Displaying publications 101 - 120 of 4035 in total

Abstract:
Sort:
  1. Arifin MN, Jusoh R, Abdullah H, Ainirazali N, Setiabudi HD
    Environ Res, 2023 Jul 15;229:115936.
    PMID: 37080279 DOI: 10.1016/j.envres.2023.115936
    The presence of phenolic compounds in the aquatic environment has posed severe risks due to their toxicity. Among the phenolic families, nitro- and alkyl-phenolic compounds have been categorized as precedence contaminants by the United States Environmental Protection Agency (US EPA). Therefore, efficient treatment methods for wastewater containing nitro- and alkyl-phenolic compounds are urgently needed. Due to the advantages of creating reactive species and generating efficient degradation of hazardous contaminants in wastewater, advanced oxidation processes (AOPs) are well-known in the field of treating toxic contaminants. In this review paper, the recent directions in AOPs, catalysts, mechanisms, and kinetics of AOPs are comprehensively reviewed. Furthermore, the conclusion summarizes the research findings, future prospects, and opportunities for this study. The main direction of AOPs lies on the optimization of catalyst and operating parameters, with industrial applications remain as the main challenge. This review article is expected to present a summary and in-depth understanding of AOPs development; and thus, inspiring scientists to accelerate the evolution of AOPs in industrial applications.
    Matched MeSH terms: Water Purification*; Waste Water
  2. Amirah Mohd Napi NN, Ibrahim N, Adli Hanif M, Hasan M, Dahalan FA, Syafiuddin A, et al.
    Bioengineered, 2023 Dec;14(1):2276391.
    PMID: 37942779 DOI: 10.1080/21655979.2023.2276391
    Microplastic (MP) is an emerging contaminant of concern due to its abundance in the environment. Wastewater treatment plant (WWTP) can be considered as one of the main sources of microplastics in freshwater due to its inefficiency in the complete removal of small MPs. In this study, a column-based MP removal which could serve as a tertiary treatment in WWTPs is evaluated using granular activated carbon (GAC) as adsorbent/filter media, eliminating clogging problems commonly caused by powder form activated carbon (PAC). The GAC is characterized via N2 adsorption-desorption isotherm, field emission scanning electron microscopy, and contact angle measurement to determine the influence of its properties on MP removal efficiency. MPs (40-48 μm) removal up to 95.5% was observed with 0.2 g/L MP, which is the lowest concentration tested in this work, but still higher than commonly used MP concentration in other studies. The performance is reduced with further increase in MP concentration (up to 1.0 g/L), but increasing the GAC bed length from 7.5 to 17.5 cm could lead to better removal efficiencies. MP particles are immobilized by the GAC predominantly by filtration process by being entangled with small GAC particles/chips or stuck between the GAC particles. MPs are insignificantly removed by adsorption process through entrapment in GAC porous structure or attachment onto the GAC surface.
    Matched MeSH terms: Water Purification*; Waste Water
  3. Wang J, Mahmood Q, Qiu JP, Li YS, Chang YS, Chi LN, et al.
    Biomed Res Int, 2015;2015:617861.
    PMID: 25685798 DOI: 10.1155/2015/617861
    Palm oil is one of the most important agroindustries in Malaysia. Huge quantities of palm oil mill effluent (POME) pose a great threat to aqueous environment due to its very high COD. To make full use of discharged wastes, the integrated "zero discharge" pilot-scale industrial plant comprising "pretreatment-anaerobic and aerobic process-membrane separation" was continuously operated for 1 year. After pretreatment in the oil separator tank, 55.6% of waste oil in raw POME could be recovered and sold and anaerobically digested through 2 AnaEG reactors followed by a dissolved air flotation (DAF); average COD reduced to about 3587 mg/L, and biogas production was 27.65 times POME injection which was used to generate electricity. The aerobic effluent was settled for 3 h or/and treated in MBR which could remove BOD3 (30°C) to less than 20 mg/L as required by Department of Environment of Malaysia. After filtration by UF and RO membrane, all organic compounds and most of the salts were removed; RO permeate could be reused as the boiler feed water. RO concentrate combined with anaerobic surplus sludge could be used as biofertilizer.
    Matched MeSH terms: Water Purification/methods*; Waste Water*
  4. Yusop Z, Chan CH, Katimon A
    Water Sci Technol, 2007;56(8):41-8.
