AIM: The current study was designed to understand the time-relative changes and relationship between erythrocyte antioxidant enzyme activities and Glasgow Coma Scale (GCS) scores of SHI patients in the 21-day posttraumatic study period.
SETTINGS AND DESIGN: The study included 24 SHI patients and 25 age- and sex-matched normal controls (NC). Activities of superoxide dismutase (SOD), glutathione reductase (GR) and glutathione peroxidase (GSH-Px) were assayed in these patients and controls. The GCS scores of these patients were also recorded for the comparative study.
MATERIALS AND METHODS: Venous blood samples were collected on day 7 (D7) and D21 from SHI patients and NC for the assay of SOD, GR and GSH-Px activities. These changes were correlated with age and changes in GCS scores of patients.
STATISTICAL ANALYSIS: A one-way analysis of variance (ANOVA) was used to compare mean values of each parameter between group 1 (NC), group 2 (D7 changes in SHI patients) and group 3 (D21 changes in SHI patients). ANOVA was followed by Bonferroni post hoc tests. The Pearson correlation was applied to correlate between the antioxidant parameters and age and GCS scores of these patients.
RESULTS: A significant increase in erythrocyte SOD and GSH-Px activities was observed in group 3 as compared to groups 1 and 2. The increase in GSH-Px activity was significant in group 2 as compared to group 1. Although not significant, there was an increase in mean GR activity in groups 2 and 3 as compared to group 1.
CONCLUSION: These findings indicate that SHI patients have shown significantly enhanced erythrocyte SOD and GSH-Px activities during the 21-day posttraumatic study period.
RESULTS: Results indicated that different Se sources did not significantly (P ≤ 0.05) affect broiler growth performance. However, bacterial organic Se of T5 (basal diet +0.3 mg /kg feed ADS18 Se), T4 (basal diet +0.3 mg /kg feed ADS2 Se), and T3 (basal diet +0.3 mg /kg feed ADS1 Se) exhibited significantly (P ≤ 0.05) highest Se concentration in serum, liver, and kidney respectively. Dietary inorganic Se and bacterial organic Se were observed to significantly affect broiler serum ALT, AST, LDH activities and serum creatinine level. ADS18 supplemented Se of (Stenotrophomonas maltophilia) bacterial strain showed the highest GSH-Px activity with the lowest MDA content in serum, and the highest GSH-Px and catalase activity in the kidney, while bacterial Se of ADS2 (Klebsiella pneumoniae) resulted in a higher level of GSH-Px1 and catalase in liver. Moreover, our study showed that in comparison with sodium selenite, only ADS18 bacterial Se showed a significantly higher mRNA level in GSH-Px1, GSH-Px4, DIO1, and TXNDR1, while both ADS18 and ADS2 showed high level of mRNA of DIO2 compared to sodium selenite.
CONCLUSIONS: The supplementation of bacterial organic Se in broiler chicken, improved tissue Se deposition, antioxidant status, and selenoproteins gene expression, and can be considered as an effective alternative source of Se in broiler chickens.
METHODS: Liquid-liquid partition chromatography was used to separate methanolic extract to get hexane, ethyl acetate, butanol and residual aqueous fractions. The total antioxidant activity was determined by 2,2-diphenyl-1-picrylhydrazy (DPPH) radical scavenging and ferric reducing antioxidant power assay (FRAP). The antidiabetic activity of methanol extract and its consequent fractions were examined by α-glucosidase inhibitory bioassay. The chemical profiling was carried out by gas chromatography coupled with quadrupole time-of-flight mass spectrometry (GC Q-TOF MS).
RESULTS: The total yield for methanol extraction was (12.63 ± 0.98) % (w/w) and highest fractionated value found for residual aqueous (52.25 ± 1.01) % (w/w) as compared to the other fractions. Significant DPPH free radical scavenging activity was found for methanolic extract (63.07 ± 0.11) % and (79.98 ± 0.31) % for ethyl acetate fraction among all the fractions evaluated. Methanol extract was the most prominent in case of FRAP (141.89 ± 0.87 μg AAE/g) whereas most effective reducing power observed in ethyl acetate fraction (133.6 ± 0.2987 μg AAE/g). The results also indicated a substantial α-glucosidase inhibitory activity for butanol fraction (72.16 ± 1.0) % and ethyl acetate fraction (70.76 ± 0.49) %. The statistical analysis revealed that total phenolic and total flavonoid content of the samples had the significant (p