Displaying publications 101 - 120 of 377 in total

Abstract:
Sort:
  1. Musalmah, M., Leow, K.S., Nursiati, M.T., Raja Najmi Hanis Raja, l., Fadly Syah, A., Renuka, S., et al.
    Malays J Nutr, 2013;19(2):251-259.
    MyJurnal
    Introduction: Tocotrienol exerts neuroprotective effects resulting in an improved circulating oxidative status. However, accumulation of tocotrienol due to longterm intake may exert pro-oxidant effects. Thus the effects of short- and longterm supplementation of vitamin E tocotrienol rich fraction (TRF) on the parameters of oxidative status in rat brains were determined. Methods: Wistar rats aged 3 months were supplemented with TRF for 3 or 8 months. Control groups received equivolume of distilled water. Rats were sacrificed and brains
    harvested, weighed and homogenised. Supernatants were analysed for catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) activities, vitamin E and protein carbonyl. Results: A significant decline in the level of total vitamin E and its isomers with increasing age were found. TRF supplementation increased the level of total vitamin E with alpha-tocotrienol (ATT) being the major isomer raised. Glutathione peroxidase activity was also
    significantly increased in the long-term supplemented group compared to the short-term supplemented and control groups. The results also showed significantly higher superoxide dismutase activity (p
    Matched MeSH terms: Rats, Wistar
  2. Selvamuniandy TS, Mohamed N, Mansor SM, Nair NK, Navaratnam V
    J Chromatogr B Biomed Sci Appl, 1997 Oct 24;700(1-2):209-13.
    PMID: 9390731
    A selective and sensitive HPLC assay for the quantitative determination of a new antifilarial drug, 6,4'-bis-(2-imidazolinylhydrazone)-2-phenylimidazo[1,2-a]pyr idine (CDR 101) is described. After extraction from plasma and blood, CDR 101 was analysed using a C18 Nucleosil ODS column (250x4.6 mm, 5 microm particle size) and mobile phase of acetonitrile-0.05 M ammonium acetate adjusted to pH 3.0, with UV detection at 318 nm. The mean recoveries of CDR 101 in plasma and blood over a concentration range of 25-500 ng/ml were 95.5+/-2.01% and 83.3+/-1.87%, respectively. The within-day and day-to-day coefficient of variations for plasma were 3.23-6.21% and 2.59-9.90%, respectively, those for blood were 2.59-5.92% and 2.89-6.82%, respectively. The minimum detectable concentration for CDR 101 was 1 ng/ml in plasma and 2.5 ng/ml in whole blood. This method was found to be suitable for clinical pharmacokinetic studies.
    Matched MeSH terms: Rats, Wistar
  3. Chia LL, Jantan I, Chua KH, Lam KW, Rullah K, Aluwi MF
    Front Pharmacol, 2016;7:291.
    PMID: 27625609 DOI: 10.3389/fphar.2016.00291
    Tocotrienols (T3) are well-known for their antioxidant properties besides showing therapeutic potential in clinical complications such as hyperlipidemia induced by diabetes. The aim of this study was to determine the effects of δ-T3, γ-T3, and α-T3 on insulin secretion-associated genes expression of rat pancreatic islets in a dynamic culture. Pancreatic islets freshly isolated from male Wistar rats were treated with T3 for 1 h at 37°C in a microfluidic system with continuous operation. The cells were collected for total RNA extraction and reverse-transcribed, followed by measurement of insulin secretion-associated genes expression using quantitative real-time polymerase chain reaction. Molecular docking experiments were performed to gain insights on how the T3 bind to the receptors. Short-term exposure of δ- and γ-T3 to pancreatic β cells in a stimulant glucose condition (16.7 mM) significantly regulated preproinsulin mRNA levels and insulin gene transcription. In contrast, α-T3 possessed less ability in the activation of insulin synthesis level. Essentially, potassium chloride (KCl), a β cell membrane depolarising agent added into the treatment further enhanced the insulin production. δ- and γ-T3 revealed significantly higher quantitative expression in most of the insulin secretion-associated genes groups containing 16.7 mM glucose alone and 16.7 mM glucose with 30 mM KCl ranging from 600 to 1200 μM (p < 0.05). The findings suggest the potential of δ-T3 in regulating insulin synthesis and glucose-stimulated insulin secretion through triggering pathway especially in the presence of KCl.
    Matched MeSH terms: Rats, Wistar
  4. Rahim NS, Lim SM, Mani V, Abdul Majeed AB, Ramasamy K
    Pharm Biol, 2017 Dec;55(1):825-832.
    PMID: 28118770 DOI: 10.1080/13880209.2017.1280688
    CONTEXT: Virgin coconut oil (VCO) has been reported to possess antioxidative, anti-inflammatory and anti-stress properties.