    PMID: 17978431
    Rainfall-runoff processes in a small oil palm catchment (8.2 ha) in Johor, Malaysia were examined. Storm hydrographs show rapid responses to rainfall with a short time to peak. The estimated initial hydrologic loss for the oil palm catchment is 5 mm. Despite the low initial loss, the catchment exhibits a high proportion of baseflow, approximately 54% of the total runoff. On an event basis, the stormflow response factor and runoff coefficient ranges from 0.003 to 0.21, and 0.02 to 0.44, respectively. Peakflow and stormflow volume were moderately correlated with rainfall. The hydrographs were satisfactorily modelled using the Hydrologic Engineering Centre-Hydrologic Modelling System (HEC-HMS). The efficiency indexes of the calibration and validation exercises are 0.81 and 0.82, respectively. Based on these preliminary findings, it could be suggested that an oil palm plantation would be able to serve reasonably well in regulating basic hydrological functions.
    Matched MeSH terms: Water Movements*; Water Supply*
  5. Yunus AJ, Nakagoshi N, Salleh KO
    J Environ Sci (China), 2003 Mar;15(2):249-62.
    PMID: 12765268
    This study investigate the relationships between geomorphometric properties and the minimum low flow discharge of undisturbed drainage basins in the Taman Bukit Cahaya Seri Alam Forest Reserve, Peninsular Malaysia. The drainage basins selected were third-order basins so as to facilitate a common base for sampling and performing an unbiased statistical analyses. Three levels of relationships were observed in the study. Significant relationships existed between the geomorphometric properties as shown by the correlation network analysis; secondly, individual geomorphometric properties were observed to influence minimum flow discharge; and finally, the multiple regression model set up showed that minimum flow discharge (Q min) was dependent of basin area (AU), stream length (LS), maximum relief (Hmax), average relief (HAV) and stream frequency (SF). These findings further enforced other studies of this nature that drainage basins were dynamic and functional entities whose operations were governed by complex interrelationships occurring within the basins. Changes to any of the geomorphometric properties would influence their role as basin regulators thus influencing a change in basin response. In the case of the basin's minimum low flow, a change in any of the properties considered in the regression model influenced the "time to peak" of flow. A shorter time period would mean higher discharge, which is generally considered the prerequisite to flooding. This research also conclude that the role of geomorphometric properties to control the water supply within the stream through out the year even though during the drought and less precipitations months. Drainage basins are sensitive entities and any deteriorations involve will generate reciprocals and response to the water supply as well as the habitat within the areas.
    Matched MeSH terms: Fresh Water*; Water Supply*
  6. Alazaiza MYD, Ramli MH, Copty NK, Ling MC
    J Contam Hydrol, 2021 Mar;238:103769.
    PMID: 33465656 DOI: 10.1016/j.jconhyd.2021.103769
    Laboratory-scale column experiments were carried out to assess the influence of water infiltration on pooled light non-aqueous phase liquid (LNAPL) redistribution in porous media. A simplified image analysis method (SIAM) was used to evaluate the saturation distributions of the LNAPL and water in the entire domain under dynamic conditions. The experiments were conducted for high/low LNAPL volumes LNAPL volumes differentiated as low and high volumes. High resolution SIAM images of the soil column during LNAPL migration and water infiltration events were captured and analyzed. Results indicated that the capillary fringe is about 6-7 cm which was consistent with the capillary height derived from empirical equations. Moreover, SIAM provided an estimate of the field capacity (30%) of the sand. Once the LNAPL infiltration stage was started, the LNAPL was observed to rapidly migrate through the vadose zone. For the case of large LNAPL volume, the LNAPL penetrated further into capillary fringe zone. Analysis of SIAM images showed that the LNAPL redistribution was observed to vary significantly with the rate of infiltration. For higher water infiltration intensity, the injected water exerted a larger hydrodynamic force on the entrapped LNAPL forcing it move further downward into the capillary zone and the saturated zone. Overall, this study demonstrated that the SIAM technique is an accurate and cost-effective tool for the visualization of the time-dependent NAPL/water movement in laboratory-scale experiments and dynamic changes in fluid saturation in porous media.
    Matched MeSH terms: Water Movements
  7. Wong YJ, Shimizu Y, He K, Nik Sulaiman NM
    Environ Monit Assess, 2020 Sep 16;192(10):644.
