Displaying publications 101 - 120 of 357 in total

Abstract:
Sort:
  1. Lee SX, Lim HN, Ibrahim I, Jamil A, Pandikumar A, Huang NM
    Biosens Bioelectron, 2017 Mar 15;89(Pt 1):673-680.
    PMID: 26718548 DOI: 10.1016/j.bios.2015.12.030
    In this study, a disposable and simple electrochemical immunosensor was fabricated for the detection of carcinoembryonic antigen. In this method, silver nanoparticles (AgNPs) were mixed with reduced graphene oxide (rGO) to modify the surface of screen-printed carbon electrode (SPE). Initially, AgNPs-rGO modified-SPEs were fabricated by using simple electrochemical deposition method. Then the carcinoembryonic antigen (CEA) was immobilized between the primary antibody and horseradish peroxidase (HRP)-conjugated secondary antibody onto AgNPs-rGO modified-SPEs to fabricate a sandwich-type electrochemical immunosensor. The proposed method could detect the CEA with a linear range of 0.05-0.50µgmL-1 and a detection limit down to 0.035µgmL-1 as compared to its non-sandwich counterpart, which yielded a linear range of 0.05-0.40µgmL-1, with a detection limit of 0.042µgmL-1. The immunosensor showed good performance in the detection of carcinoembryonic antigen, exhibiting a simple, rapid and low-cost. The immunosensor showed a higher sensitivity than an enzymeless sensor.
    Matched MeSH terms: Graphite/chemistry*
  2. Geetha Bai R, Muthoosamy K, Shipton FN, Manickam S
    Ultrason Sonochem, 2017 May;36:129-138.
    PMID: 28069192 DOI: 10.1016/j.ultsonch.2016.11.021
    Graphene is one of the highly explored nanomaterials due to its unique and extraordinary properties. In this study, by utilizing a hydrothermal reduction method, graphene oxide (GO) was successfully converted to reduced graphene oxide (RGO) without using any toxic reducing agents. Following this, with the use of ultrasonic cavitation, profoundly stable few layer thick RGO nanodispersion was generated without employing any stabilizers or surfactants. During ultrasonication, shockwaves from the collapse of bubbles cause a higher dispersing energy to the graphene nanosheets which surpass the forces of Van der Waal's and π-π stacking and thus pave the way to form a stable aqueous nanodispersion of graphene. Ultrasonication systems with different power intensity have been employed to determine the optimum conditions for obtaining the most stable RGO dispersion. The optimised conditions of ultrasonic treatments led to the development of a very stable reduced graphene oxide (RGO) aqueous dispersion. The stability was observed for two years and was analyzed by using Zetasizer by measuring the particle size and zeta potential at regular intervals and found to have exceptional stability. The excellent stability at physiological pH promotes its utilization in nano drug delivery application as a carrier for Paclitaxel (Ptx), an anticancer drug. The in vitro cytotoxicity analysis of Ptx loaded RGO nanodispersion by MTT assay performed on the cell lines revealed the potential of the nanodispersion as a suitable drug carrier. Studies on normal lung cells, MRC-5 and nasopharyngeal cancer cells, HK-1 supported the biocompatibility of RGO-Ptx towards normal cell line. This investigation shows the potential of exceptionally stable RGO-Ptx nanodispersion in nano drug delivery applications.
    Matched MeSH terms: Graphite/chemistry*
  3. Barahuie F, Saifullah B, Dorniani D, Fakurazi S, Karthivashan G, Hussein MZ, et al.
    Mater Sci Eng C Mater Biol Appl, 2017 May 01;74:177-185.
