Displaying publications 101 - 120 of 302 in total

Abstract:
Sort:
  1. Alice, C.L.V., Wan Rosli, W.I.
    MyJurnal
    The present study was conducted to investigate the effects of brown rice (BR) powder addition on the proximate composition, total dietary fibre content and acceptability of some selected Malaysian traditional rice-based local kuih. Two types of kuih samples, namely Kuih Lompang (KL) and Kuih Talam Pandan (KTP) were prepared at the levels of either 0%, 10%, 20% or 30%. The kuih samples were analyzed for nutritional composition and sensory acceptance. There was significant increase in total dietary fibre content (from 2.64 g/100 g to 3.15 g/100 g) and protein content (from 2.36% to 2.51%) with the incorporation of 90% BR powder in the KL formulation. The moisture (from 36.79% to 36.83%), ash (from 1.11% to 1.21%) and fat (from 8.51% to 8.73%) content were not significantly affected for all percentages of BR powder addition. For KTP, the addition of BR powder at the level of 90% significantly increased the total dietary fibre (from 2.77 g/100 g to 3.45 g/100 g), fat (from 5.73% to 6.95%) and moisture (from 64.10% to 64.12%) content as compared to the control (0%). However, the protein content was not significantly affected (from 3.41% to 3.59%). On the other hand, there was no significant difference for all sensory attributes of KL formulated with 30-90% of BR powder as compared to the control (0%). The sensory score of KTP added with 30-90% BR powder received significantly lower sensory score compared to the control sample (0%) for appearance, colour, firmness, adhesiveness, chewiness, taste and overall acceptance attributes. In summary, sensory evaluation showed that all BR-incorporated KL were acceptable, while only 30% addition of BR powder in KTP was acceptable. Thus, BR powder is potentially used in improving the nutritional composition of KL. However, further study is needed to improve palatability aspect of KTP formulated with BR powder.
    Matched MeSH terms: Dietary Fiber
  2. Tan, C.X., Azrina, A.
    MyJurnal
    Beans are distinctive among a diverse and broad class of legumes. Certain health products claimed their products are high in dietary fibers and total phenolic content (TPC) because they applied bean combinations. This study aimed to determine the dietary fibers and TPC of raw and cooked beans and its combinations. Individual beans studied were kidney bean, mung bean and chickpea. Bean combinations were done by mixing each of the homogenized beans flour in the ratio of 1:1 (w/w) and 1:1:1 (w/w/w). Dietary fibers were determined using enzymaticgravimetrical method whereas TPC was determined spectrophotometrically. Results showed the insoluble dietary fiber (IDF), soluble dietary fiber (SDF), total dietary fiber (TDF) and TPC for individual raw beans varied from 20.52 to 26.61 g/100 g, 1.20 to 2.45 g/100 g, 22.08 to 27.81 g/100 g and 0.48 to 1.04 mg GAE/g, respectively. For raw bean combinations, the IDF, SDF, TDF and TPC varied from 20.74 to 23.96 g/100 g, 2.3 to 2.50 g/100 g, 23.05 to 26.46 g/100 g and 0.80 to 0.85 mg GAE/g, respectively. No significant different (p > 0.05) in IDF and SDF for raw bean combinations and individual raw beans. Meanwhile, certain raw bean combinations contained significant higher (p < 0.05) TDF and TPC than individual raw beans. The IDF, SDF, TDF and TPC for individual cooked beans varied from 14.49 to 26.30 g/100 g, 1.40 to 2.02 g/100 g, 15.88 to 28.31 g/100 g and 0.57 to 1.20 mg GAE/g, respectively. For cooked bean combinations, the IDF, SDF, TDF and TPC varied from 15.73 to 23.03 g/100 g, 1.73 to 2.36 g/100 g, 17.46 to 24.95 g/100 g and 0.61 to 1.08 mg GAE/g, respectively. After cooking, the IDF, SDF, TDF and TPC of certain beans combinations were significantly higher (p < 0.05) than individual beans. This study supports the proposal that bean combinations can possibly be used as a method to increase the amount of dietary fibers and TPC.
