Pharyngeal micro-organisms of 131 Australian and Malaysian children and adults were compared by analysis of aerobic culture of throat swab specimens. Enteric Gram-negative bacilli were commonly isolated in small numbers from Malaysian adults whether they had sore throats (28%) or not (36%), but were detected in only 9% of Australian adults without sore throats and in only 12% and 4% of Malaysian children with and without sore throats respectively. In other respects microbiological findings were similar in the different groups of subjects studied. It is concluded that the pharyngeal carriage rate of enteric Gram-negative bacilli may differ substantially between different groups of normal individuals. Our findings also suggest that these micro-organisms do not have a pathogenic role in pharyngitis.
The sorption characteristics of Cr(VI) and Cu(II) by ethylenediamine modified rice hull from single and binary metal ion solutions were evaluated under various experimental conditions. Optimal Cr(VI) and Cu(II) removal from single metal ion solutions occurred at pH 2.0 and 5.5, respectively. Simultaneous removal of Cr(VI) and Cu(II) occurred at pH greater than 3.0. The sorption kinetics of Cr(VI) and Cu(II) from single and binary metal ion solutions were studied with reference to metal concentration, agitation rate and particle size. Sorption of Cr(VI) was more rapid than Cu(II). The kinetics of metal ion sorption fitted a pseudo-second order expression. The variation in the initial uptake rates was very small at an agitation rate beyond 150 rpm and sorption was generally independent of particle size. Equilibrium sorption data could be fitted into the Langmuir isotherm equation. Maximum sorption capacities of ethylenediamine modified rice hull for Cr(VI) at pH 2 and Cu(II) at pH 4 in single metal solutions were 0.45 and 0.06 mmol g(-1), respectively. This corresponds to an enhancement factor of 2.6 and 3 fold for Cr(VI) and Cu(II), respectively, compared to natural rice hull. A synergistic effect was observed for sorption of these ions in binary metal solutions.
Nine derivatives of three natural diarylheptanoids, curcumin, demethoxycurcumin and bisdemethoxycurcumin, were prepared. Their antioxidant, free radical scavenging, nitric oxide (NO) inhibitory and cytotoxic activities were evaluated and compared with those of the respective natural compounds. Curcumin (1), demethoxycurcumin (2), demethyldemethoxy-curcumin (C3), diacetyldemethoxycurcumin (AC2) and triacetyldemethylcurcumin (AC5) exhibited higher antioxidant activity than quercetin while products from demethylation of 1 and 2 exhibited higher free radical scavenging activity. Compounds AC2 and AC5 were found to be most active in inhibiting breast cancer cells (MCF-7) proliferation with IC50 values of 6.7 and 3.6 microM, respectively. The activity of AC2 is almost doubled and of AC5 almost tripled as compared to curcumin. Their selectivity towards different cell lines is also more noticeable. Compounds AC2 and AC5 also showed increased activity against a human prostate cancer cell line (DU-145) and non-small lung cancer cell line (NCI-H460) with IC50 values of 20.4, 16.3 and 18.3, 10.7 microM, respectively.
This paper describes a new bacterial white spot syndrome (BWSS) in cultured tiger shrimp Penaeus monodon. The affected shrimp showed white spots similar to those caused by white spot syndrome virus (WSSV), but the shrimp remained active and grew normally without significant mortalities. The study revealed no evidence of WSSV infection using electron microscopy, histopathology and nested polymerase chain reaction. Electron microscopy indicated bacteria associated with white spot formation, and with degeneration and discoloration of the cuticle as a result of erosion of the epicuticle and underlying cuticular layers. Grossly the white spots in BWSS and WSS look similar but showed different profiles under wet mount microscopy. The bacterial white spots were lichen-like, having perforated centers unlike the melanized dots in WSSV-induced white spots. Bacteriological examination showed that the dominant isolate in the lesions was Bacillus subtilis. The occurrence of BWSS may be associated with the regular use of probiotics containing B. subtilis in shrimp ponds. The externally induced white spot lesions were localized at the integumental tissues, i.e., cuticle and epidermis, and connective tissues. Damage to the deeper tissues was limited. The BWS lesions are non-fatal in the absence of other complications and are usually shed through molting.