    PMID: 28254283 DOI: 10.1016/j.msec.2016.11.114
    We have synthesized graphene oxide using improved Hummer's method in order to explore the potential use of the resulting graphene oxide as a nanocarrier for an active anticancer agent, chlorogenic acid (CA). The synthesized graphene oxide and chlorogenic acid-graphene oxide nanocomposite (CAGO) were characterized using Fourier transform infrared (FTIR) spectroscopy, thermogravimetry and differential thermogravimetry analysis, Raman spectroscopy, powder X-ray diffraction (PXRD), UV-vis spectroscopy and high resolution transmission electron microscopy (HRTEM) techniques. The successful conjugation of chlorogenic acid onto graphene oxide through hydrogen bonding and π-π interaction was confirmed by Raman spectroscopy, FTIR analysis and X-ray diffraction patterns. The loading of CA in the nanohybrid was estimated to be around 13.1% by UV-vis spectroscopy. The release profiles showed favourable, sustained and pH-dependent release of CA from CAGO nanocomposite and conformed well to the pseudo-second order kinetic model. Furthermore, the designed anticancer nanohybrid was thermally more stable than its counterpart. The in vitro cytotoxicity results revealed insignificant toxicity effect towards normal cell line, with a viability of >80% even at higher concentration of 50μg/mL. Contrarily, CAGO nanocomposite revealed enhanced toxic effect towards evaluated cancer cell lines (HepG2 human liver hepatocellular carcinoma cell line, A549 human lung adenocarcinoma epithelial cell line, and HeLa human cervical cancer cell line) compared to its free form.
    Matched MeSH terms: Graphite/chemistry*
  4. Haniff MASM, Hafiz SM, Huang NM, Rahman SA, Wahid KAA, Syono MI, et al.
    ACS Appl Mater Interfaces, 2017 May 03;9(17):15192-15201.
    PMID: 28418234 DOI: 10.1021/acsami.7b02833
    This paper presents a straightforward plasma treatment modification of graphene with an enhanced piezoresistive effect for the realization of a high-performance pressure sensor. The changes in the graphene in terms of its morphology, structure, chemical composition, and electrical properties after the NH3/Ar plasma treatment were investigated in detail. Through a sufficient plasma treatment condition, our studies demonstrated that plasma-treated graphene sheet exhibits a significant increase in sensitivity by one order of magnitude compared to that of the unmodified graphene sheet. The plasma-doping introduced nitrogen (N) atoms inside the graphene structure and was found to play a significant role in enhancing the pressure sensing performance due to the tunneling behavior from the localized defects. The high sensitivity and good robustness demonstrated by the plasma-treated graphene sensor suggest a promising route for simple, low-cost, and ultrahigh resolution flexible sensors.
    Matched MeSH terms: Graphite
  5. Ang KM, Yeo LY, Hung YM, Tan MK
    Nanoscale, 2017 May 18;9(19):6497-6508.
    PMID: 28466906 DOI: 10.1039/c7nr01690e
    We exploit the possibility of enhancing the molecular transport of liquids through graphene films using amplitude modulated surface acoustic waves (SAWs) to demonstrate effective and efficient nanoparticle filtration. The use of the SAW, which is an extremely efficient means for driving microfluidic transport, overcomes the need for the large mechanical pumps required to circumvent the large pressure drops encountered in conventional membranes for nanoparticle filtration. 100% filtration efficiency was obtained for micron-dimension particulates, decreasing to only 95% for the filtration of particles of tens of nanometers in dimension, which is comparable to that achieved with other methods. To circumvent clogging of the film, which is typical with all membrane filters, a backwash operation to flush the nanoparticles is incorporated simply by reversing the SAW-induced flow such that 98% recovery of the initial filtration rate is recovered. Given these efficiencies, together with the low cost and compact size of the chipscale SAW devices, we envisage the possibility of scaling out the process by operating a large number of devices in parallel to achieve typical industrial-scale throughputs with potential benefits in terms of substantially lower capital, operating and maintenance costs.
    Matched MeSH terms: Graphite
  6. Kee SY, Munusamy Y, Ong KS, Lai KC
    Polymers (Basel), 2017 Jun 18;9(6).
    PMID: 30970908 DOI: 10.3390/polym9060230
    In this study, reduced graphene oxide (RGO)/polymethyl methacrylate (PMMA) nanocomposites were prepared by employing in situ polymerization and solution blending methods. In terms of mechanical properties, RGO loading increased the Young's modulus but decreased the elongation at break for RGO/PMMA nanocomposites. Tensile strength for solution blended RGO/PMMA nanocomposites increased after adding 0.5 wt % RGO, which was attributed to the good dispersion of RGO in the nanocomposites as evidenced from SEM and TEM. Solar energy conversion efficiency measurement results showed that the optimum concentration of RGO in the RGO/PMMA nanocomposites was found to be 1.0 wt % in order to achieve the maximum solar energy conversion efficiency of 25%. In the present study, the solution blended nanocomposites exhibited better overall properties than in situ polymerized nanocomposites owing to the better dispersion of RGO in solution blending. These findings would contribute to future work in search of higher conversion efficiency using nanocomposites.