    OBJECTIVE: Capitalizing on these therapeutic effects, this study investigated for the first time the potential of VCO on memory improvement in vivo.

    MATERIALS AND METHODS: Thirty male Wistar rats (7-8 weeks old) were randomly assigned to five groups (n = six per group). Treatment groups were administered with 1, 5 and 10 g/kg VCO for 31 days by oral gavages. The cognitive function of treated-rats were assessed using the Morris Water Maze Test. Brains were removed, homogenized and subjected to biochemical analyses of acetylcholine (ACh) and acetylcholinesterase (AChE), antioxidants [superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), glutathione peroxidase (GPx) and glutathione reductase (GRx)], lipid peroxidase [malondialdehyde (MDA)] as well as nitric oxide (NO). α-Tocopherol (αT; 150 mg/kg) was also included for comparison purposes.

    RESULTS: VCO-fed Wistar rats exhibited significant (p  33%) and NO (≥ 34%). Overall, memory improvement by VCO was comparable to αT.

    DISCUSSION AND CONCLUSION: VCO has the potential to be used as a memory enhancer, the effect of which was mediated, at least in part, through enhanced cholinergic activity, increased antioxidants level and reduced oxidative stress.

    Matched MeSH terms: Rats, Wistar
  5. Yasmin Anum, M.Y., Shahriza, Z.A., Looi, ML, Shafina Hanim, M.H., Harlianshah, H., Noor Aini, A.H., et al.
    Medicine & Health, 2008;3(2):263-274.
    MyJurnal
    Ginger extract has been reported previously by our group to exhibit anticancer and an-tioxidant effects by reducing tumour burden and lipid peroxidation respectively in he-patocarcinogenesis induced rats. The current study examined the expression of pro-apoptotic protein caspase-8 and anti-apoptotic protein Bcl-2 in hepatocarcinogenesis treated rats. Thirty normal male Wistar rats were divided into 5 groups based on the diet given: i) control (normal rat chow), ii) olive oil, iii) ginger extract (100mg/kg body weight), iv) choline deficient diet + ethionine, CDE (to induce liver cancer) and v) CDE+ ginger extract. Rats were killed at week 8, and liver tissues were excised for immuno-histochemical study to identify pro-apoptotic and anti-apoptotic proteins, caspase-8 and Bcl-2. The observation on H&E staining confirmed the CDE diet induced liver can-cer as indicated by the presence of numerous oval cells. Identification of Bcl-2 expres-sion showed that 91.6% (11/12) of the samples from the CDE group revealed positive staining while treatment with ginger extract however inhibited the expression with only 8.4% (1/12) samples showing positive staining for Bcl-2. As for caspase-8 protein, 41.7% (5/12) of the samples from CDE group showed positive staining, which in-creased to 100% (12/12) with ginger extract treatment. Our findings suggest that gin-ger extract has an anticancer effect by inducing apoptosis in liver cancer cells via up-regulation of the expression of pro-apoptotic protein, caspase-8 and down-regulation of the expression of anti-apoptotic protein Bcl-2.
    Matched MeSH terms: Rats, Wistar
  6. Ubuka T, Moriya S, Soga T, Parhar I
    PMID: 29643838 DOI: 10.3389/fendo.2018.00139
    Perinatal exposure of Bisphenol A (BPA) to rodents modifies their behavior in later life. To understand how BPA modifies their neurodevelopmental process, we first searched for BPA responsive genes from androgen and estrogen receptor signaling target genes by polymerase chain reaction array in the neonatal male rat brain. We used a transgenic strain of Wistar rats carrying enhanced green fluorescent protein tagged to gonadotropin-inhibitory hormone (GnIH) promoter to investigate the possible interaction of BPA responsive genes and GnIH neurons. We found upregulation of transmembrane protease serine 2 (Tmprss2), an androgen receptor signaling target gene, and downregulation of Forkhead box A1 (Foxa1), an ER signaling target gene, in the medial amygdala of male rats that were subcutaneously administered with BPA from day 1 to 3. Tmprss2-immunoreactive (ir) cells were distributed in the olfactory bulb, cerebral cortex, hippocampus, amygdala, and hypothalamus in 3 days old but not in 1-month-old male rats. Density of Tmprss2-ir cells in the medial amygdala was increased by daily administration of BPA from day 1 to 3. Tmprss2 immunoreactivity was observed in 26.5% of GnIH neurons clustered from the ventral region of the ventromedial hypothalamic nucleus to the dorsal region of the arcuate nucleus of 3-day-old male rat hypothalamus. However, Tmprss2 mRNA expression significantly decreased in the amygdala and hypothalamus of 1-month-old male rats. Foxa1 mRNA expression was higher in the hypothalamus than the amygdala in 3 days old male rats. Intense Foxa1-ir cells were only found in the peduncular part of lateral hypothalamus of 3-day-old male rats. Density of Foxa1-ir cells in the hypothalamus was decreased by daily administration of BPA from day 1 to 3. Foxa1 mRNA expression in the hypothalamus also significantly decreased at 1 month. These results suggest that BPA disturbs the neurodevelopmental process and behavior of rats later in their life by modifying Tmprss2 and Foxa1 expressions in the brain.
    Matched MeSH terms: Rats, Wistar
  7. Muthaian R, Pakirisamy RM, Parasuraman S, Raveendran R
    J Pharmacol Pharmacother, 2017 2 7;7(4):159-164.
    PMID: 28163536 DOI: 10.4103/0976-500X.195898
    OBJECTIVE: To investigate the association of hypertension coexisting with diabetes mellitus with oxidative stress and inflammation in the kidneys of streptozotocin (STZ)-induced diabetic rats.