Rotavirus and pathogenic free-living amoebae are causative agents of important health problems, especially for developing countries like Pakistan where the population has limited access to clean water supplies. Here, we evaluated the prevalence of rotavirus and free-living amoebae (Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri) in drinking water supplies of Karachi, Pakistan. Six water filtration plants that supply drinking water to the population of Karachi were investigated. Additionally, drinking water samples from households were analyzed for the presence of rotavirus and free-living amoebae. Rotavirus was present in 35% of the water samples collected from water filtration plants; however, domestic tap water samples had a prevalence of only 5%. Out of 20 water samples from filtration plants, 13 (65%) were positive for Acanthamoeba spp., and one (5%) was positive for B. mandrillaris. Out of 20 drinking water samples collected from different areas of Karachi, 35% were positive for Acanthamoeba spp. Rotavirus was detected in 5% of the drinking water samples tested. Overall, these findings showed for the first time the presence of rotavirus, in addition to pathogenic free-living amoebae in drinking water supplies of Karachi that could be an important public health risk for the affected population.
Staphylococcus aureus is a major human pathogen, especially methicillin-resistant S. aureus (MRSA), which causes a wide range of hospital and community-acquired infections worldwide. Conventional testing for detection of MRSA takes 2-5 days to yield complete information of the organism and its antibiotic sensitivity pattern.
A survey for small mammal parasites carried out in a secondary forest of Ulu Gombak, Selangor, Peninsula Malaysia yielded the following animals: Rattus bowersi (7), Rattus tiomanicus jalorensis (2), Maxomys rajah (12), Maxoyms whiteheadi (3), Leopoldamys sabanus(13), Sundamys muelleri(10), Lariscus insignis (1), Sundasciurus tenuis (1) and Tupaia glis (2). The following nematodes: Capillaria hepatica, Hepatojarakus malayae, Trichostrongylus sp. and Streptopharagus sp., the following cestodes: Hymenolepis sp., Raillietina sp. and Taenia taeniaformis; and trematode, Zonorchis sp. from Tupaia glis were recovered. No parasites were observed during blood examination. No endoparasite was seen in Maxomys whiteheadi, Lariscus insignis and Sundasciurus tenuis. The following parasites, Capillaria hepatica, Hymenolepis sp., Raillietina sp. and Taenia taeniaformis are considered of medical importance.
The presence of heavy metal in food chains due to the rapid industrialization poses a serious threat on the environment. Therefore, detection and monitoring of heavy metals contamination are gaining more attention nowadays. However, the current analytical methods (based on spectroscopy) for the detection of heavy metal contamination are often very expensive, tedious and can only be handled by trained personnel. DNA biosensors, which are based on electrochemical transduction, is a sensitive but inexpensive method of detection. The principles, sensitivity, selectivity and challenges of electrochemical biosensors are discussed in this review. This review also highlights the major advances of DNA-based electrochemical biosensors for the detection of heavy metal ions such as Hg(2+), Ag(+), Cu(2+) and Pb(2+).
Three species of commonly eaten shellfish found in Malaysian coastal waters were examined for the presence of common bacterial enteropathogens. Vibrio parahaemolyticus, non-agglutinating vibrios, and various serotypes of enteropathogenic E. coli were isolated from a large proportion of them. Salmonella were isolated in two instances. High colony counts with evidence of faecal contamination indicated the strong possibility of pulltion being the cause for the presence of these enteropathogens. Methods of cooking and eating these shellfish enhance their likelihood of acting as vehicles of diarrhoeal disease.