    Matched MeSH terms: Graphite
  7. Nasir S, Hussein MZ, Yusof NA, Zainal Z
    Nanomaterials (Basel), 2017 Jul 13;7(7).
    PMID: 28703757 DOI: 10.3390/nano7070182
    Herein, a new approach was proposed to produce reduced graphene oxide (rGO) from graphene oxide (GO) using various oil palm wastes: oil palm leaves (OPL), palm kernel shells (PKS) and empty fruit bunches (EFB). The effect of heating temperature on the formation of graphitic carbon and the yield was examined prior to the GO and rGO synthesis. Carbonization of the starting materials was conducted in a furnace under nitrogen gas for 3 h at temperatures ranging from 400 to 900 °C and a constant heating rate of 10 °C/min. The GO was further synthesized from the as-carbonized materials using the 'improved synthesis of graphene oxide' method. Subsequently, the GO was reduced by low-temperature annealing reduction at 300 °C in a furnace under nitrogen gas for 1 h. The IG/ID ratio calculated from the Raman study increases with the increasing of the degree of the graphitization in the order of rGO from oil palm leaves (rGOOPL) < rGO palm kernel shells (rGOPKS) < rGO commercial graphite (rGOCG) < rGO empty fruit bunches (rGOEFB) with the IG/ID values of 1.06, 1.14, 1.16 and 1.20, respectively. The surface area and pore volume analyses of the as-prepared materials were performed using the Brunauer Emmett Teller-Nitrogen (BET-N₂) adsorption-desorption isotherms method. The lower BET surface area of 8 and 15 m2 g-1 observed for rGOCG and rGOOPL, respectively could be due to partial restacking of GO layers and locally-blocked pores. Relatively, this lower BET surface area is inconsequential when compared to rGOPKS and rGOEFB, which have a surface area of 114 and 117 m² g-1, respectively.
    Matched MeSH terms: Graphite
  8. Wang P, Yang J, Li X, Liu M, Zhang X, Sun D, et al.
    Sci Rep, 2017 07 26;7(1):6615.
    PMID: 28747656 DOI: 10.1038/s41598-017-06007-3
    Uncovering energy absorption and surface effects of various penetrating velocities on laminar structures is essential for designing protective structures. In this study, both quasi-static and dynamic penetration tests were systematical conducted on the front surfaces of metal sheets coated with a graphene oxide (GO) solution and other media. The addition of a GO fluid film to the front impact surface aided in increasing the penetration strength, improving the failure extension and dissipating additional energy under a wide-range of indentation velocity, from 3.33 × 10-5 m/s to 4.42 m/s. The coated -surfaces improved the specific energy dissipation by approximately 15~40% relative to the dry-contact configuration for both single-layer and double-layer configurations, and specific energy dissipations of double-layer configurations were 20~30% higher than those of the single-layer configurations. This treatment provides a facile strategy in changing the contact state for improving the failure load and dissipate additional energy.
    Matched MeSH terms: Graphite
  9. Kardi SN, Ibrahim N, Darzi GN, Rashid NAA, Villaseñor J
    Environ Sci Pollut Res Int, 2017 Aug;24(23):19444-19457.
    PMID: 28580546 DOI: 10.1007/s11356-017-9204-1
    This work studied the performance of a laboratory-scale microbial fuel cell (MFC) using a bioanode that consisted of treated clinoptilolite fine powder coated onto graphite felt (TC-MGF). The results were compared with another similar MFC that used a bare graphite felt (BGF) bioanode. The anode surfaces provided active sites for the adhesion of the bacterial consortium (NAR-2) and the biodegradation of mono azo dye C.I. Acid Red 27. As a result, bioelectricity was generated in both MFCs. A 98% decolourisation rate was achieved using the TC-MGF bioanode under a fed-batch operation mode. Maximum power densities for BGF and TC-MGF bioanodes were 458.8 ± 5.0 and 940.3 ± 4.2 mW m-2, respectively. GC-MS analyses showed that the dye was readily degraded in the presence of the TC-MGF bioanode. The MFC using the TC-MGF bioanode showed a stable biofilm with no biomass leached out for more than 300 h operation. In general, MFC performance was substantially improved by the fabricated TC-MGF bioanode. It was also found that the TC-MGF bioanode with the stable biofilm presented the nature of exopolysaccharide (EPS) structure, which is suitable for the biodegradation of the azo dye. In fact, the EPS facilitated the shuttling of electrons to the bioanode for the generation of bioelectricity.
