Displaying publications 101 - 120 of 474 in total

Abstract:
Sort:
  1. Wang CT, Huang YS, Sangeetha T, Chen YM, Chong WT, Ong HC, et al.
    Bioresour Technol, 2018 May;255:83-87.
    PMID: 29414177 DOI: 10.1016/j.biortech.2018.01.086
    Photosynthetic microbial fuel cells (PMFCs) are novel bioelectrochemical transducers that employ microalgae to generate oxygen, organic metabolites and electrons. Conventional PMFCs employ non-eco-friendly membranes, catalysts and phosphate buffer solution. Eliminating the membrane, buffer and catalyst can make the MFC a practical possibility. Therefore, single chambered (SPMFC) were constructed and operated at different recirculation flow rates (0, 40 and 240 ml/min) under bufferless conditions. Furthermore, maximum power density of 4.06 mW/m2, current density of 46.34 mA/m2 and open circuit potential of 0.43 V and low internal resistance of 611.8 Ω were obtained at 40 ml/min. Based on the results it was decided that SPMFC was better for operation at 40 ml/min. Therefore, these findings provided progressive insights for future pilot and industrial scale studies of PMFCs.
    Matched MeSH terms: Electrodes
  2. Ibrahim, N.U.A., Abd Aziz, S., Nawi, N.M.
    MyJurnal
    Soluble solid content (SSC) is one of the important traits that indicate the ripeness of banana fruits.
    Determination of SSC for banana often requires destructive laboratory analysis on the fruit. An impedance measurement technique was investigated as a non-destructive approach for SSC determination of bananas. A pair of electrocardiogram (ECG) electrode connected to an impedance analyser board was used to measure the impedance value of bananas over the frequency of 19.5 to 20.5 KHz. The SSC measurement was conducted using a pocket refractometer and data was analysed to correlate SSC with impedance values. It was found that the mean of impedance, Z decreased from 10.01 to 99.93 KΩ at the frequency of 20 KHz, while the mean value of SSC increased from 0.58 to 4.93 % Brix from day 1 to day 8. The best correlation between impedance and SSC was found at 20 KHz, with the coefficient of determination, R2 of 0.87. This result indicates the potential of impedance measurement in predicting SSC of banana fruits.
    Matched MeSH terms: Electrodes
  3. Zhang Y, Knibbe R, Sunarso J, Zhong Y, Zhou W, Shao Z, et al.
    Adv Mater, 2017 Dec;29(48).
    PMID: 28628239 DOI: 10.1002/adma.201700132
    Solid-oxide fuel cells (SOFCs) are electricity generators that can convert the chemical energy in various fuels directly to the electric power with high efficiency. Recent advances in materials and related key components for SOFCs operating at ≈500 °C are summarized here, with a focus on the materials, structures, and techniques development for low-temperature SOFCs, including the analysis of most of the critical parameters affecting the electrochemical performance of the electrolyte, anode, and cathode. New strategies, such as thin-film deposition, exsolution of nanoparticles from perovskites, microwave plasma heating, and finger-like channeled electrodes, are discussed. These recent developments highlight the need for electrodes with higher activity and electrolytes with greater conductivity to generate a high electrochemical performance at lower temperatures.
    Matched MeSH terms: Electrodes
  4. Kannan SK, Esakkiappa S, Anthonysamy E, Sudalaimuthu S, Sulaiman Y, Khan MM, et al.
    Mikrochim Acta, 2023 Feb 10;190(3):87.
