MATERIALS AND METHODS: Two leukemic cell lines, MV4-11 (acute myeloid leukemia) and K562 (chronic myeloid leukemia), were studied. IC50 concentrations were determined and apoptosis and cell cycle regulation were studied by flow cytometric analysis. The expression of apoptosis and cell-cycle related regulatory proteins was assessed by Western blotting.
RESULTS: P sacharosa inhibited growth of MV4-11 and K562 cells in a dose-dependent manner. The mode of cell death was via induction of intrinsic apoptotic pathways and cell cycle arrest. There was profound up-regulation of cytochrome c, caspases, p21 and p53 expression and repression of Akt and Bcl-2 expression in treated cells.
CONCLUSIONS: These results suggest that P sacharosa induces leukemic cell death via apoptosis induction and changes in cell cycle checkpoint, thus deserves further study for anti-leukemic potential.
OBJECTIVES: Based on the multitargeted biological activities approach of ligustrazine based chalcones, in current study 18 synthetic ligustrazine-containing α, β-unsaturated carbonyl-based 1, 3-Diphenyl-2-propen-1-one derivatives were evaluated for their inhibitory effects on growth of five different types of cancer cells.
METHODS: All compounds were evaluated for anticancer effects on various cancer cell lines by propidium iodide fluorescence assay and various other assays were performed for mechanistic studies.
RESULTS: Majority of compounds exhibited strong inhibition of cancer cells especially synthetic compounds 4a and 4b bearing 1-Pyridin-3-yl-ethanone as a ketone moiety in main structural backbone were found most powerful inhibitors of cancer cell growth. Most active 9 compounds among whole series were selected for further studies related to different cancer targets including EGFR TK kinases, tubulin polymerization, KAF and BRAFV600E.
CONCLUSION: Synthetic derivatives including 4a-b and 5a-b showed multitarget approach and showed strong inhibitory effects on EGFR, FAK and BRAF while three compounds including 3e bearing methoxy substitution, 4a and 4b with 1- pyridin-3-yl-ethanone moiety showed the inhibition of tubulin polymerization.
METHODS: SHED (n = 3) from passage 4 were expanded in FBS (FBS-SHED) or pHS (pHS-SHED) supplemented media until passage 7. During expansion, the proliferation of SHED was determined. Cells at passage 7 were further expanded in human serum from four individual donors (iHS) for 120 h followed by assessment of cell viability and profiling of the secreted paracrine factors.
RESULTS: Proliferation of SHED was significantly higher (p