    Matched MeSH terms: Dietary Fiber
  3. Ng SH, Robert SD, Wan Ahmad WA, Wan Ishak WR
    Food Chem, 2017 Jul 15;227:358-368.
    PMID: 28274444 DOI: 10.1016/j.foodchem.2017.01.108
    The purpose of this study was to determine the effects of Pleurotus sajor-caju (PSC) powder addition at 0, 4, 8 and 12% levels on the nutritional values, pasting properties, thermal characteristics, microstructure, in vitro starch digestibility, in vivo glycaemic index (GI) and sensorial properties of biscuits. Elevated incorporation levels of PSC powder increased the dietary fibre (DF) content and reduced the pasting viscosities and starch gelatinisation enthalpy value of biscuits. The addition of DF-rich PSC powder also interfered with the integrity of the starch granules by reducing the sizes and inducing the uneven spherical shapes of the starch granules, which, in turn, resulted in reduced starch susceptibility to digestive enzymes. The restriction starch hydrolysis rate markedly reduced the GI of biscuits. The incorporation of 8% PSC powder in biscuits (GI=49) could be an effective way of developing a nutritious and low-GI biscuit without jeopardizing its desirable sensorial properties.
    Matched MeSH terms: Dietary Fiber/analysis; Dietary Fiber/metabolism*
  4. Refaei A, Wagiran H, Saeed MA, Hosssain I
    Appl Radiat Isot, 2014 Dec;94:89-92.
    PMID: 25146569 DOI: 10.1016/j.apradiso.2014.07.012
    Thermoluminescence (TL) properties (radiation sensitivity, dose response, signal fading) of Nd-doped SiO2 optical fibers irradiated with 1.25MeV photons to 1-50Gy were studied. The peak of the glow curve is around 190°C regardless of the dose. The dose response is linear up to 50Gy. The radiation sensitivity is 219nCmg(-1)Gy(-1). The fiber can be a potential candidate for photon radiotherapy dosimetry due to its high radiation sensitivity, linear dose response in a wide range, slow fading, and high spatial resolution due to the small size of the fiber.
    Matched MeSH terms: Dietary Fiber
  5. Chang KH, Yew CH, Abdullah AF
    J Forensic Sci, 2014 Jul;59(4):1100-8.
    PMID: 24611488 DOI: 10.1111/1556-4029.12440
    Smokeless powders are low explosives and are potentially found in cases involving firearms and improvised explosive devices. Apart from inorganic compound analysis, forensic determination of organic components of these materials appears as a promising alternative, especially the chromatographic techniques. This work describes the optimization of a solid-phase microextraction technique using an 85 μm polyacrylate fiber followed by gas chromatography-flame ionization detection for smokeless powder. A multivariate experimental design was performed to optimize extraction-influencing parameters. A 2(4) factorial first-order design revealed that sample temperature and extraction time were the major influencing parameters. Doehlert matrix design has subsequently selected 66°C and 21 min as the compromised conditions for the two predetermined parameters. This extraction technique has successfully detected the headspace compounds of smokeless powders from different ammunition types and allowed for their differentiation. The novel technique allows more rapid sample preparation for chromatographic detection of smokeless powders.
    Matched MeSH terms: Dietary Fiber
  6. Ghomeishi M, Mahdiraji GA, Adikan FR, Ung NM, Bradley DA
    Sci Rep, 2015;5:13309.
    PMID: 26314683 DOI: 10.1038/srep13309
    With interest in the potential of optical fibres as the basis of next-generation thermoluminescence dosimeters (TLDs), the development of suitable forms of material and their fabrication has become a fast-growing endeavour. Present study focuses on three types of Ge-doped optical fibres with different structural arrangements and/or shapes, namely conventional cylindrical fibre, capillary fibre, and flat fibre, all fabricated using the same optical fibre preform. For doses from 0.5 to 8 Gy, obtained at electron and photon energies, standard thermoluminescence (TL) characteristics of the optical fibres have been the subject of detailed investigation. The results show that in collapsing the capillary fibre into a flat shape, the TL yield is increased by a factor of 5.5, the yield being also some 3.2 times greater than that of the conventional cylindrical fibre fabricated from the same perform. This suggests a means of production of suitably sensitive TLD for in-vivo dosimeter applications. Addressing the associated defects generating luminescence from each of the optical fibres, the study encompasses analysis of the TL glow curves, with computerized glow curve deconvolution (CGCD) and 2(nd) order kinetics.