    PMID: 32935203 DOI: 10.1007/s10661-020-08543-4
    The assessment of surface water quality is often laborious, expensive and tedious, as well as impractical, especially for the developing and middle-income countries in the ASEAN region. The application of the water quality index (WQI), which depends on several independent key parameters, has great potential and is a useful tool in this region. Therefore, this study aims to find out the spatial variability of various water quality parameters in geographical information system (GIS) environment and perform a comparative study among the ASEAN WQI systems. At present, there are four ASEAN countries which have implemented the WQI system to evaluate their surface water quality, which are (i) Own WQI system-Malaysia, Thailand and Vietnam-and (ii) Adopted WQI system: Indonesia. A spatial distribution of 12 water quality parameters in the Selangor river basin, Malaysia, was plotted and then applied into the different ASEAN WQI systems. The WQI values obtained from the different WQI systems have an appreciable difference, even for the same water samples due to the disparity in the parameter selection and the standards among them. WQI systems which consider all biophysicochemical parameters provide a consistent evaluation (Very Poor), but the system which either considers physicochemical or biochemical parameters gives a relatively lenient evaluation (Fair-Poor). The Selangor river basin is stressed and impacted by all physical, biological and chemical parameters caused by both the aridity of the climate and anthropogenic activities. Therefore, it is crucial to include all these aspects into the evaluation and corresponding actions should be taken.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*; Water Quality*
  8. Al-Raad AA, Hanafiah MM, Naje AS, Ajeel MA
    Environ Pollut, 2020 Oct;265(Pt B):115049.
    PMID: 32599327 DOI: 10.1016/j.envpol.2020.115049
    In this study, a novel rotating anode-based reactor (RAR) was designed to investigate its effectiveness in removing dissolved salts (i.e., Br-, Cl-, TDS, and SO42-) from saline water samples. Two configurations of an impeller's rotating anode with various operation factors, such as operating time (min), rotating speed (rpm), current density (mA/cm2), temperature (°C), pH, and inter-electrode space (cm), were used in the desalination process. The total cost consumed was calculated on the basis of the energy consumption and aluminum (Al) used in the desalination. In this respect, operating costs were calculated using optimal operating conditions. Salinity was removed electrochemically from saline water through electrocoagulation (EC). Results showed that the optimal adjustments for treating saline water were carried out at the following conditions: 150 and 75 rpm rotating speeds for the impeller's rod anode and plate anode designs, respectively; 2 mA/cm2 current density (I), 1 cm2 inter-electrode space, 25 °C temperature, 10 min operation time, and pH 8. The results indicated that EC technology with impeller plates of rotating anode can be considered a very cost-effective technique for treating saline water.
    Matched MeSH terms: Water Pollutants, Chemical*; Water Purification*
  9. Ho KC, Teow YH, Sum JY, Ng ZJ, Mohammad AW
    Sci Total Environ, 2021 Mar 15;760:143966.
    PMID: 33341611 DOI: 10.1016/j.scitotenv.2020.143966
    Rapid urbanization and the rising global population have led to the generation of substantial volumes of laundry wastewater. Accordingly, treatment of laundry wastewater has been advocated to curb water pollution and achieve water sustainability. However, technological limitations in treating (specifically) laundry wastewater and the lack of regulations governing the levels of contaminants for such discharges have been perennial problems. This review bridges the knowledge gap by delineating the feasibility of current technologies in laundry wastewater treatment and the experiences of various countries in adopting different approaches. Besides, the feasible methods for collecting laundry wastewater are elaborated. The development of the treatment technologies is highlighted, in which the integrated-treatment processes (physicochemical, biological, and combination of both) are critically discussed based on their functions and methods. A judicious selection of the technologies not only improves the energy efficiency and quality of the treated wastewater, but also mitigates capitals and operational costs. This is projected to enhance public acceptance towards the reuse of laundry wastewater. Thus, the comprehensive assessment herein is envisioned to insightfully guide national policymakers in exploring the viability of the technologies and water-recycling projects. Future research should focus on the techno-economic aspects of the treatment processes, especially their industrial scale-up.
    Matched MeSH terms: Water; Water Pollution; Water Purification; Waste Water
  10. Hung YT, Aziz HA, Ramli SF, Paul HH, Huhnke CR, Adesanmi BM
    Water Environ Res, 2020 Oct;92(10):1504-1509.