    PMID: 36759372 DOI: 10.1007/s00604-023-05664-8
    Spermine (SPM) is considered a biomarker for prostate cancer and detecting it becomes highly challenging due to its electro- and optical-inactive nature. SPM has a tendency to interact with groups such as phosphates and sulfides to form macrocyclic arrangements known as nuclear aggregates of polyamines. Using this tendency, an electrochemical sensor has been developed using a polysulfide (PS) modified Au electrode (PS@Au electrode). PS has been synthesized from elemental sulfur by hydrothermal method and characterized using UV-Vis, fluorescence, FTIR, SEM, and XPS analyses. The PS@Au electrode was employed for electrochemical sensing of SPM. In the presence of SPM, a decrease in gold oxide reduction current was noted which is proportional to the concentration of SPM. The decrease in gold oxide reduction (0.5 V) current was attributed to the complexing nature of SPM-PS at the electrode interface. The reason for the decrease in current has been substantiated using XRF, XPS, and spectroelectrochemical studies. Under the optimized conditions, the PS@Au electrode exhibited a linear range of 1.55-250 µM with LOD of 0.511 ± 0.02 µM (3σ). The electrochemical strategy for SPM sensing exhibited better selectivity even in the presence of possible interferents. The selectivity stems from the selective interaction of SPM with PS on the Au electrode surface; the tested amino acids, and other molecules do not complex with PS and hence they could not interfere. The PS@Au electrode has been subjected to the determination of SPM in artificial urine samples and exhibited outstanding performance in the synthetic sample.
    Matched MeSH terms: Electrodes
  5. Daud NNM, Ahmad A, Yaqoob AA, Ibrahim MNM
    Environ Sci Pollut Res Int, 2021 Nov;28(44):62816-62827.
    PMID: 34215989 DOI: 10.1007/s11356-021-15104-w
    Microbial fuel cells (MFCs) are the efficient and sustainable approach for the removal of toxic metals and generate energy concurrently. This article highlighted the effective use of rotten rice as an organic source for bacterial species to generate electricity and decrease the metal concentrations from wastewater. The obtained results were corresponding to the unique MFCs operation where the 510 mV voltage was produced within 14-day operation with 1000 Ω external resistance. The maximum power density and current density were found to be 2.9 mW/m2 and 168.42 mA/m2 with 363.6 Ω internal resistance. Similarly, the maximum metal removal efficiency was found to be 82.2% (Cd), 95.71% (Pb), 96.13% (Cr), 89.50% (Ni), 89.82 (Co), 99.50% (Ag), and 99.88% (Cu). In the biological test, it was found that Lysinibacillus strains, Chryseobacterium strains, Escherichia strains, Bacillus strains are responsible for energy generation and metal removal. Furthermore, a multiparameter optimization revealed that MFCs are the best approach for a natural environment with no special requirements. Lastly, the working mechanism of MFCs and future recommendations are enclosed.
    Matched MeSH terms: Electrodes
  6. Jatoi AS, Akhter F, Mazari SA, Sabzoi N, Aziz S, Soomro SA, et al.
    Environ Sci Pollut Res Int, 2021 Feb;28(5):5005-5019.
    PMID: 33241504 DOI: 10.1007/s11356-020-11691-2
    Petroleum, coal, and natural gas reservoir were depleting continuously due to an increase in industrialization, which enforced study to identify alternative sources. The next option is the renewable resources which are most important for energy purpose coupled with environmental problem reduction. Microbial fuel cells (MFCs) have become a promising approach to generate cleaner and more sustainable electrical energy. The involvement of various disciplines had been contributing to enhancing the performance of the MFCs. This review covers the performance of MFC along with different wastewater as a substrate in terms of treatment efficiencies as well as for energy generation. Apart from this, effect of various parameters and use of different nanomaterials for performance of MFC were also studied. From the current study, it proves that the use of microbial fuel cell along with the use of nanomaterials could be the waste and energy-related problem-solving approach. MFC could be better in performances based on optimized process parameters for handling any wastewater from industrial process.
    Matched MeSH terms: Electrodes
  7. Pudza MY, Abidin ZZ, Abdul-Rashid S, Yasin FM, Noor ASM, Abdullah J
    Environ Sci Pollut Res Int, 2020 Apr;27(12):13315-13324.