    Matched MeSH terms: Dietary Fiber
  7. Ranjbar N, Mehrali M, Behnia A, Javadi Pordsari A, Mehrali M, Alengaram UJ, et al.
    PLoS One, 2016;11(1):e0147546.
    PMID: 26807825 DOI: 10.1371/journal.pone.0147546
    As a cementitious material, geopolymers show a high quasi-brittle behavior and a relatively low fracture energy. To overcome such a weakness, incorporation of fibers to a brittle matrix is a well-known technique to enhance the flexural properties. This study comprehensively evaluates the short and long term impacts of different volume percentages of polypropylene fiber (PPF) reinforcement on fly ash based geopolymer composites. Different characteristics of the composite were compared at fresh state by flow measurement and hardened state by variation of shrinkage over time to assess the response of composites under flexural and compressive load conditions. The fiber-matrix interface, fiber surface and toughening mechanisms were assessed using field emission scan electron microscopy (FESEM) and atomic force microscopy (AFM). The results show that incorporation of PPF up to 3 wt % into the geopolymer paste reduces the shrinkage and enhances the energy absorption of the composites. While, it might reduce the ultimate flexural and compressive strength of the material depending on fiber content.
    Matched MeSH terms: Dietary Fiber
  8. Shabaneh A, Girei S, Arasu P, Mahdi M, Rashid S, Paiman S, et al.
    Sensors (Basel), 2015;15(5):10452-64.
    PMID: 25946634 DOI: 10.3390/s150510452
    Ethanol is a highly combustible chemical universally designed for biomedical applications. In this paper, optical sensing performance of tapered multimode fiber tip coated with carbon nanotube (CNT) thin film towards aqueous ethanol with different concentrations is investigated. The tapered optical multimode fiber tip is coated with CNT using drop-casting technique and is annealed at 70 °C to enhance the binding of the nanomaterial to the silica fiber tip. The optical fiber tip and the CNT sensing layer are micro-characterized using FESEM and Raman spectroscopy techniques. When the developed sensor was exposed to different concentrations of ethanol (5% to 80%), the sensor reflectance reduced proportionally. The developed sensors showed high sensitivity, repeatability and fast responses (<55 s) towards ethanol.
    Matched MeSH terms: Dietary Fiber
  9. Ibrahim Lakin I, Abbas Z, Azis RS, Abubakar Alhaji I
    Materials (Basel), 2020 Oct 16;13(20).
    PMID: 33081082 DOI: 10.3390/ma13204602
    This study was aimed at fabricating composites of polylactic acid (PLA) matrix-reinforced oil palm empty fruit bunch (OPEFB) fiber filled with chemically reduced graphene oxide (rGO). A total of 2-8 wt.% rGO/OPEFB/PLA composites were characterized for their complex permittivity using an open-ended coaxial probe (OEC) technique. The shielding efficiency properties were calculated using the measured transmission (S21) and the reflection (S11) coefficient results. All the measurements and calculations were performed in the 8-12 GHz frequency range. The morphological and microstructural study included X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and Fourier transform infrared spectroscopy (FTIR). The results indicated that the incorporation of rGO as filler into the composites enhanced their complex permittivity properties. The composites showed a total shielding efficiency (SET) of about 31.2 dB at a frequency range of 8-12 GHz, which suggests their usefulness for microwave absorption.
    Matched MeSH terms: Dietary Fiber
  10. Hanan F, Jawaid M, Paridah MT, Naveen J
    Polymers (Basel), 2020 Sep 09;12(9).