    PMID: 32659868 DOI: 10.1002/wer.1399
    This paper reviews the related literature reported in 2019 about various types of wastewaters associated with chemical and allied products. The subjects comprise wastewaters produced from various activities in agricultural, chemical, dye, petrochemical, and pharmaceutical. PRACTITIONER POINTS: Bioflocculant chitosan was used for sludge dewatering and the treatment of water and wastewater, and polishing of sanitary landfill leachate. Alkaline lignin-based flocculants were used to achieve excellent color removal for paper mill sludge. Powdered activated coke was used to remove COD (chemical oxygen demand) from chemical industry wastewater effluents.
    Matched MeSH terms: Water Pollutants, Chemical*; Waste Water*
  11. Mengting Z, Kurniawan TA, Avtar R, Othman MHD, Ouyang T, Yujia H, et al.
    J Hazard Mater, 2021 03 05;405:123999.
    PMID: 33288338 DOI: 10.1016/j.jhazmat.2020.123999
    We test the feasibility of TiO2(B)@carbon composites as adsorbents, derived from wheat straws, for tetracycline (TC) adsorption from aqueous solutions. Hydrochar (HC), biochar (BC), and hydrochar-derived pyrolysis char (HDPC) are synthesized hydrothermally from the waste and then functionalized with TiO2(B), named as 'Composite-1', 'Composite-2', and 'Composite-3', respectively. A higher loading of TiO2(B) into the HC was also synthesized for comparison, named as 'Composite-4'. To compare their physico-chemical changes before and after surface modification, the composites are characterized using FESEM-EDS, XRD, BET, FRTEM, and FTIR. The effects of H2O2 addition on TC removal are investigated. Adsorption kinetics and isotherms of TC removal are studied, while TC adsorption mechanisms are elaborated. We found that the Composite-4 has the highest TC removal (93%) at pH 7, 1 g/L of dose, and 4 h of reaction time at 50 mg/L of TC after adding H2O2 (10 mM). The TC adsorption capacities of the Composite-1 and Composite-4 are 40.65 and 49.26 mg/g, respectively. The TC removal by the Composite-1 follows the pseudo-second order. Overall, this suggests that converting the wheat straw into HC and then functionalizing its surface with TiO2(B) as a composite has added values to the waste as an adsorbent for wastewater treatment.
    Matched MeSH terms: Water; Water Purification*; Waste Water
  12. Ahmed SF, Mofijur M, Nuzhat S, Chowdhury AT, Rafa N, Uddin MA, et al.
    J Hazard Mater, 2021 08 15;416:125912.
    PMID: 34492846 DOI: 10.1016/j.jhazmat.2021.125912
    Emerging contaminants (ECs) in wastewater have recently attracted the attention of researchers as they pose significant risks to human health and wildlife. This paper presents the state-of-art technologies used to remove ECs from wastewater through a comprehensive review. It also highlights the challenges faced by existing EC removal technologies in wastewater treatment plants and provides future research directions. Many treatment technologies like biological, chemical, and physical approaches have been advanced for removing various ECs. However, currently, no individual technology can effectively remove ECs, whereas hybrid systems have often been found to be more efficient. A hybrid technique of ozonation accompanied by activated carbon was found significantly effective in removing some ECs, particularly pharmaceuticals and pesticides. Despite the lack of extensive research, nanotechnology may be a promising approach as nanomaterial incorporated technologies have shown potential in removing different contaminants from wastewater. Nevertheless, most existing technologies are highly energy and resource-intensive as well as costly to maintain and operate. Besides, most proposed advanced treatment technologies are yet to be evaluated for large-scale practicality. Complemented with techno-economic feasibility studies of the treatment techniques, comprehensive research and development are therefore necessary to achieve a full and effective removal of ECs by wastewater treatment plants.
    Matched MeSH terms: Water Purification*; Waste Water/analysis
  13. Zaini Hamzah, Siti Afiqah Abdul Rahman, Ahmad Saat, Siti Shahrina Agos, Zaharudin Ahmad
    MyJurnal
    The presence of 226 Ra in water is a great concern in human life since it can cause health risk to a certain extent. In the state of Kelantan, being known of its granitic area, there is a lack measurement of 226 Ra content in river water, since water is the major source of water supply. According to the INTERIM National Water Quality Standards for Malaysia (INWQS), 226 Ra activity concentration in water cannot exceed 0.1 Bq/L. For this reasons, this research was planned to carry out a systematic measurement of water along Sungai Kelantan. Liquid Scintillation Counting was used for measurement of 226 Ra in water samples from Sungai Kelantan mainly in district of Kuala Krai. In this paper, the results obtained is about 26 water samples, filtered and unfiltered, collected along Sungai Lebir, Sungai Sok and Bukit Sabah. Thus, the assessment activity concentration of 226 Ra in river water was obtained as well as annual effective dose for consumption of drinking water.