    PMID: 32020456 DOI: 10.1007/s11356-020-07695-7
    The need for the sensing of environmental pollutants cannot be overemphasized in the twenty-first century. Herein, a sensor has been developed for the sensitive and selective detection of copper (Cu2+), lead (Pb2+) and cadmium (Cd2+) as major heavy metals polluting water environment. A screen-printed carbon electrode (SPCE) modified by fluorescent carbon dots (CDs) and gold nanoparticles (AuNPs) was successfully fabricated for sensing Cu2+, Pb2+ and Cd2+. Differential pulse voltammetry (DPV) and cyclic voltammetry (CV) were deployed for the analysis of ternary analytes. CV was set at a potential range of - 0.8 to + 0.2 V at a scan rate of 100 mV/s, and DPV at a potential range of - 0.8 to + 0.1 V, scan rate of 50 mV/s, pulse rate of 0.2 V and pulse width of 50 ms. DPV technique was applied through the modified electrode for sensitive and selective determination of Cu2+, Pb2+ and Cd2+ at a concentration range of 0.01 to 0.27 ppm for Cu2+, Pb2+ and Cd2+. Tolerance for the highest possible concentration of foreign substances such as Mg2+, K+, Na+, NO3-, and SO42- was observed with a relative error less than ± 3%. The sensitivity of the modified electrode was at 0.17, 0.42 and 0.18 ppm for Cd2+, Pb2+ and Cu2+, respectively, while the limits of detection (LOD) achieved for cadmium, lead and copper were 0.0028, 0.0042 and 0.014 ppm, respectively. The quality of the modified electrode for sensing Cu2+, Pb2+ and Cd2+ at trace levels is in accordance with the World Health Organization (WHO) and Environmental Protection Agency (EPA) water regulation standard. The modified SPCE provides a cost-effective, dependable and stable means of detecting heavy metal ions (Cu2+, Pb2+ and Cd2+) in an aqueous solution. Graphical abstract .
    Matched MeSH terms: Electrodes
  8. Yaqoob AA, Guerrero-Barajas C, Ibrahim MNM, Umar K, Yaakop AS
    Environ Sci Pollut Res Int, 2022 May;29(22):32913-32928.
    PMID: 35020140 DOI: 10.1007/s11356-021-17444-z
    The present work focused on the utilization of three local wastes, i.e., rambutan (Nephelium lappaceum), langsat (Lansium parasiticum), and mango (Mangifera indica) wastes, as organic substrates in a benthic microbial fuel cell (BMFC) to reduce the cadmium and lead concentrations from synthetic water. Out of the three wastes, the mango waste promoted a maximum current density (87.71 mA/m2) along with 78% and 80% removal efficiencies for Cd2+ and Pb2+, respectively. The bacterial identification proved that Klebsiella pneumoniae, Enterobacter, and Citrobacter were responsible for metal removal and energy generation. In the present work, the BMFC mechanism, current challenges, and future recommendations are also enclosed.
    Matched MeSH terms: Electrodes
  9. Tang LW, Alias Y, Zakaria R, Woi PM
    Crit Rev Anal Chem, 2023;53(4):869-886.
    PMID: 34672838 DOI: 10.1080/10408347.2021.1989657
    A detailed overview toward the advancement of amino acid-based electrochemical sensors on the detection of heavy metals is presented. Discussion is focused on the unique properties of various amino acids (AAs) and its composites which allow them being employed in a diverse range of sensing platforms. Formation of metal-ligand complexes in between metal ions and different AAs has been discussed. The essential insights on the interaction between amino acid-based sensors and target heavy metal ions (HMIs) are provided, along with the discussion on their pros and cons. Voltammetry analysis of metal ions based on various interfaces of electrochemical sensors has been highlighted, together with the incorporation of AAs with organic, inorganic and bio-materials. In all these cases, the amino acid modified electrodes have demonstrated large active surface area with abundant adsorption sites for HMIs. The developed sensors are promising for environmental applications, as evidenced by the high selectivity, high sensitivity, high catalytic activity, and low detection limits. The materials involved, fabrication techniques and its sensing mechanism were comprehensively discussed, and the future outlooks of electrochemical sensing platforms are emphasized in this review.
    Matched MeSH terms: Electrodes
  10. Wang CT, Ubando AT, Wan ML, Ong Tang RC
    Chemosphere, 2023 Oct;337:139257.