    PMID: 32916779 DOI: 10.3390/polym12092052
    In this research, the physical, mechanical and morphological properties of oil palm empty fruit bunch (EFB) mat/woven kenaf fabric-reinforced epoxy composites have been investigated. The oil palm EFB/woven kenaf fabrics were varied, with weight ratios of 50/0 (T1), 35/15 (T2), 25/25 (T3), 15/35 (T4) and 0/50 (T5). The composites were fabricated using a simple hand lay-up technique followed by hot pressing. The result obtained shows that an increase in kenaf fiber content exhibited higher tensile and flexural properties. On the other hand, the opposite trend was observed in the impact strength of hybrid composites, where an increase in kenaf fiber content reduced the impact strength. This can be corroborated with the physical properties analysis, where a higher void content, water absorption and thickness swelling were observed for pure oil palm EFB (T1) composites compared to other samples. The scanning electron microscopy analysis results clearly show the different failure modes of the tensile fractured samples. Statistical analysis was performed using one-way ANOVA and shows significant differences between the obtained results.
    Matched MeSH terms: Dietary Fiber
  11. Che Othman FE, Yusof N, Yub Harun N, Bilad MR, Jaafar J, Aziz F, et al.
    Polymers (Basel), 2020 Sep 10;12(9).
    PMID: 32927881 DOI: 10.3390/polym12092064
    Various types of activated carbon nanofibers' (ACNFs) composites have been extensively studied and reported recently due to their extraordinary properties and applications. This study reports the fabrication and assessments of ACNFs incorporated with graphene-based materials, known as gACNFs, via simple electrospinning and subsequent physical activation process. TGA analysis proved graphene-derived rice husk ashes (GRHA)/ACNFs possess twice the carbon yield and thermally stable properties compared to other samples. Raman spectra, XRD, and FTIR analyses explained the chemical structures in all resultant gACNFs samples. The SEM and EDX results revealed the average fiber diameters of the gACNFs, ranging from 250 to 400 nm, and the successful incorporation of both GRHA and reduced graphene oxide (rGO) into the ACNFs' structures. The results revealed that ACNFs incorporated with GRHA possesses the highest specific surface area (SSA), of 384 m2/g, with high micropore volume, of 0.1580 cm3/g, which is up to 88% of the total pore volume. The GRHA/ACNF was found to be a better adsorbent for CH4 compared to pristine ACNFs and reduced graphene oxide (rGO/ACNF) as it showed sorption up to 66.40 mmol/g at 25 °C and 12 bar. The sorption capacity of the GRHA/ACNF was impressively higher than earlier reported studies on ACNFs and ACNF composites. Interestingly, the CH4 adsorption of all ACNF samples obeyed the pseudo-second-order kinetic model at low pressure (4 bar), indicating the chemisorption behaviors. However, it obeyed the pseudo-first order at higher pressures (8 and 12 bar), indicating the physisorption behaviors. These results correspond to the textural properties that describe that the high adsorption capacity of CH4 at high pressure is mainly dependent upon the specific surface area (SSA), pore size distribution, and the suitable range of pore size.
    Matched MeSH terms: Dietary Fiber
  12. Zaini HBM, Sintang MDB, Pindi W
    Food Sci Nutr, 2020 Oct;8(10):5497-5507.
    PMID: 33133552 DOI: 10.1002/fsn3.1847
    Chicken sausages included with three different quantities of banana (Musa balbisiana) peel powder. The technological properties (cooking yield, texture, water-holding capacity, color, rheology, and texture), composition, and sensory acceptability were assessed. In storage study, lipid oxidation of the best formulation from the sensory score was evaluated. The inclusion of banana peel powder (BPP) raises the nutritional value with regard to an increase in dietary fiber and a reduction in the sausage fat content. The addition of BPP also causes a significant increase in the cooking yield and water-holding capacity. Additionally, storage modulus values increase with the increase in the BPP's concentration. However, with BPP incorporation, a hard texture and darkening of the sausage were observed. Interestingly, our findings exhibit the compromise in microstructural of chicken sausage with high percentage of BPP manifested by the high storage modulus and hardness but with low resistance toward stress, short linear viscoelastic region. This aspect also caused a significant change in the sensory score. The TBA value in the sausage containing 2% BPP exhibited a delay in lipid oxidation up to 55%, prompting its antioxidant potential. Generally, the incorporation of BPP to chicken sausage changes its properties. BPP has been a potential candidate as a value-adding ingredient that may be used during meat preparation since it positively influences the nutritional value and specific technological properties of the food.