    Matched MeSH terms: Fresh Water; Water Supply; Water Quality; Drinking Water
  14. Balaji R, Lee Siang H, Yaakob O, Koh KK, Adnan FAB, Ismail NB, et al.
    Environ Technol, 2018 May;39(9):1102-1114.
    PMID: 28425309 DOI: 10.1080/09593330.2017.1321691
    Waste heat recovery from shipboard machineries could be a potential source for heat treatment of ballast water. Similar to a shipboard schematic arrangement, a laboratory-scale engine-heat exchanger set-up harvesting waste heat from jacket water and exhaust gases was erected to test the level of species' mortalities. Mortalities were also assessed under experimental conditions for cultured and natural plankton communities at laboratory level. Effect of pump impellers on species' mortalities were also tested. Exposures between 60°C and 70°C for 60 sec resulted in 80-100% mortalities. Mortalities due to pump impeller effects were observed in the range of 70-100% for zooplankton. On the laboratory-scale arrangement, >95% mortalities of phytoplankton, zooplankton and bacteria were recorded. It was demonstrated that the temperature of tropical sea waters used as secondary coolant can be raised to cause species' mortalities, employing engine exhaust gases. The results also indicated that pump impeller effects will enhance species' mortalities. The limitations of the shipboard application of this method would be the large ballast volumes, flow rates and time for treatment.
    Matched MeSH terms: Water; Water Purification; Waste Water*
  15. Alomari. Nashwan K., Badronnisa Yusuf, Thamer Ahmed Mohammed Ali, Abdul Halim Ghazali
    MyJurnal
    Branching channel flow refers to any side water withdrawals from rivers or main channels.
    Branching channels have wide application in many practical projects, such as irrigation and drainage
    network systems, water and waste water treatment plants, and many water resources projects. In the
    last decades, extensive theoretical and experimental investigations of the branching open channels
    have been carried out to understand the characteristics of this branching flow, varying from case
    studies to theoretical and experimental investigations. The objectives of this paper are to review and
    summarise the relevant literatures regarding branching channel flow. These literatures were reviewed
    based on flow characteristics, physical characteristics, and modeling of the branching flow.
    Investigations of the flow into branching channel show that the branching discharge depends on many
    interlinked parameters. It increases with the decreasing of the main channel flow velocity and Froude
    number at the upstream of the branch channel junction. Also it increases with the increasing of the
    branch channel bed slope. In subcritical flow, water depth in the branch channel is always lower than
    the main channel water depth. The flow diversion to the branch channel leads to an increase of water
    depth at the downstream of the main channel. From the review, it is important to highlight that most
    of the study concentrated on flow characteristics in a right angle branch channel with a rigid boundary.
    Investigations on different branching angles with movable bed have still to be explored.
    Matched MeSH terms: Water; Water Purification; Waste Water; Water Resources
  16. Fauzie, M. J., Azwan, M. M. Z., Hasfalina, C. M., Mohammed, T. A.
    MyJurnal
    Alluvial aquifers can be found in most of the coastal areas of Peninsular Malaysia. Seven tube wells located in such aquifers in the west coast of Selangor state had their performance evaluated by carryingout step drawdown tests. The performance of these wells was evaluated in terms of aquifer loss, well loss, specific capacity and well efficiency. The aquifer loss coefficient and well loss coefficient were found to be in the range of 0.0198 hrm-2 to 0.4014 hrm-2 and from 0.0001 hr2 m-5 to 0.0410 hr2 m-5, respectively. The drawdown in tube wells TW1 and TW7 is mainly influenced by well loss component as compared to the aquifer loss component, while in tube wells TW2, TW3, TW4, and TW5, the drawdown is mainly influenced by aquifer loss component. The drawdown in tube well TW6 is influenced by aquifer loss component at a low discharge rate, but at high discharge rate, it is influenced by well loss component. The specific capacity and efficiency of the tested tube wells varied from 1.329 m2 hr-1 to 40.166 m2 hr-1, and from 11% to 96%, respectively. Tube wells TW2 and TW4 are categorized as high productive wells, while tube wells TW1, TW3, TW5 and TW7 are categorized as moderate productive wells and tube well TW6 as low productive well.