    PMID: 37343634 DOI: 10.1016/j.chemosphere.2023.139257
    Microbial fuel cells (MFCs) are based on the biochemical reaction of microorganisms to decompose organic wastewater for converting chemical energy into power energy. MFCs are considered an environmentally friendly technology that is gaining popularity due to their simultaneous digestion and energy production abilities. To enhance its real application in wastewater treatment, this study proposes to use a non-woven material for replacing the usage of expensive membranes in MFCs. In addition, the study aims to consider a series of different aeration areas of cathode electrodes for finding an optional design. Results have shown that the adoption of non-woven with 0.45 μm can effectively prohibit the diffusion of oxygen into the anode chamber. Moreover, the non-woven material played an important role as an interface between the anode and cathode, enhancing the MFC performance. The usage of suitable non-woven material can replace the role of the membrane when applied in real wastewater applications. The results have shown that the case study where a combination of a 50% aeration area of the cathode electrodes with 25% exposure of the cathode plate in the air yielded relatively better aeration in terms of a higher current density of 250 mA/m2, higher power density of 220 mW/m2, and higher open voltage circuit of 0.4 V, compared to other case studies considered. These results indicate the optimal aeration configuration for MFCs applied in commercial wastewater treatment in the future.
    Matched MeSH terms: Electrodes
  11. Chong KW, Thomas NF, Low YY, Kam TS
    J Org Chem, 2019 Jun 07;84(11):7279-7290.
    PMID: 31056921 DOI: 10.1021/acs.joc.9b00939
    The present investigation represents a continuation of studies on the effect of ortho'-substitution on the reactivity of anodically generated methoxystilbene cation radicals. Whereas previous studies have focused on the effect of ortho'-substituted nucleophilic groups such as OH, NH2, CH2OH, CH2NH2, and COOH, the present study extends the investigation to ortho'-substituted vinyl and formyl groups. The results show that when the ortho'-substituent is a vinyl group, the products include a bisdihydronaphthalene derivative and a doubly bridged, dibenzofused cyclononane from direct trapping of a bis carbocation intermediate. In the presence of an additional 3-methoxy substituent, the products are the tetracyclic chrysene derivatives. When the ortho'-substituent is a nonnucleophilic formyl group, the products include fused indanylnaphthalenes and indanylbenzopyran aldehydes. When an additional 3-methoxy group is present, an unusual fused benzofluorene-dibenzoannulene product is obtained. Mechanistic rationalization for the formation of the various products is presented. The results have contributed to a deeper understanding of how the reactivity of the methoxystilbene cation radicals is affected by the nature of the ortho'-substituents.
    Matched MeSH terms: Electrodes
  12. Boopathi G, Ragavan R, Jaimohan SM, Sagadevan S, Kim I, Pandurangan A, et al.
    Chemosphere, 2024 Jan;348:140650.
    PMID: 37951405 DOI: 10.1016/j.chemosphere.2023.140650
    In recent years, intensive research efforts have focused on translating biomass waste into value-added carbon materials broadcasted for their significant role in energy and environmental applications. For the first time, high-performance carbonaceous materials for energy storage applications were developed from the multi-void structure of the boat-fruited shells of Sterculia Foetida (SF). In that view, synthesized mesoporous graphitic activated carbon (g-AC) via the combination of carbonization at various elevating temperatures of 700, 800, and 900 °C, respectively, and alkali activation by KOH, with a high specific surface area of 1040.5 m2 g-1 and a mesopore volume of 0.295 cm3 g-1. In a three-electrode configuration, the improved electrode (SF-K900) exhibited excellent electrochemical behavior, which was observed in an aqueous electrolyte (1 M H2SO4) with a high specific capacitance of 308.6 F/g at a current density of 1 A/g, owing to the interconnected mesopore structures and high surface area of SF-K900. The symmetric supercapacitor (SSC) delivered the specific capacitance of 138 F/g at 1 A/g with a high energy density (ED) of 13.4 Wh/kg at the power density (PD) of 24.12 kW/kg with remarkable cycle stability and supercapacitive retention of 93% over 5000 cycles. Based on the findings, it is possible to develop low-cost active electrode materials for high-rate performance SSC using mesoporous g-AC derived from SF boat-fruited shells.