    MATERIALS AND METHODS: Male Wistar rats were used for the experiments. Blood glucose (BG), urea, blood pressure (BP), and heart rate (HR) were analyzed before and 48 h after STZ injection. Further, these parameters were monitored up to 3 months of diabetes induction. Subsequently, the inflammatory markers (C-reactive protein, tumor necrosis factor-alpha, and nitrate) and oxidative stress markers were estimated after 3 months of diabetes induction in the kidney homogenate. Histological analysis of renal tissue was also carried out.

    RESULTS: Linear elevation of BG, urea, mean arterial pressure (MAP), and HR was observed up to 3 months of diabetes induction. In the same manner, inflammatory and oxidative stress markers were also found to be significantly increased. Notably, the histological analysis revealed the signs of nephropathy such as increased mesangial cell number, thickness of basement membrane, and renal artery. Inflammatory and oxidative stress markers positively correlated with elevated BP and BG, but the correlation was better with BP rather than BG.

    CONCLUSION: Hypertension has a strong implication in the increased oxidative stress and inflammation of diabetic kidney at the very early stage of diabetes mellitus.

    Matched MeSH terms: Rats, Wistar
  8. Üreyen O, Üstuner MA, Argon A, Özbilgin M, Egeli T, Ìlhan E, et al.
    Malays J Pathol, 2018 Aug;40(2):153-160.
    PMID: 30173233
    INTRODUCTION: The aim of this study was to investigate the efficacy of resveratrol and octreotide, agents that are used to prevent intra-abdominal adhesions in experimental models, in preventing intraperitoneal adhesions when used alone or in combination.

    MATERIALS AND METHODS: The study employed 28 young female Wistar albino rats weighing 250-300 grams. An experimental adhesion model was created in each rat using serosal abrasion and peritoneal excision. They were divided into four groups, each comprising seven rats: Group 1, adhesion induction only; Group 2, resveratrol administration only; Group 3, octreotide administration only; and Group 4, administration of resveratrol and octreotide combination. The rats were monitored under appropriate conditions for 14 days and then underwent laparotomy. Macroscopic intensity and extensiveness of adhesions and microscopic changes in the granulation tissue (cellular intensity, reticular and collagen fibers, capillaries, elastic and smooth muscle fibers, fibrosis) were evaluated and graded. Kruskal-Wallis and Mann-Whitney U-test were used in statistical analysis and the level of statistical significance was established as p <0.05.