    Matched MeSH terms: Dietary Fiber
  13. Zakaria Razak, Abu Bakar Sulong, Norhamidi Muhamad, Che Hassan Che Haron, Mohd Khairol Fadzly Md Radzi, Dulina Tholibon, et al.
    Sains Malaysiana, 2018;47:1285-1291.
    Composite materials have increasingly become crucial in manufacturing engineering products and producing commodity
    materials in the major industries including; automotive, aerospace, marine, construction, agriculture and health science.
    However, several improvements regarding the strength, dimensional stability and the cost of production are required.
    In this study, composite of Kenaf, multi-wall carbon nanotube (MWCNT) and polypropylene (PP) with maleic anhydridegrafted
    polypropylene (MAPP) are examined. The results highlight that increasing MAPP loading, in turn, increases the
    value of the mechanical properties. The composites are produced by blending kenaf/MWCNT/PP using a Sigma blade
    mixer and injection moulding. Injection moulding is a significant operation used to produce plastic products. In the
    study, Kenaf core fibre was mixed with MWCNT and polypropylene, in addition to MAPP. The MAPP is added by applying
    different percentage (1, 2, 3 and 4 wt. %) during the blending process. The main objective of the study was to analyse the
    effects of MAPP concentrations on the mechanical properties of the Kenaf/MWCNT/PP composite. The results of the study
    established that MAPP 3 wt. % concentration with MWCNT 3 wt. % loading and Kenaf 30 wt. % filler provide optimum
    results for the composites. There was approximately, a 21% enhance in tensile strength of Kenaf 30 wt. %/MWCNT, 3 wt.
    %/MAPP, 3 wt. %/PP observed compared to the (without) MAPP composite. The composites with coupling agent stimulate
    better filler dispersion between Kenaf, MWCNT and PP observed using a scanning electron microscope (SEM) and fieldemission
    scanning electron microscope (FESEM).
    Matched MeSH terms: Dietary Fiber
  14. M R S, Siengchin S, Parameswaranpillai J, Jawaid M, Pruncu CI, Khan A
    Carbohydr Polym, 2019 Mar 01;207:108-121.
    PMID: 30599990 DOI: 10.1016/j.carbpol.2018.11.083
    Designing environmentally friendly materials from natural resources represents a great challenge in the last decade. However, the lack of fundamental knowledge in the processing of the raw materials to fabricate the composites structure is still a major challenge for potential applications. Natural fibers extracted from plants are receiving more attention from researchers, scientists and academics due to their use in polymer composites and also their environmentally friendly nature and sustainability. The natural fiber features depend on the preparation and processing of the fibers. Natural plant fibers are extracted either by mechanical retting, dew retting and/or water retting processes. The natural fibers characteristics could be improved by suitable chemicals and surface treatments. This survey proposes a detailed review of the different types of retting processes, chemical and surface treatments and characterization techniques for natural fibers. We summarize major findings from the literature and the treatment effects on the properties of the natural fibers are being highlighted.
    Matched MeSH terms: Dietary Fiber
  15. Masoud F, Sapuan SM, Ariffin MKAM, Nukman Y, Bayraktar E
    Polymers (Basel), 2021 Feb 26;13(5).