    Matched MeSH terms: Electrodes
  13. Fathima A, Ilankoon IMSK, Zhang Y, Chong MN
    Sci Total Environ, 2024 Feb 20;912:169186.
    PMID: 38086487 DOI: 10.1016/j.scitotenv.2023.169186
    Impetus to minimise the energy and carbon footprints of evolving wastewater resource recovery facilities has promoted the development of microbial electrochemical systems (MES) as an emerging energy-neutral and sustainable platform technology. Using separators in dual-chamber MES to isolate anodic and cathodic environments creates endless opportunities for its myriad applications. Nevertheless, the high internal resistance and the complex interdependencies among various system factors have challenged its scale-up. This critical review employed a systems approach to examine the complex interdependencies and practical issues surrounding the implementation and scalability of dual-chamber MES, where the anodic and cathodic reactions are mutually appraised to improve the overall system efficiency. The robustness and stability of anodic biofilms in large-volume MES is dependent on its inoculum source, antecedent history and enrichment strategies. The composition and anode-respiring activity of these biofilms are modulated by the anolyte composition, while their performance demands a delicate balance between the electrode size, macrostructure and the availability of substrates, buffers and nutrients when using real wastewater as anolyte. Additionally, the catholyte governed the reduction environment and associated energy consumption of MES with scalable electrocatalysts needed to enhance the sluggish reaction kinetics for energy-efficient resource recovery. A comprehensive assessment of the dual-chamber reactor configuration revealed that the tubular, spiral-wound, or plug-in modular MES configurations are suitable for pilot-scale, where it could be designed more effectively using efficient electrode macrostructure, suitable membranes and bespoke strategies for continuous operation to maximise their performance. It is anticipated that the critical and analytical understanding gained through this review will support the continuous development and scaling-up of dual-chamber MES for prospective energy-neutral treatment of wastewater and simultaneous circular management of highly relevant environmental resources.
    Matched MeSH terms: Electrodes
  14. Teoh TP, Ong SA, Ho LN, Wong YS, Lutpi NA, Tan SM, et al.
    Environ Sci Pollut Res Int, 2023 Jul;30(35):84397-84411.
    PMID: 37358771 DOI: 10.1007/s11356-023-28362-7
    The enhancement of up-flow constructed wetland-microbial fuel cell (UFCW-MFC) performance in energy retrieval from caffeine containing wastewater has been explored via various operating conditions (hydraulic retention time (HRT), multianode (MA), multicathode current collector (MC), external resistance). The anaerobic decaffeination and COD removal improved by 37 and 12% as the HRT extended from 1 to 5 d. The increment in contact time between the microbes and organic substrates promoted the degradation and contributed to higher power output (3.4-fold), CE (eightfold), and NER (14-16-fold). The MA and MC connections facilitated the electron transfer rate and the degradation rate of organic substrates in the multiple anodic zones, which enhanced the removal efficiency in the anaerobic compartment (Caffeine: 4.2%; COD: 7.4%) and led to higher electricity generation (Power: 4.7-fold) and energy recovery (CE: 1.4-fold; NER: 2.3-2.5-fold) compared to SA. The lower external resistance favored the growth of electrogens and induced higher electron flux, where the best treatment performance and electricity production was obtained when the external resistance approached the internal resistance. Overall, it was noteworthy that the optimum operating conditions were achieved with 5 d HRT, MA, and MC connection along with external resistance of 200 Ω, which significantly outperformed the initial conditions (1 d HRT, SA connection, and 1000 Ω) by 43.7 and 29.8% of caffeine and COD removal in the anaerobic compartment, respectively as well as 14-fold of power generation.
    Matched MeSH terms: Electrodes
  15. Hamsawahini K, Sathishkumar P, Ahamad R, Yusoff AR
    Talanta, 2016 Feb 1;148:101-7.
