed as antitubercular agents. Among the bisadducts, 4-hydroxy-3-[(4-hydroxy-2-oxo-2H-3-chromenyl)(3-thienyl)methyl]-2H-2-chromenone 3a was found to be the most promising compound, active against Mycobacterium tuberculosis (Mtb) H37Rv and isoniazid resistant Mycobacterium tuberculosis (INHR-Mtb) with minimum inhibitory concentration 5.22 and 8.34 microM, respectively.
    Matched MeSH terms: Drug Discovery*
  10. Teoh HK, Cheong SK
    Malays J Pathol, 2012 Jun;34(1):1-13.
    PMID: 22870592 MyJurnal
    Induced pluripotent stem cells (iPSC) are derived from human somatic cells through ectopic expression of transcription factors. This landmark discovery has been considered as a major development towards patient-specific iPSC for various biomedical applications. Unlimited self renewal capacity, pluripotency and ease of accessibility to donor tissues contribute to the versatility of iPSC. The therapeutic potential of iPSC in regenerative medicine, cell-based therapy, disease modelling and drug discovery is indeed very promising. Continuous progress in iPSC technology provides clearer understanding of disease pathogenesis and ultimately new optimism in developing treatment or cure for human diseases.
    Matched MeSH terms: Drug Discovery/methods
  11. Vairappan CS, Ishii T, Lee TK, Suzuki M, Zhaoqi Z
    Mar Drugs, 2010;8(6):1743-9.
    PMID: 20631866 DOI: 10.3390/md8061743
    In our continuous interest to study the diversity of halogenated metabolites of Malaysian species of the red algal genus Laurencia, we examined the chemical composition of five populations of unrecorded Laurencia sp. A new brominated diterpene, 10-acetoxyangasiol (1), and four other known metabolites, aplysidiol (2), cupalaurenol (3), 1-methyl-2,3,5-tribromoindole (4), and chamigrane epoxide (5), were isolated and identified. Isolated metabolites exhibited potent antibacterial activities against clinical bacteria, Staphylococcus aureus, Staphylococcus sp., Streptococcus pyogenes, Salmonella sp. and Vibrio cholerae.
    Matched MeSH terms: Drug Discovery*
  12. Teo CY, Shave S, Chor AL, Salleh AB, Rahman MB, Walkinshaw MD, et al.
    BMC Bioinformatics, 2012;13 Suppl 17:S4.
    PMID: 23282142 DOI: 10.1186/1471-2105-13-S17-S4
    BACKGROUND: Rheumatoid arthritis (RA) is an autoimmune disease with unknown etiology. Anticitrullinated protein autoantibody has been documented as a highly specific autoantibody associated with RA. Protein arginine deiminase type 4 (PAD4) is the enzyme responsible for catalyzing the conversion of peptidylarginine into peptidylcitrulline. PAD4 is a new therapeutic target for RA treatment. In order to search for inhibitors of PAD4, structure-based virtual screening was performed using LIDAEUS (Ligand discovery at Edinburgh university). Potential inhibitors were screened experimentally by inhibition assays.

    RESULTS: Twenty two of the top-ranked water-soluble compounds were selected for inhibitory screening against PAD4. Three compounds showed significant inhibition of PAD4 and their IC50 values were investigated. The structures of the three compounds show no resemblance with previously discovered PAD4 inhibitors, nor with existing drugs for RA treatment.

    CONCLUSION: Three compounds were discovered as potential inhibitors of PAD4 by virtual screening. The compounds are commercially available and can be used as scaffolds to design more potent inhibitors against PAD4.

    Matched MeSH terms: Drug Discovery/methods*
  13. Mahita J, Harini K, Rao Pichika M, Sowdhamini R
    J Biomol Struct Dyn, 2016 Jun;34(6):1345-62.
    PMID: 26264972 DOI: 10.1080/07391102.2015.1079243
    Precise functioning and fine-tuning of Toll-like receptor 4 (TLR4) signaling is a critical requirement for the smooth functioning of the innate immune system, since aberrant TLR4 activation causes excessive production of pro-inflammatory cytokines and interferons. This can result in life threatening conditions such as septic shock and other inflammatory disorders. The TRIF-related adaptor molecule (TRAM) adaptor protein is unique to the TLR4 signaling pathway and abrogation of TRAM-mediated TLR4 signaling is a promising strategy for developing therapeutics aimed at disrupting TRAM interactions with other components of the TLR4 signaling complex. The VIPER motif from the vaccinia virus-producing protein, A46 has been reported to disrupt TRAM-TLR4 interactions. We have exploited this information, in combination with homology modeling and docking approaches, to identify a potential binding site on TRAM lined by the BB loop and αC helix. Virtual screening of commercially available small molecules targeting the binding site enabled to short-list 12 small molecules to abrogate TRAM-mediated TLR4 signaling. Molecular dynamics and molecular mechanics calculations have been performed for the analysis of these receptor-ligand interactions.
    Matched MeSH terms: Drug Discovery*
  14. Hasan WNW, Chin KY, Jolly JJ, Ghafar NA, Soelaiman IN
    PMID: 29683099 DOI: 10.2174/1871530318666180423122409
    BACKGROUND: Osteoporosis is a silent skeletal disease characterized by low bone mass and destruction of skeletal microarchitecture, leading to an increased fracture risk. This occurs due to an imbalance in bone remodelling, whereby the rate of bone resorption is greater than bone formation. Mevalonate pathway, previously known to involve in cholesterol synthesis, is an important regulatory pathway for bone remodelling.