    PMID: 33652612 DOI: 10.3390/polym13050706
    In this paper, the influence of processing input parameters on the heat-affected zone (HAZ) of three different material thicknesses of sugar palm fiber reinforced unsaturated polyester (SPF-UPE) composites cut with a CO2 laser was investigated. Laser power, traverse speed, and gas pressure were selected as the most influential input parameters on the HAZ to optimize the HAZ response with fixing all of the other input parameters. Taguchi's method was used to determine the levels of parameters that give the best response to the HAZ. The significance of input parameters was also determined by calculating the max-min variance of the average of the signal-to-noise ratio (S/N) ratio for each parameter. Analysis of variation (ANOVA) was used to determine each input parameter's contribution to the influence on HAZ depth. The general results show that the minimum levels of laser power and the highest levels of traverse speed and gas pressure gave the optimum response to the HAZ. Gas pressure had the most significant effect on the HAZ, with contribution decreases as the material thickness increased, followed by the traverse speed with contribution increases with the increase in material thickness. Laser power came third, with a minimal contribution to the effect on the HAZ, and it did not show a clear relationship with the change in material thickness. By applying the optimum parameters, the desired HAZ depth could be obtained at relatively low values.
    Matched MeSH terms: Dietary Fiber
  16. Nirmal U
    Polymers (Basel), 2018 Sep 25;10(10).
    PMID: 30960991 DOI: 10.3390/polym10101066
    The current work is an attempt to reduce friction coefficient of the treated betelnut fibre reinforced polyester (T-BFRP) composites by aging them in twelve different solutions with different kinematic viscosities. The test will be performed on a pin on disc (POD) wear test rig using different applied loads (5⁻30 N), different sliding distances (0⁻6.72 km) at sliding speed of 2.8 m/s subjected to a smooth stainless steel counterface (AISI-304). Different orientations of the fibre mats such as anti-parallel (AP) and parallel (P) orientations subjected to the rotating counterface will be considered. The worn surfaces were examined through optical microscopy imaging and it was found that the aged specimens had significantly lower damages as compared to neat polyester (NP) and the unaged samples. Besides, P-O samples revealed lower friction coefficients as compared to AP-O, i.e., reduction was about 24.71%. Interestingly, aging solutions with lower kinematic viscosities revealed lower friction coefficients of the aged T-BFRP composites when compared to the ones aged in higher kinematic viscosities.
    Matched MeSH terms: Dietary Fiber
  17. Challabi AJH, Chieng BW, Ibrahim NA, Ariffin H, Zainuddin N
    Polymers (Basel), 2019 Mar 13;11(3).
    PMID: 30960466 DOI: 10.3390/polym11030482
    The effectiveness of superheated steam (SHS) as an alternative, eco-friendly treatment method to modify the surface of pineapple leaf fiber (PALF) for biocomposite applications was investigated. The aim of this treatment was to improve the interfacial adhesion between the fiber and the polymer. The treatment was carried out in an SHS oven for different temperatures (190⁻230 °C) and times (30⁻120 min). Biocomposites fabricated from SHS-treated PALFs and polylactic acid (PLA) at a weight ratio of 30:70 were prepared via melt-blending techniques. The mechanical properties, dimensional stability, scanning electron microscopy (SEM), and X-ray diffraction (XRD) for the biocomposites were evaluated. Results showed that treatment at temperature of 220 °C for 60 min gave the optimum tensile properties compared to other treatment temperatures. The tensile, flexural, and impact properties as well as the dimensional stability of the biocomposites were enhanced by the presence of SHS-treated PALF. The SEM analysis showed improvement in the interfacial adhesion between PLA and SHS-treated PALF. XRD analysis showed an increase in the crystallinity with the addition of SHS-PALF. The results suggest that SHS can be used as an environmentally friendly treatment method for the modification of PALF in biocomposite production.
    Matched MeSH terms: Dietary Fiber
  18. Okazaki T, Orii T, Tan SY, Watanabe T, Taguchi A, Rahman FA, et al.
    Anal Chem, 2020 07 21;92(14):9714-9721.