    Matched MeSH terms: Graphite/chemistry*
  10. Low SS, Loh HS, Boey JS, Khiew PS, Chiu WS, Tan MTT
    Biosens Bioelectron, 2017 Aug 15;94:365-373.
    PMID: 28319904 DOI: 10.1016/j.bios.2017.02.038
    An efficient electrochemical impedance genosensing platform has been constructed based on graphene/zinc oxide nanocomposite produced via a facile and green approach. Highly pristine graphene was synthesised from graphite through liquid phase sonication and then mixed with zinc acetate hexahydrate for the synthesis of graphene/zinc oxide nanocomposite by solvothermal growth. The as-synthesised graphene/zinc oxide nanocomposite was characterised with scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy and X-ray diffractometry (XRD) to evaluate its morphology, crystallinity, composition and purity. An amino-modified single stranded DNA oligonucleotide probe synthesised based on complementary Coconut Cadang-Cadang Viroid (CCCVd) RNA sequence, was covalently bonded onto the surface of graphene/zinc oxide nanocomposite by the bio-linker 1-pyrenebutyric acid N-hydroxysuccinimide ester. The hybridisation events were monitored by electrochemical impedance spectroscopy (EIS). Under optimised sensing conditions, the single stranded CCCVd RNA oligonucleotide target could be quantified in a wide range of 1.0×10-11M to 1.0×10-6 with good linearity (R =0.9927), high sensitivity with low detection limit of 4.3×10-12M. Differential pulse voltammetry (DPV) was also performed for the estimation of nucleic acid density on the graphene/zinc oxide nanocomposite-modified sensing platform. The current work demonstrates an important advancement towards the development of a sensitive detection assay for various diseases involving RNA agents such as CCCVd in the future.
    Matched MeSH terms: Graphite/chemistry
  11. Ng KL, Khor SM
    Anal Chem, 2017 09 19;89(18):10004-10012.
    PMID: 28845664 DOI: 10.1021/acs.analchem.7b02432
    Guanine (G), adenine (A), thymine (T), and cytosine (C) are the four basic constituents of DNA. Studies on DNA composition have focused especially on DNA damage and genotoxicity. However, the development of a rapid, simple, and multiplex method for the simultaneous measurement of the four DNA bases remains a challenge. In this study, we describe a graphite-based nanocomposite electrode (Au-rGO/MWCNT/graphite) that uses a simple electro-co-deposition approach. We successfully applied the developed sensor for multiplex detection of G, A, T, and C, using square-wave voltammetry. The sensor was tested using real animal and plant DNA samples in which the hydrolysis of T and C could be achieved with 8 mol L-1 of acid. The electrochemical sensor exhibited excellent sensitivity (G = 178.8 nA/μg mL-1, A = 92.9 nA/μg mL-1, T = 1.4 nA/μg mL-1, and C = 15.1 9 nA/μg mL-1), low limit of detection (G, A = 0.5 μg mL-1; T, C = 1.0 μg mL-1), and high selectivity in the presence of common interfering factors from biological matrixes. The reliability of the established method was assessed by method validation and comparison with the ultraperformance liquid chromatography technique, and a correlation of 103.7% was achieved.
    Matched MeSH terms: Graphite/chemistry*
  12. Pirouz AA, Selamat J, Iqbal SZ, Mirhosseini H, Karjiban RA, Bakar FA
    Sci Rep, 2017 Sep 29;7(1):12453.