    OBJECTIVE: This review aimed to provide an overview of the relationship between mevalonate pathway and bone metabolism, as well as agents which act through this pathway to achieve their therapeutic potential.

    DISCUSSION: Mevalonate pathway produces farnesyl pyrophosphate and geranylgeranyl pyrophosphate essential in protein prenylation. An increase in protein prenylation favours bone resorption over bone formation. Non-nitrogen containing bisphosphonates inhibit farnesyl diphosphate synthase which produces farnesyl pyrophosphate. They are used as the first line therapy for osteoporosis. Statins, a well-known class of cholesterol-lowering agents, inhibit 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase, the rate-determining enzyme in the mevalonate pathway. It was shown to increase bone mineral density and prevent fracture in humans. Tocotrienol is a group of vitamin E commonly found in palm oil, rice bran and annatto bean. It causes degradation of HMG-CoA reductase. Many studies demonstrated that tocotrienol prevented bone loss in animal studies but its efficacy has not been tested in humans.

    CONCLUSION: Mevalonate pathway can be exploited to develop effective antiosteoporosis agents.

    Matched MeSH terms: Drug Discovery/methods*
  15. Chan SY, Loh YC, Oo CW, Yam MF
    Bioorg Chem, 2020 11;104:104239.
    PMID: 33142420 DOI: 10.1016/j.bioorg.2020.104239
    The development of vasorelaxant as the antihypertensive drug is important as it produces a rapid and direct relaxation effect on the blood vessel muscles. Resveratrol (RV), as the most widely studied stilbenoid and the lead compound, inducing the excellent vasorelaxation effect through the multiple signalling pathways. In this study, the in vitro vascular response of the synthesized trans-stilbenoid derivatives, SB 1-8e were primarily evaluated by employing the phenylephrine (PE)-precontracted endothelium-intact isolated aortic rings. Herein we report trans-3,4,4'-trihydroxystilbene (SB 8b) exhibited surprisingly more than 2-fold improvement to the maximal relaxation (Rmax) of RV. This article also highlights the characterization of the aromatic protons in terms of their unique splitting patterns in 1H NMR.
    Matched MeSH terms: Drug Discovery*
  16. Aljabali AAA, Bakshi HA, Satija S, Metha M, Prasher P, Ennab RM, et al.
    Pharm Nanotechnol, 2020;8(4):323-353.
    PMID: 32811406 DOI: 10.2174/2211738508999200817163335
    BACKGROUND: The newly emerged coronavirus SARS-CoV-2, first reported in December 2019, has infected about five and a half million people globally and resulted in nearly 9063264 deaths until the 24th of June 2020. Nevertheless, the highly contagious virus has instigated an unimaginably rapid response from scientific and medical communities.

    OBJECTIVES: Pioneering research on molecular mechanisms underlying the viral transmission, molecular pathogenicity, and potential treatments will be highlighted in this review. The development of antiviral drugs specific to SARS-CoV-2 is a complicated and tedious process. To accelerate scientific discoveries and advancement, researchers are consolidating available data from associated coronaviruses into a single pipeline, which can be readily made available to vaccine developers.

    METHODS: In order to find studies evaluating the COVID-19 virus epidemiology, repurposed drugs and potential vaccines, web searches and bibliographical bases have been used with keywords that matches the content of this review.

    RESULTS: The published results of SARS-CoV-2 structures and interactomics have been used to identify potential therapeutic candidates. We illustrate recent publications on SARS-CoV-2, concerning its molecular, epidemiological, and clinical characteristics, and focus on innovative diagnostics technologies in the production pipeline. This objective of this review is to enhance the comprehension of the unique characteristics of SARS-CoV-2 and strengthen future control measures.

    Lay Summary: An innovative analysis is evaluating the nature of the COVID-19 pandemic. The aim is to increase knowledge of possible viral detection methods, which highlights several new technology limitations and advantages. We have assessed some drugs currently for patients (Lopinavir, Ritonavir, Anakinra and Interferon beta 1a), as the feasibility of COVID-19 specific antivirals is not presently known. The study explores the race toward vaccine development and highlights some significant trials and candidates in various clinical phases. This research addresses critical knowledge gaps by identifying repurposed drugs currently under clinical trials. Findings will be fed back rapidly to the researchers interested in COVID 19 and support the evidence and potential of possible therapeutics and small molecules with their mode of action.