    PMID: 32551577 DOI: 10.1021/acs.analchem.0c01062
    We present an electrochemical long period fiber grating (LPFG) sensor for electroactive species with an optically transparent electrode. The sensor was fabricated by coating indium tin oxide onto the surface of LPFG using a polygonal barrel-sputtering method. LPFG was produced by an electric arc-induced technique. The sensing is based on change in the detection of electron density on the electrode surface during potential application and its reduction by electrochemical redox of analytes. Four typical electroactive species of methylene blue, hexaammineruthenium(III), ferrocyanide, and ferrocenedimethanol were used to investigate the sensor performance. The concentrations of analytes were determined by the modulation of the potential as the change in transmittance around the resonance band of LPFG. The sensitivity of the sensor, particularly to methylene blue, was high, and the sensor responded to a wide concentration range of 0.001 mM to 1 mM.
    Matched MeSH terms: Dietary Fiber
  19. Ahmad Saffian H, Talib MA, Lee SH, Md Tahir P, Lee CH, Ariffin H, et al.
    Polymers (Basel), 2020 Aug 15;12(8).
    PMID: 32824275 DOI: 10.3390/polym12081833
    Mechanical strength, thermal conductivity and electrical breakdown of polypropylene/lignin/kenaf core fiber (PP/L/KCF) composite were studied. PP/L, PP/KCF and PP/L/KCF composites with different fiber and lignin loading was prepared using a compounding process. Pure PP was served as control. The results revealed that tensile and flexural properties of the PP/L/KCF was retained after addition of lignin and kenaf core fibers. Thermal stability of the PP composites improved compared to pure PP polymer. As for thermal conductivity, no significant difference was observed between PP composites and pure PP. However, PP/L/KCF composite has higher thermal diffusivity. All the PP composites produced are good insulating materials that are suitable for building. All PP composites passed withstand voltage test in air and oil state as stipulated in IEC 60641-3 except PP/L in oil state. SEM micrograph showed that better interaction and adhesion between polymer matrix, lignin and kenaf core fibers was observed and reflected on the better tensile strength recorded in PP/L/KCF composite. This study has successfully filled the gap of knowledge on using lignin and kenaf fibers as PP insulator composite materials. Therefore, it can be concluded that PP/Lignin/KCF has high potential as an insulating material.
    Matched MeSH terms: Dietary Fiber
  20. Fahad Ahmad A, Aziz SHA, Abbas Z, Mohammad Abdalhadi D, Khamis AM, Aliyu US
    Polymers (Basel), 2020 Aug 26;12(9).
    PMID: 32858790 DOI: 10.3390/polym12091919
    This article describes attenuation and absorption measurements using the microstrip transmission line technique connected with a microwave vector network analyzer (Agilent 8750B). The magnitudes of the reflection (S11) and transmission (S21) coefficients obtained from the microstrip transmission line were used to determine the attenuation and absorption of oil palm empty fruit bunch/polylactic acid (OPEFB/PLA) composites in a frequency range between 0.20 GHz and 12 GHz at room temperature. The main structure of semi-flexible substrates (OPEFF/PLA) was fabricated using different fiber loading content extracted from oil palm empty fruit bunch (OPEFB) trees hosted in polylactic acid (PLA) using the Brabender blending machine, which ensured mixture homogeneity. The commercial software package, Computer Simulation Technology Microwave Studio (CSTMWS), was used to investigate the microstrip line technique performance by simulating and determine the S11 and S21 for microwave substrate materials. Results showed that the materials' transmission, reflection, attenuation, and absorption properties could be controlled by changing the percentage of OPEFB filler in the composites. The highest absorption loss was calculated for the highest percentage of filler (70%) OPEFB at 12 GHz to be 0.763 dB, while the lowest absorption loss was calculated for the lowest percentage of filler 30% OPEFB at 12 GHz to be 0.407 dB. Finally, the simulated and measured results were in excellent agreement, but the environmental conditions slightly altered the results. From the results it is observed that the value of the dielectric constant (εr') and loss factor (εr″) is higher for the OPEFB/PLA composites with a higher content of OPEFB filler. The dielectric constant increased from 2.746 dB to 3.486 dB, while the loss factor increased from 0.090 dB to 0.5941 dB at the highest percentage of 70% OPEFB filler. The dielectric properties obtained from the open-ended coaxial probe were required as input to FEM to calculate the S11 and S21 of the samples.
    Matched MeSH terms: Dietary Fiber
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links