    PMID: 26653429 DOI: 10.1016/j.talanta.2015.10.044
    An effective electrode was developed based on electromembrane extraction (EME) and square wave voltammetry (SWV) for simultaneous separation, pre-concentration and determination of lead (II) (Pb(II)) ions in complex aqueous samples. Electrochemically reduced graphene oxide-graphite reinforced carbon (ErGO-GRC) was utilized in conjunction with the SWV. Pb(II) ions were extracted from an aqueous sample solution into an acidic acceptor phase (1M HCl) in the lumen of the polyvinylidene fluoride (PVDF) membrane bag by the application of voltage of maximum 6 V across the supported liquid membrane (SLM), consisting of organic solvent and di-(2-ethylhexyl)phosphoric acid (D2EHPA). The parameters affecting the EME were optimized for Pb(II) ions. The optimum EME conditions were found to be 20% D2EHPA in 1-octanol impregnated in the wall of PVDF membrane (PVDF17) as the SLM, extraction time of 20 min, pH of sample solution of 8 and a voltage of 5 V. The PVDF-ErGO-GRC electrode system attained enrichment factors of 40 times and 80% of extraction with relative standard deviations (n=5) of 8.3%. Good linearity ranging from 0.25 to 2 nM with coefficients correlation of 0.999 was obtained. The Pb(II) ions detection limit of PVDF-ErGO-GRC electrode was found to be 0.09 nM. The newly developed single setup electrochemical system was applied to complex aqueous samples such as tap, river and sea water to evaluate the feasibility of the method for applications.
    Matched MeSH terms: Electrodes
  16. Amiri A, Ahmadi G, Shanbedi M, Savari M, Kazi SN, Chew BT
    Sci Rep, 2015;5:17503.
    PMID: 26643279 DOI: 10.1038/srep17503
    Capacitive deionization (CDI) is a promising procedure for removing various charged ionic species from brackish water. The performance of graphene-based material in capacitive deionization is lower than the expectation of the industry, so highly-crumpled, few-layered graphene (HCG) and highly-crumpled nitrogen-doped graphene (HCNDG) with high surface area have been introduced as promising candidates for CDI electrodes. Thus, HCG and HCNDG were prepared by exfoliation of graphite in the presence of liquid-phase, microwave-assisted methods. An industrially-scalable, cost-effective, and simple approach was employed to synthesize HCG and HCNDG, resulting in few-layered graphene and nitrogen-doped graphene with large specific surface area. Then, HCG and HCNDG were utilized for manufacturing a new class of carbon nanostructure-based electrodes for use in large-scale CDI equipment. The electrosorption results indicated that both the HCG and HCNDG have fairly large specific surface areas, indicating their huge potential for capacitive deionization applications.
    Matched MeSH terms: Electrodes
  17. Al-Qazzaz NK, Bin Mohd Ali SH, Ahmad SA, Islam MS, Escudero J
    Sensors (Basel), 2015;15(11):29015-35.
    PMID: 26593918 DOI: 10.3390/s151129015
    We performed a comparative study to select the efficient mother wavelet (MWT) basis functions that optimally represent the signal characteristics of the electrical activity of the human brain during a working memory (WM) task recorded through electro-encephalography (EEG). Nineteen EEG electrodes were placed on the scalp following the 10-20 system. These electrodes were then grouped into five recording regions corresponding to the scalp area of the cerebral cortex. Sixty-second WM task data were recorded from ten control subjects. Forty-five MWT basis functions from orthogonal families were investigated. These functions included Daubechies (db1-db20), Symlets (sym1-sym20), and Coiflets (coif1-coif5). Using ANOVA, we determined the MWT basis functions with the most significant differences in the ability of the five scalp regions to maximize their cross-correlation with the EEG signals. The best results were obtained using "sym9" across the five scalp regions. Therefore, the most compatible MWT with the EEG signals should be selected to achieve wavelet denoising, decomposition, reconstruction, and sub-band feature extraction. This study provides a reference of the selection of efficient MWT basis functions.
    Matched MeSH terms: Electrodes
  18. Qureshi MS, Mohd Yusoff AR, Shah A, Nafady A, Sirajuddin
    Talanta, 2015 Jan;132:541-7.