    RESULTS: There was no significant difference between the groups in terms of the intensity and extensiveness of macroscopic adhesions (p=0.377 and p=0.319). There was a statistically significant difference between the microscopic scores of the groups according to Zühlke's classification (p=0.026). The Bonferroni correction used to test for the differences revealed that the rats in Group 1 achieved significantly higher scores than the rats in Group 3 (p=0.016).

    CONCLUSION: Octreotide showed higher efficiency compared to the control group in microscopic classification; however, the two agents were not superior to each other or their combination was not superior in preventing intra-abdominal adhesions.

    Matched MeSH terms: Rats, Wistar
  9. Natarajan, Satheesh Babu, Das, SreemoyKanti, Chandran, Suriyakala Perumal, Aung, Myo Oo, Kanneppady, Sowmya Shar, Entezarian, Maryam, et al.
    MyJurnal
    Diabetic wounds (DW) are a chronic, non-healing wound on the feet of diabetic patients that pose a serious challenge to world health. Around 84% of diabetic patients undergo lower leg amputations. Though numerous topical and systemic drugs have been used to heal the DW, these drugs have led to the emergence and subsequent rapid overgrowth of resistant bacterial strains, side effects and toxicity. Many herbal plants have very important role in wound healing because they promote the natural repair mechanisms. Moringa oleifera (MO) is an important medicinal plant which has an impressive range of medicinal uses including antimicrobial, anti-inflammatory, antidiabetic, antioxidant and anticancer activities.Recently few researchers reported that MO extracts have effective wound healing property due to the presence of rich flavonoids and vicenin-2. The objective of the present study was to develop hydrogel formulations loaded with Moringa oleifera leaves extract. The prepared hydrogels were evaluated for physical appearance, rheological behavior, skin irritation and wound-healing power in streptozotocin-induced diabetic male wistar albino rats. Results showed that all hydrogel formulations exhibited good and acceptable physical properties. All the animals tolerated the applied gels and no signs of irritations were noticed during the skin irritation study. The in-vivo wound healing studies showed a time dependent increase in percentage of wound, a contraction which is higher than that produced by the control groups. These contractions were statistically significant (P
    Matched MeSH terms: Rats, Wistar
  10. Arshad N', Lin TS, Yahaya MF
    CNS Neurol Disord Drug Targets, 2020;19(2):115-126.
    PMID: 31957619 DOI: 10.2174/1871527319666200117105133
    BACKGROUND: Scientific studies support the evidence of the involvement of Metabolic Syndrome (MetS) in the progression of neurodegenerative diseases through oxidative stress. Consumption of antioxidant compounds was found to be beneficial for brain-health as it reduced the brain oxidative stress level and improved cognitive performance in animals. Stingless bee honey or locally known as Kelulut Honey (KH) has high phenolic content and is widely used as a food supplement.

    OBJECTIVES: In this study, we aimed to investigate the effects of KH on the brain of MetS-induced rats.

    METHODS: Forty male Wistar rats were divided into 5 groups; 8 weeks (C8) and 16 weeks control groups (C16), groups that received High-Carbohydrate High Fructose (HCHF) diet for 8 weeks (MS8) and 16 weeks (MS16), and a group that received HCHF for 16 weeks with KH supplemented for the last 35 days (KH).

    RESULTS: Serum fasting blood glucose decreased in the KH group compared to the MS16 group. HDL levels were significantly decreased in MetS groups compared to control groups. Open field experiments showed that KH group exhibits less anxious behavior compared to the MetS group. Probe trial of Morris water maze demonstrated significant memory retention of KH group compared to the MS16 group. Nissl staining showed a significant decrease in the pyramidal hippocampal cells in the MS16 compared to the KH group.

    CONCLUSION: KH has the ability to normalise blood glucose and reduce serum triglyceride and LDL levels in MetS rats, while behavior studies complement its effect on anxiety and memory. This shows a promising role of KH in attenuating neurodegenerative diseases through the antioxidant activity of its polyphenolic content.