    PMID: 28963539 DOI: 10.1038/s41598-017-12341-3
    Adsorption plays an important role in the removal of mycotoxins from feedstuffs. The main objective of this study was to investigate the efficacy of using magnetic graphene oxide nanocomposites (MGO) as an adsorbent for the reduction of Fusarium mycotoxins in naturally contaminated palm kernel cake (PKC). Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to assess the mycotoxins in animal feed. Target mycotoxins included the zearalenone (ZEA), the fumonisins (FB1 and FB2) and trichothecenes (deoxynivalenol (DON), HT-2 and T-2 toxin). Response surface methodology (RSM) was applied to investigate the effects of time (3-7 h), temperature (30-50 °C) and pH (3-7) on the reduction. The response surface models with (R2 = 0.94-0.99) were significantly fitted to predict mycotoxins in contaminated PKC. Furthermore, the method ensured a satisfactory adjustment of the polynomial regression models with the experimental data except for fumonisin B1 and B2, which decrease the adsorption of magnetic graphene oxide (MGO). The optimum reduction was performed at pH 6.2 for 5.2 h at of 40.6 °C. Under these optimum conditions, reduced levels of 69.57, 67.28, 57.40 and 37.17%, were achieved for DON, ZEA, HT-2, and T-2, respectively.
    Matched MeSH terms: Graphite/chemistry*
  13. Kamaruddin NH, Bakar AAA, Mobarak NN, Zan MSD, Arsad N
    Sensors (Basel), 2017 Oct 06;17(10).
    PMID: 28984826 DOI: 10.3390/s17102277
    The study of binding affinity is essential in surface plasmon resonance (SPR) sensing because it allows researchers to quantify the affinity between the analyte and immobilised ligands of an SPR sensor. In this study, we demonstrate the derivation of the binding affinity constant, K, for Pb2+and Hg2+ions according to their SPR response using a gold/silver/gold/chitosan-graphene oxide (Au/Ag/Au/CS-GO) sensor for the concentration range of 0.1-5 ppm. The higher affinity of Pb2+to binding with the CS-GO sensor explains the outstanding sensitivity of 2.05 °ppm-1against 1.66 °ppm-1of Hg2+. The maximum signal-to-noise ratio (SNR) upon detection of Pb2+is 1.53, and exceeds the suggested logical criterion of an SNR. The Au/Ag/Au/CS-GO SPR sensor also exhibits excellent repeatability in Pb2+due to the strong bond between its functional groups and this cation. The adsorption data of Pb2+and Hg2+on the CS-GO sensor fits well with the Langmuir isotherm model where the affinity constant, K, of Pb2+and Hg2+ions is computed. The affinity of Pb2+ions to the Au/Ag/Au/CS-GO sensor is significantly higher than that of Hg2+based on the value of K, 7 × 10⁵ M-1and 4 × 10⁵ M-1, respectively. The higher shift in SPR angles due to Pb2+and Hg2+compared to Cr3+, Cu2+and Zn2+ions also reveals the greater affinity of the CS-GO SPR sensor to them, thus supporting the rationale for obtaining K for these two heavy metals. This study provides a better understanding on the sensing performance of such sensors in detecting heavy metal ions.
    Matched MeSH terms: Graphite
  14. Saifullah B, Maitra A, Chrzastek A, Naeemullah B, Fakurazi S, Bhakta S, et al.
    Molecules, 2017 Oct 12;22(10).
    PMID: 29023384 DOI: 10.3390/molecules22101697
    Tuberculosis (TB) is a dreadful bacterial disease, infecting millions of human and cattle every year worldwide. More than 50 years after its discovery, ethambutol continues to be an effective part of the World Health Organization's recommended frontline chemotherapy against TB. However, the lengthy treatment regimens consisting of a cocktail of antibiotics affect patient compliance. There is an urgent need to improve the current therapy so as to reduce treatment duration and dosing frequency. In this study, we have designed a novel anti-TB multifunctional formulation by fabricating graphene oxide with iron oxide magnetite nanoparticles serving as a nano-carrier on to which ethambutol was successfully loaded. The designed nanoformulation was characterised using various analytical techniques. The release of ethambutol from anti-TB multifunctional nanoparticles formulation was found to be sustained over a significantly longer period of time in phosphate buffer saline solution at two physiological pH (7.4 and 4.8). Furthermore, the nano-formulation showed potent anti-tubercular activity while remaining non-toxic to the eukaryotic cells tested. The results of this in vitro evaluation of the newly designed nano-formulation endorse its further development in vivo.