    PMID: 25476342 DOI: 10.1016/j.talanta.2014.10.005
    Vanadium(IV) and vanadium(V) can be determined by using differential pulse cathodic stripping voltammetry technique (DPCSV). Cupferron (ammonium N-nitrosophenylhydroxylamine) was used as ligand to form complex compounds with vanadium ions in Britton-Robinson buffer (BRB) solution. At concentration lower than 1.0×10(-6) M, both V(IV) and V(V) cupferron complexes showed a single cathodic peak at -0.576 V in BRB of pH 4; thus V(IV) and V(V) ions cannot be differentiated at low concentration. However, the ionic species of vanadium can be differentiated at high concentration in the presence of cupferron. Parameters including pH of BRB solution, initial potential and accumulation potential were optimized. Under the optimized parameters, the limit of detection (LOD) was 0.09 nM, and the peak current was linear in the concentration range 0.01-0.9 µM total vanadium ions. The determination of V(IV) and V(V) ions was carried out at higher concentration in the sample using calibration plot method. At higher concentration range of 10-60 µM V(IV) and V(V) ions were determined with LOD of 1.2 and 1.1 µM, respectively. The developed method was successfully applied to 10,00,000 fold diluted Benfield sample and 0.6227 M total vanadium ions were determined. The determination of V(IV) and V(V) ions were also successfully carried out in artificial sample as well as Benfield sample (dilution factor, 10,000). The concentration of V(IV) and V(V) ions was 22.52 µM and 38.91 µM, respectively, giving total vanadium concentration of 0.6143 M in Benfield sample.
    Matched MeSH terms: Electrodes
  19. Basirun WJ, Sookhakian M, Baradaran S, Endut Z, Mahmoudian MR, Ebadi M, et al.
    Sci Rep, 2015;5:9108.
    PMID: 25765731 DOI: 10.1038/srep09108
    Graphene oxide (GO) was deposited on the surface of a MnO2 air cathode by thermal evaporation at 50°C from a GO colloidal suspension. Fourier transformed infrared spectroscopy and field emission scanning electron microscopy confirmed the presence of GO on the MnO2 air cathode (GO-MnO2). Voltammetry and chrono-amperometry showed increased currents for the oxygen reduction reaction (ORR) in 6 M KOH solution for GO-MnO2 compared to the MnO2 cathode. The GO-MnO2 was used as an air cathode in an alkaline tin-air cell and produced a maximum power density of 13 mW cm(-2), in contrast to MnO2, which produced a maximum power density of 9.2 mW cm(-2). The electrochemical impedance spectroscopy results suggest that the chemical step for the ORR is the rate determining step, as proposed earlier by different researchers. It is suggested that the presence of GO and electrochemically reduced graphene oxide (ERGO) on the MnO2 surface are responsible for the increased rate of this step, whereby GO and ERGO accelerate the process of electron donation to the MnO2 and to adsorbed oxygen atoms.
    Matched MeSH terms: Electrodes
  20. Yunusa Z, Hamidon MN, Ismail A, Mohd Isa M, Yaacob MH, Rahmanian S, et al.
    Sensors (Basel), 2015;15(3):4749-65.
    PMID: 25730480 DOI: 10.3390/s150304749
    A double SAW resonator system was developed as a novel method for gas sensing applications. The proposed system was investigated for hydrogen sensing. Commercial Surface Acoustic Wave (SAW) resonators with resonance frequencies of 433.92 MHz and 433.42 MHz were employed in the double SAW resonator system configuration. The advantages of using this configuration include its ability for remote measurements, and insensitivity to vibrations and other external disturbances. The sensitive layer is composed of functionalized multiwalled carbon nanotubes and polyaniline nanofibers which were deposited on pre-patterned platinum metal electrodes fabricated on a piezoelectric substrate. This was mounted into the DSAWR circuit and connected in parallel. The sensor response was measured as the difference between the resonance frequencies of the SAW resonators, which is a measure of the gas concentration. The sensor showed good response towards hydrogen with a minimum detection limit of 1%.
    Matched MeSH terms: Electrodes
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links