    Matched MeSH terms: Rats, Wistar
  11. Siddiqui MJ, Aslam A, Khan T
    J Pharm Bioallied Sci, 2019 3 25;11(1):43-48.
    PMID: 30906139 DOI: 10.4103/jpbs.JPBS_174_18
    Objective: The aim and objective of this study was to find the immunostimulant and immunomodulatory effect of T. ammi seed extracts.

    Methods: Seeds of T. ammi were extracted using three different solvents n-hexane, chloroform, and methanol by using soxhlet apparatus. To assess the immunomodulatory effect, delayed-type hypersensitivity (DTH) assay method was used and by the DTH assay, the effect of T. ammi on the skin thickness of rats was estimated. To find the exact dose for administration, acute toxicity test was performed using crude methanolic extract at a dose of 400, 800, 1600, and 3200mg/kg. After acute toxicity test, 500mg/kg dose was determined as safe for therapeutic effect and immunomodulatory effect was evaluated at this dose. Dose of 500mg/kg was administered to Wistar rats daily for 14 days and skin thickness of rats was measured at 24, 48, and 72h.

    Results: Results were obtained from six groups of rats, which were positive control group, negative control group, and the groups receiving the test drugs. Standard drug was the combination of sodium selenite, vitamin E, and sodium chloride and it showed more positive results as compared to that of test drug. Furthermore, among the three extracts, methanol extract showed more effectiveness on skin thickness.

    Conclusion: There was a meaningful difference was observed between the skin thickness of rats which shows that T. ammi have good immunomodulatory as well as immunostimulant activity.

    Matched MeSH terms: Rats, Wistar
  12. Khan AA, Mudassir J, Akhtar S, Murugaiyah V, Darwis Y
    Pharmaceutics, 2019 Feb 25;11(2).
    PMID: 30823545 DOI: 10.3390/pharmaceutics11020097
    Nanostructured lipid carriers (NLCs) loaded with lopinavir (LPV) were prepared by the high-shear homogenization method. The LPV-NLCs formulations were freeze-dried using trehalose as a cryoprotectant. In vitro release studies in simulated gastric fluid (pH 1.2) and simulated intestinal fluid (pH 6.8) showed a burst release. The optimized freeze-dried formulation (LPV-NLC-7-Tres) had a particle size (PS), polydispersity index (PdI), zeta potential (ZP) and % entrapment efficiency (%EE) of 286.8 ± 1.3 nm, 0.413 ± 0.017, -48.6 ± 0.89 mV and 88.31 ± 2.04%, respectively. The optimized formulation observed by transmission and scanning electron microscopes showed a spherical shape. Differential scanning calorimetry study revealed the absence of chemical interaction between the drug and lipids. In vitro cellular uptake study using Caco-2 cell line showed a higher LPV uptake from LPV-NLC-7-Tres formulation compared to the free LPV-suspension. The 6-month stability study showed a minimum rise of ~40 nm in PS, while no significant changes in PdI, ZP and drug content of the LPV-NLC-7-Tres formulation stored at 5 °C ± 3 °C. The bioavailability of LPV following oral administration of LPV-NLC-7-Tres in male Wistar rats was found 6.98-fold higher than the LPV-suspension. In conclusion, the nanostructure lipid carriers are potential carriers for improving the oral bioavailability of lopinavir.
    Matched MeSH terms: Rats, Wistar
  13. Azlina MFN, Qodriyah HMS, Akmal MN, Ibrahim IAA, Kamisah Y
    Arch Med Sci, 2019 Jan;15(1):223-231.
    PMID: 30697274 DOI: 10.5114/aoms.2016.63156
    Introduction: Piper sarmentosum (Piperaceae) is traditionally used by Asians to treat numerous common ailments including asthma, fever and gastritis. The aim of the research was to determine and compare the effects of Piper sarmentosum (PS) with omeprazole (OMZ) on gastric parameters in rats exposed to restraint stress.