    Matched MeSH terms: Graphite/chemistry*
  15. Saifullah B, Chrzastek A, Maitra A, Naeemullah B, Fakurazi S, Bhakta S, et al.
    Molecules, 2017 Oct 12;22(10).
    PMID: 29023399 DOI: 10.3390/molecules22101560
    Tuberculosis (TB) is a bacterial disease responsible for millions of infections and preventable deaths each year. Its treatment is complicated by patients' noncompliance due to dosing frequency, lengthy treatment, and adverse side effects associated with current chemotherapy. However, no modifications to the half-a-century old standard chemotherapy have been made based on a nanoformulation strategy to improve pharmacokinetic efficacy. In this study, we have designed a new nanodelivery formulation, using graphene oxide as the nanocarrier, loaded with the anti-TB antibiotic, ethambutol. The designed formulation was characterized using a number of molecular analytical techniques. It was found that sustained release of the drug resulted in better bioavailability. In addition, the designed formulation demonstrated high biocompatibility with mouse fibroblast cells. The anti-TB activity of the nanodelivery formulation was determined using whole-cell resazurin microtiter plate assay, modified-spot culture growth inhibition assay, and biofilm inhibition assay. The nanodelivery formulation showed good anti-mycobacterial activity. The anti-mycobacterial activity of Ethambutol was unaffected by the drug loading and release process. The results of this study demonstrated the potential of this new nanodelivery formulation strategy to be considered for modifying existing chemotherapy to yield more efficacious antibiotic treatment against TB.
    Matched MeSH terms: Graphite/chemistry*
  16. Al-Ani LA, AlSaadi MA, Kadir FA, Hashim NM, Julkapli NM, Yehye WA
    Eur J Med Chem, 2017 Oct 20;139:349-366.
    PMID: 28806615 DOI: 10.1016/j.ejmech.2017.07.036
    Early detection and efficient treatment of cancer disease remains a drastic challenge in 21st century. Throughout the bulk of funds, studies, and current therapeutics, cancer seems to aggressively advance with drug resistance strains and recurrence rates. Nevertheless, nanotechnologies have indeed given hope to be the next generation for oncology applications. According to US National cancer institute, it is anticipated to revolutionize the perspectives of cancer diagnosis and therapy. With such success, nano-hybrid strategy creates a marvelous preference. Herein, graphene-gold based composites are being increasingly studied in the field of oncology, for their outstanding performance as robust vehicle of therapeutic agents, built-in optical diagnostic features, and functionality as theranostic system. Additional modes of treatments are also applicable including photothermal, photodynamic, as well as combined therapy. This review aims to demonstrate the various cancer-related applications of graphene-gold based hybrids in terms of detection and therapy, highlighting the major attributes that led to designate such system as a promising ally in the war against cancer.
    Matched MeSH terms: Graphite/therapeutic use*; Graphite/chemistry
  17. Nazir MH, Khan ZA, Saeed A, Bakolas V, Braun W, Bajwa R, et al.
    Materials (Basel), 2017 Oct 25;10(11).
    PMID: 29068395 DOI: 10.3390/ma10111225
    A study has been presented on the effects of intrinsic mechanical parameters, such as surface stress, surface elastic modulus, surface porosity, permeability and grain size on the corrosion failure of nanocomposite coatings. A set of mechano-electrochemical equations was developed by combining the popular Butler-Volmer and Duhem expressions to analyze the direct influence of mechanical parameters on the electrochemical reactions in nanocomposite coatings. Nanocomposite coatings of Ni with Al₂O₃, SiC, ZrO₂ and Graphene nanoparticles were studied as examples. The predictions showed that the corrosion rate of the nanocoatings increased with increasing grain size due to increase in surface stress, surface porosity and permeability of nanocoatings. A detailed experimental study was performed in which the nanocomposite coatings were subjected to an accelerated corrosion testing. The experimental results helped to develop and validate the equations by qualitative comparison between the experimental and predicted results showing good agreement between the two.
    Matched MeSH terms: Graphite
  18. Muniandy S, Dinshaw IJ, Teh SJ, Lai CW, Ibrahim F, Thong KL, et al.
    Anal Bioanal Chem, 2017 Nov;409(29):6893-6905.