    Matched MeSH terms: Water Wells
  17. Ooi TY, Yong EL, Din MFM, Rezania S, Aminudin E, Chelliapan S, et al.
    J Environ Manage, 2018 Dec 15;228:13-19.
    PMID: 30212670 DOI: 10.1016/j.jenvman.2018.09.008
    For decades, water treatment plants in Malaysia have widely employed aluminium-based coagulant for the removal of colloidal particles in surface water. This generates huge amount of by-product, known as sludge that is either reused for land applications or disposed to landfills. As sludge contains high concentration of aluminium, both can pose severe environmental issues. Therefore, this study explored the potential to recover aluminium from water treatment sludge using acid leaching process. The evaluation of aluminium recovery efficiency was conducted in two phases. The first phase used the one factor at a time (OFAT) approach to study the effects of acid concentration, solid to liquid ratio, temperature and heating time. Meanwhile, second phase emphasized on the optimization of aluminium recovery using Response Surface Methodology (RSM). OFAT results indicated that aluminium recovery increased with the rising temperature and heating time. Acid concentration and solid to liquid ratio, however, showed an initial increment followed by reduction of recovery with increasing concentration and ratio. Due to the solidification of sludge when acid concentration exceeded 4 M, this variable was fixed in the optimization study. RSM predicted that aluminium recovery can achieve 70.3% at optimal values of 4 M, 20.9%, 90 °C and 4.4 h of acid concentration, solid to liquid ratio, temperature and heating time, respectively. Experimental validation demonstrated a recovery of 68.8 ± 0.3%. The small discrepancy of 2.2 ± 0.4% between predicted and validated recovery suggests that RSM was a suitable tool in optimizing aluminium recovery conditions for water treatment sludge.
    Matched MeSH terms: Water/chemistry*; Water Purification/methods
  18. Noor Halini Baharim, Razali Ismail, Mohamad Hanif Omar
    Sains Malaysiana, 2011;40:1179-1186.
    Thermal stratification in lakes is an important natural process that can have a significant effect on the water resource quality. The potential changes in chemical contents in water resulting from stratification are the production of ammonia, sulphides and algal nutrients and the increasing concentrations of iron and manganese. One of the water supply reservoirs located in Johor, Malaysia facing with high iron and manganese concentrations associated with the period of stratifications. This study showed that the level of thermal stratification in the reservoir varied at different time of the year. During the strongest period of stratification, the dissolved oxygen content was found to diminish significantly with depth and iron and manganese were recorded at the highest concentrations. Although significant period of rainfalls contributed to the natural destratification of reservoir, lower concentrations of iron and manganese only remained for a shorter period before the concentrations continued to increase with the onset of the thermal stratification. A good understanding on the behaviour of the reservoir may help to identify several measures for the improvement of water quality.
    Matched MeSH terms: Water; Water Supply; Water Quality; Water Resources
  19. Ibrahim RK, El-Shafie A, Hin LS, Mohd NSB, Aljumaily MM, Ibraim S, et al.
    J Environ Manage, 2019 Apr 01;235:521-534.
    PMID: 30716672 DOI: 10.1016/j.jenvman.2019.01.070
    In this study two deep eutectic solvents (DESs) were prepared using ethylene glycol (EG) and two different ammonium-based salts. The potential of these DESs as novel agents for CNTs functionalization was examined by performing a comprehensive characterization study to identify the changes developing after the functionalization process. The impact of DESs was obvious by increasing the surface area of CNTs to reach 197.8 (m2/g), and by adding new functional groups to CNTs surface without causing any damage to the unique structure of CNTs. Moreover, CNTs functionalized with DESs were applied as new adsorbents for the removal of methyl orange (MO) from water. The adsorption conditions were optimized using RSM-CCD experimental design. The kinetics and the equilibrium adsorption data were analyzed using different kinetic and isotherm models. According to the regression results, adsorption kinetics data were well described by pseudo-second order model, whereas adsorption isotherm data were best represented by Langmuir isotherm model. The highest recorded maximum adsorption capacity (qmax) value was found to be 310.2 mg/g.
    Matched MeSH terms: Water Pollutants, Chemical*; Water Purification*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links