    Material and methods: The methanolic extract of PS was prepared in the dose of 500 mg/kg. Twenty-eight male Wistar rats were assigned to 4 equal sized groups: two control groups and two treated groups which were supplemented with either PS or OMZ orally at a dose of 500 mg/kg and 20 mg/kg body weight respectively. After 28 days of treatment, one control group, the PS and OMZ group were subjected to a single exposure of water-immersion restraint stress for 3.5 h. After the last exposure to stress, the stomach was excised for evaluation of the parameters.

    Results: Oral supplementation of PS was as effective in preventing the formation of gastric lesion when compared with OMZ (p < 0.05). The increased gastric acidity and MDA due to stress was also reduced with supplementation of PS and OMZ. Only PS had the ability to reduce prostaglandin E2 loss (p = 0.0067) and have the ability to down regulate cyclooxygenase-2 (COX-2) mRNA expression (p = 0.01) with stress exposure.

    Conclusions: Piper sarmentosum possesses a similar protective effect against stress-induced gastric lesions as omeprazole. The protective effect was associated with decreased lipid peroxidation, increased prostaglandin E2, reduction in gastric acidity and reduction in COX-2 mRNA expression which was altered by stress.

    Matched MeSH terms: Rats, Wistar
  14. Zhu P, Huang G, Zhang B, Zhang W, Dang M, Huang Z
    Acta Biochim. Pol., 2019 Mar 11;66(1):71-76.
    PMID: 30856636 DOI: 10.18388/abp.2018_2719
    Bone fracture, being mainly caused by mechanical stress, requires special and quick attention for a rapid healing. The study presented here aims at formulating nanoparticulate system to overcome the solubility issues of lovastatin. The lovastatin nanoparticles were successfully prepared by ionotropic gelation method using chitosan and tri-polyphosphate as polymers. Thus prepared nanoparticles were found to be smooth and spherical with average particle size of 87 nm and encapsulation efficiency of 86.5%. The in-vitro drug release was found to be almost 89.6% in the first 360 minutes. Artificial fracture was produced in female Wistar rats at right leg using fracture apparatus. After administration of lovastatin nanoparticles or saline solution, the respective groups were observed for various parameters. The X-ray imaging showed that lovastatin accelerated bone healing, compared to control. The growth of animals was not hampered by lovastatin by any means. The radiographic examination confirmed a role of lovastatin in increasing bone density. The histological study showed the broken, proliferated and discontinued trabecullae in the control, while at the same time point, the normal, thick, continuous and connected trabecullae were observed in animals administered with lovastatin nanoparticles. The biomechanical studies showed high breaking resilience and minimum bone brittleness in animals injected with lovastatin nanoparticles. Considering these observations we state that lovastatin helps in rapid bone healing after fracture via increasing the bone density.
    Matched MeSH terms: Rats, Wistar
  15. Narayanan SN, Kumar RS
    Acta. Biol. Hung., 2018 Dec;69(4):371-384.
    PMID: 30587025 DOI: 10.1556/018.69.2018.4.1
    In the behavioral science field, many of the oldest tests have still most frequently been used almost in the same way for decades. The subjective influence of human observer and the large inter-observer and interlab differences are substantial among these tests. This necessitates the possibility of using technological innovations for behavioral science to obtain new parameters, results and insights as well. The light-dark box (LDB) test is a characteristic tool used to assess anxiety in rodents. A complete behavioral analysis (including both anxiety and locomotion parameters) is not possible by performing traditional LDB test protocol, as it lacks the usage of a real-time video recording of the test. In the current report, we describe an improved approach to conduct LDB test using a real-time video tracking system.
    Matched MeSH terms: Rats, Wistar
  16. Bradosty SW, Hamad SW, Agha NFS, Shaikh FK, Qadir Nanakali NM, Aziz PY, et al.
    Environ Toxicol, 2021 Dec;36(12):2404-2413.
    PMID: 34436826 DOI: 10.1002/tox.23353