    PMID: 29030671 DOI: 10.1007/s00216-017-0654-6
    Reduced graphene oxide (rGO) has emerged as a promising nanomaterial for reliable detection of pathogenic bacteria due to its exceptional properties such as ultrahigh electron transfer ability, large surface to volume ratio, biocompatibility, and its unique interactions with DNA bases of the aptamer. In this study, rGO-azophloxine (AP) nanocomposite aptasensor was developed for a sensitive, rapid, and robust detection of foodborne pathogens. Besides providing an excellent conductive and soluble rGO nanocomposite, the AP dye also acts as an electroactive indicator for redox reactions. The interaction of the label-free single-stranded deoxyribonucleic acid (ssDNA) aptamer with the test organism, Salmonella enterica serovar Typhimurium (S. Typhimurium), was monitored by differential pulse voltammetry analysis, and this aptasensor showed high sensitivity and selectivity for whole-cell bacteria detection. Under optimum conditions, this aptasensor exhibited a linear range of detection from 108 to 101 cfu mL-1 with good linearity (R 2 = 0.98) and a detection limit of 101 cfu mL-1. Furthermore, the developed aptasensor was evaluated with non-Salmonella bacteria and artificially spiked chicken food sample with S. Typhimurium. The results demonstrated that the rGO-AP aptasensor possesses high potential to be adapted for the effective and rapid detection of a specific foodborne pathogen by an electrochemical approach. Graphical abstract Fabrication of graphene-based nanocomposite aptasensor for detection of foodborne pathogen.
    Matched MeSH terms: Graphite/chemistry*
  19. Said FA, Menon PS, Rajendran V, Shaari S, Majlis BY
    IET Nanobiotechnol, 2017 Dec;11(8):981-986.
    PMID: 29155398 DOI: 10.1049/iet-nbt.2017.0051
    In this study, the authors investigated the effects of a single layer graphene as a coating layer on top of metal thin films such as silver, gold, aluminum and copper using finite-difference time domain method. To enhance the resolution of surface plasmon resonance (SPR) sensor, it is necessary to increase the SPR reflectivity and decrease the full-width-half maximum (FWHM) of the SPR curve so that there is minimum uncertainty in the determination of the resonance dip. Numerical data was verified with analytical and experimental data where all the data were in good agreement with resonance angle differing in <10% due to noise present in components such as humidity and temperature. In further analysis, reflectivity and FWHM were compared among four types of metal with various thin film thicknesses where graphene was applied on top of the metal layers, and data was compared against pure conventional metal thin films. A 60 nm-thick Au thin film results in higher performance with reflectivity of 92.4% and FWHM of 0.88° whereas single layer graphene-on-60 nm-thick Au gave reflectivity of 91.7% and FWHM of 1.32°. However, a graphene-on-40 nm-thick Ag also gave good performance with narrower FWHM of 0.88° and reflection spectra of 89.2%.
    Matched MeSH terms: Graphite/chemistry*
  20. Mohamad FS, Mat Zaid MH, Abdullah J, Zawawi RM, Lim HN, Sulaiman Y, et al.
    Sensors (Basel), 2017 Dec 02;17(12).
    PMID: 29207463 DOI: 10.3390/s17122789
    This article describes chemically modified polyaniline and graphene (PANI/GP) composite nanofibers prepared by self-assembly process using oxidative polymerization of aniline monomer and graphene in the presence of a solution containing poly(methyl vinyl ether-alt-maleic acid) (PMVEA). Characterization of the composite nanofibers was carried out by Fourier transform infrared (FTIR) and Raman spectroscopy, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). SEM images revealed the size of the PANI nanofibers ranged from 90 to 360 nm in diameter and was greatly influenced by the proportion of PMVEA and graphene. The composite nanofibers with an immobilized DNA probe were used for the detection of Mycobacterium tuberculosis by using an electrochemical technique. A photochemical indicator, methylene blue (MB) was used to monitor the hybridization of target DNA by using differential pulse voltammetry (DPV) method. The detection range of DNA biosensor was obtained from of 10-6-10-9 M with the detection limit of 7.853 × 10-7 M under optimum conditions. The results show that the composite nanofibers have a great potential in a range of applications for DNA sensors.
    Matched MeSH terms: Graphite
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links