    Matched MeSH terms: Drug Discovery*
  17. Koulenti D, Song A, Ellingboe A, Abdul-Aziz MH, Harris P, Gavey E, et al.
    Int J Antimicrob Agents, 2019 Mar;53(3):211-224.
    PMID: 30394301 DOI: 10.1016/j.ijantimicag.2018.10.011
    The spread of multidrug-resistant bacteria is an ever-growing concern, particularly among Gram-negative bacteria because of their intrinsic resistance and how quickly they acquire and spread new resistance mechanisms. Treating infections caused by Gram-negative bacteria is a challenge for medical practitioners and increases patient mortality and cost of care globally. This vulnerability, along with strategies to tackle antimicrobial resistance development, prompts the development of new antibiotic agents and exploration of alternative treatment options. This article summarises the new antibiotics that have recently been approved for Gram-negative bacterial infections, looks down the pipeline at promising agents currently in phase I, II, or III clinical trials, and introduces new alternative avenues that show potential in combating multidrug-resistant Gram-negative bacteria.
    Matched MeSH terms: Drug Discovery/trends*
  18. Shrivastava AK, Kumar S, Sahu PS, Mahapatra RK
    Parasitol Res, 2017 May;116(5):1533-1544.
    PMID: 28389892 DOI: 10.1007/s00436-017-5430-1
    Computational approaches to predict structure/function and other biological characteristics of proteins are becoming more common in comparison to the traditional methods in drug discovery. Cryptosporidiosis is a major zoonotic diarrheal disease particularly in children, which is caused primarily by Cryptosporidium hominis and Cryptosporidium parvum. Currently, there are no vaccines for cryptosporidiosis and recommended drugs are ineffective. With the availability of complete genome sequence of C. hominis, new targets have been recognized for the development of effective and better drugs and/or vaccines. We identified a unique hypothetical protein (TU502HP) in the C. hominis genome from the CryptoDB database. A three-dimensional model of the protein was generated using the Iterative Threading ASSEmbly Refinement server through an iterative threading method. Functional annotation and phylogenetic study of TU502HP protein revealed similarity with human transportin 3. The model is further subjected to a virtual screening study form the ZINC database compound library using the Dock Blaster server. A docking study through AutoDock software reported N-(3-chlorobenzyl)ethane-1,2-diamine as the best inhibitor in terms of docking score and binding energy. The reliability of the binding mode of the inhibitor is confirmed by a complex molecular dynamics simulation study using GROMACS software for 10 ns in the water environment. Furthermore, antigenic determinants of the protein were determined with the help of DNASTAR software. Our findings report a great potential in order to provide insights in the development of new drug(s) or vaccine(s) for treatment and prophylaxis of cryptosporidiosis among humans and animals.
    Matched MeSH terms: Drug Discovery/methods*
  19. Bera H, Chigurupati S
    Eur J Med Chem, 2016 Nov 29;124:992-1003.
    PMID: 27783978 DOI: 10.1016/j.ejmech.2016.10.032
    Thymidine phosphorylase (TP, EC 2.4.2.4), an enzyme involved in pyrimidine salvage pathway, is identical to platelet-derived endothelial cell growth factor (PD-ECGF) and gliostatin. It is extremely upregulated in a variety of solid tumours. The TP amplification is associated with concomitant overexpression of many angiogenic factors such as matrix metalloproteases (MMPs), interleukins (ILs), vascular endothelial growth factor (VEGF) etc., resulting in promotion of angiogenesis and cancer metastasis. In addition, overshooting TP level protects tumour cells from apoptosis and helps cell survival. Thus, TP is identified as a prime target for developing novel anticancer therapies. Pioneering research activities investigated a large number of TP inhibitors, most of which are pyrimidine or purine analogues. Recently, an array of structurally diverse non-nucleobase derivatives was designed, synthesized and established as promising TP inhibitors. This review, following an outline on the TP structure and functions, gives an overview of the recent advancement of various non-nucleobase TP inhibitors as novel anti-cancer agents.
    Matched MeSH terms: Drug Discovery/methods*
  20. Agyei D, Ahmed I, Akram Z, Iqbal HM, Danquah MK
    Protein Pept Lett, 2017;24(2):94-101.
    PMID: 28017145 DOI: 10.2174/0929866523666161222150444
    Bioactive proteins and peptides are recognised as novel therapeutic molecules with varying biological properties for potential medical applications. Development of protein and peptidebased therapeutic products for human use is growing steadily as they continue to receive an increasing rate of approval by the United States Food and Drugs Administration (US FDA). In this short review, we describe the current status and methodologies involved in the synthesis of protein and peptide biopharmaceuticals with an emphasis on the drivers and restrains to their exploitation in the therapeutic products sector.
    Matched MeSH terms: Drug Discovery/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links