    Morinda elliptica L. (Rubiaceae) is a phytomedicinal herb, used to treat gastrointestinal complications in Peninsular Malaysia. The study evaluates the in vivo hepatoprotective activity of ethanolic extract of M. elliptica stem in thioacetamide (TAA) induced liver fibrosis in male Sprague Drawly rats. Thirty adult rats were divided into five groups of six rats each. Rats of the normal control group received intraperitoneal injections (i. p.) of vehicle 10% Tween-20, 5 ml/kg, and hepatotoxic group 200 mg/kg TAA three times per week respectively. Three supplementary groups were treated with TAA plus daily oral silymarin (50 mg/kg) or M. elliptica (250 or 500 mg/kg). After 8 weeks of treatment, all rats were sacrificed. Liver fibrosis was assessed by gross macroscopic and microscopic tissue analysis, histopathological, and biochemical analysis. The livers of the TAA treated group showed uniform coarse granules, hepatocytic necrosis with lymphocytes infiltration. Contrary, the livers of M. elliptica treated groups (250 and 500 mg/kg) were much smoother and the cell damage was much lesser. The livers of M. elliptica treated groups rats showed elevated activity of SOD and CAT with a significant decrease in MDA level at p 
    Matched MeSH terms: Rats, Wistar
  17. Zheltova AA, Kharitonova MV, Iezhitsa IN, Serebryansky EP, Evsyukov OY, Spasov AA, et al.
    J Trace Elem Med Biol, 2017 Jan;39:36-42.
    PMID: 27908421 DOI: 10.1016/j.jtemb.2016.07.002
    The aim of the present study was to assess whether dietary magnesium deficiency can alter distribution of macroelements and trace elements in different organs and tissues. Experiments were carried out on 12 adult female Wistar rats, which were fed either a diet with low Mg content (≤20mgkg(-1) of diet) (LMgD) or a diet with daily recommended Mg content (≈500mgkg(-1)) as control group (CG) for 70 days. On the 70th day of the experiment heart, aorta, femoral skeletal muscle, forebrain, cerebellum, pituitary gland, thyroid gland, ovaries, uterus, liver, kidneys, and spleen were taken for analysis of mineral content. Concentrations of Fe and Ca were measured by inductively coupled plasma-atomic emission spectrometry, and levels of Na, K, Mg, Co, Cu, Zn, Ni, Se, I were determined by inductively coupled plasma mass spectrometry. On the 70th day, LMgD led to significant reduction of Mg level in red blood cells, plasma, aorta, uterus and thyroid gland compared to CG as well as resulted in significant decrease of Mg/Ca ratio in kidneys, spleen and ovaries. Contrary to this, an increase of Mg/Ca ratio was found in cerebellum of LMgD group. Significant decrease of K concentration was shown in aorta of LMgD animals compared to CG whereas myocardial K concentration was increased in LMgD group. Na level was two-fold higher in skeletal muscles of rats that received LMgD in comparison to CG (p=0.006). Increased concentrations of Fe in ovaries and uterus were found in LMgD. Mg restriction did not affect Zn concentration in any of tasted tissues. Se level was higher in spleen and lower in uterus of LMgD animals compared to CG. MgD was accompanied by increased level of Co in skeletal muscles and decreased its level in kidneys and uterus. LMgD feeding was associated with decreased concentrations of Ni in heart, thyroid gland, spleen, uterus and Co in heart, aorta, liver, kidneys, spleen and ovaries. The changes of Mg, K, Co content were accompanied by dramatic (10-fold) decrease of I concentration in aorta of LMgD animals. LMgD causes decrease of I content in ovaries and increase of I level in uterus vs CG. Thus, distribution of macroelements (Ca, Na, K) was weakly affected by Mg restriction that led to the most evident alterations of Co and Ni tissue levels. Moreover, mineral balance of uterus seems to be the most susceptible to low Mg intake. Hypomagnesaemia resulted in significant changes of 5 studied trace elements (Fe, Se, Cu, Ni and Co).
    Matched MeSH terms: Rats, Wistar
  18. Govindaraj D, Rajan M, Munusamy MA, Alarfaj AA, Sadasivuni KK, Kumar SS
    Nanomedicine, 2017 Nov;13(8):2661-2669.
    PMID: 28800874 DOI: 10.1016/j.nano.2017.07.017
    Minerals substituted apatite (M-HA) nanoparticles were prepared by the precipitation of minerals and phosphate reactants in choline chloride-Thiourea (ChCl-TU) deep eutectic solvent (DESs) as a facile and green way approach. After preparation of nanoparticles (F-M-HA (F=Fresh solvent)), the DESs was recovered productively and reprocess for the preparation of R-M-HA nanoparticles (R=Recycle solvent).The functional groups, phase, surface texture and the elemental composition of the M-HA nanoparticles were evaluated by advance characterization methods. The physicochemical results of the current work authoritative the successful uses of the novel (ChCl-TU) DESs as eco-friendly recuperate and give the medium for the preparation of M-HA nanoparticles. Moreover, the as-synthesized both M-HA nanoparticles exhibit excellent biocompatibility, consisting of cell co-cultivation and cell adhesion, in vivo according to surgical implantation of Wistar rats.
    Matched MeSH terms: Rats, Wistar
  19. Parasuraman S, Raveendran R, Rajesh NG, Nandhakumar S
    Toxicol Rep, 2014;1:596-611.
    PMID: 28962273 DOI: 10.1016/j.toxrep.2014.08.006
    OBJECTIVE: To investigate the toxicological effects of cleistanthin A and cleistanthin B using sub-chronic toxicity testing in rodents.

    METHOD: Cleistanthins A and B were isolated from the leaves of Cleistanthus collinus. Both the compounds were administered orally for 90 days at the concentration of 12.5, 25 and 50 mg/kg, and the effects on blood pressure, biochemical parameters and histology were assessed. The dose for sub-chronic toxicology was determined by fixed dose method according to OECD guidelines.

    RESULT: Sub-chronic toxicity study of cleistanthins A and B spanning over 90 days at the dose levels of 12.5, 25 and 50 mg/kg (once daily, per oral) revealed a significant dose dependant toxic effect in lungs. The compounds did not have any effect on the growth of the rats. The food and water intake of the animals were also not affected by both cleistanthins A and B. Both the compounds did not have any significant effect on liver and renal markers. The histopathological analysis of both cleistanthins A and B showed dose dependent morphological changes in the brain, heart, lung, liver and kidney. When compared to cleistanthin A, cleistanthin B had more toxic effect in Wistar rats. Both the compounds have produced a dose dependent increase of corpora amylacea in brain and induced acute tubular necrosis in kidneys. In addition, cleistanthin B caused spotty necrosis of liver in higher doses.

    CONCLUSION: The present study concludes that both cleistanthin A and cleistanthin B exert severe toxic effects on lungs, brain, liver, heart and kidneys. They do not cause any significant pathological change in the reproductive system; neither do they induce neurodegenerative changes in brain. When compared to cleistanthin A, cleistanthin B is more toxic in rats.

    Matched MeSH terms: Rats, Wistar
  20. Wong SK, Chin KY, Suhaimi FH, Ahmad F, Ima-Nirwana S
    PLoS One, 2018;13(2):e0192416.
    PMID: 29420594 DOI: 10.1371/journal.pone.0192416
    This study aimed to evaluate the effects of metabolic syndrome (MetS) induced by high-carbohydrate high-fat (HCHF) diet on bone mineral density (BMD), histomorphometry and remodelling markers in male rats. Twelve male Wistar rats aged 12 weeks old were randomized into two groups. The normal group was given standard rat chow while the HCHF group was given HCHF diet to induce MetS. Abdominal circumference, blood glucose, blood pressure, and lipid profile were measured for the confirmation of MetS. Bone mineral density, histomorphometry and remodelling markers were evaluated for the confirmation of bone loss. The HCHF diet caused central obesity, hyperglycaemia, hypertension, and dyslipidaemia in male rats. No significant difference was observed in whole body bone mineral content and BMD between the normal and HCHF rats (p>0.05). For bone histomorphometric parameters, HCHF diet-fed animals had significantly lower osteoblast surface, osteoid surface, osteoid volume, and significantly higher eroded surface; resulting in a reduction in trabecular bone volume (p<0.05). Feeding on HCHF diet caused a significantly higher CTX-1 level (p<0.05), but did not cause any significant change in osteocalcin level compared to normal rats (p>0.05). In conclusion, HCHF diet-induced MetS causes imbalance in bone remodelling, leading to the deterioration of trabecular bone structure.
    Matched MeSH terms: Rats, Wistar
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links