In the present study, the feasibility of soil used as a low-cost adsorbent for the removal of Cu(2+), Zn(2+), and Pb(2+) ions from aqueous solution was investigated. The kinetics for adsorption of the heavy metal ions from aqueous solution by soil was examined under batch mode. The influence of the contact time and initial concentration for the adsorption process at pH of 4.5, under a constant room temperature of 25 ± 1 °C were studied. The adsorption capacity of the three heavy metal ions from aqueous solution was decreased in order of Pb(2+) > Cu(2+) > Zn(2+). The soil was characterized by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopic-energy dispersive X-ray (SEM-EDX), and Brunauer, Emmett, and Teller (BET) surface area analyzer. From the FTIR analysis, the experimental data was corresponded to the peak changes of the spectra obtained before and after adsorption process. Studies on SEM-EDX showed distinct adsorption of the heavy metal ions and the mineral composition in the study areas were determined to be silica (SiO2), alumina (Al2O3), and iron(III) oxide (FeO3). A distinct decrease of the specific surface area and total pore volumes of the soil after adsorption was found from the BET analysis. The experimental results obtained were analyzed using four adsorption kinetic models, namely pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion. Evaluating the linear correlation coefficients, the kinetic studies showed that pseudo-second-order equation described the data appropriable than others. It was concluded that soil can be used as an effective adsorbent for removing Cu(2+), Zn(2+), and Pb(2+) ions from aqueous solution.
Quaternary alkaloids are the major alkaloids isolated from Tinospora species. A previous study pointed to the necessary presence of quaternary nitrogens for strong acetylcholinesterase (AChE) inhibitory activity in such alkaloids. Repeated column chromatography of the vine of Tinospora crispa extract led to the isolation of one new protoberberine alkaloid, 4,13-dihydroxy-2,8,9-trimethoxydibenzo[a,g]quinolizinium (1), along with six known alkaloids-dihydrodiscretamine (2), columbamine (3), magnoflorine (4), N-formylannonaine (5), N-formylnornuciferine (6), and N-trans-feruloyltyramine (7). The seven compounds were isolated and structurally elucidated by spectroscopic analysis. Two known alkaloids, namely, dihydrodiscretamine and columbamine are reported for the first time for this plant. The compounds were tested for AChE inhibitory activity using Ellman's method. In the AChE inhibition assay, only columbamine (3) showed strong activity with IC50 48.1 µM. The structure-activity relationships derived from these results suggest that the quaternary nitrogen in the skeleton has some effect, but that a high degree of methoxylation is more important for acetylcholinesterase inhibition.
Live eels and processed fish products from Malaysia are routinely checked for microbial pathogens before export to Japan. The eels and water from the ponds are screened for Vibrio cholerae and Salmonella spp, whereas the processed fish products are tested for microbial contamination (aerobic plate count), coliforms, E. coil and Vibrio cholerae. Results showed that live eels and water samples were negative for Vibrio cholerae but Salmonella spp were isolated occasionally. Various types of processed fish products had counts below 1.0 x 10(5) whilst coliforms, E. coli and Vibrio cholerae were absent. Records available showed that procedures involved in the production and transportation of live eel, preparation and processing of fish products have resulted in relatively safe food products.
The study compares the bacteriological quality on Asian seabass (Lates calcarifer) between ice and salt storage methods. The main objectives of the study were to identify different bacteria constituents and quantitative bacterial load in Asian seabass when preserved with ice and sea salt. For the purpose of this study, Asian seabass was stored in two different conditions of ice-chilled and salted for 2 days. All fish samples were analyzed by performing bacteriological analysis and the isolated bacteria were identified by using API identification system. In case of the quantity of bacteria in the flesh, Chilling and salting had no significant difference to the quantity of bacteria on fish flesh. As for the skin, salt-preserved fish showed higher quantity of bacteria than ice-preserved fish. Acinetobacter baumannii and Pseudomonas fluorescens had been identified from skin sample of ice-chilled fish. Besides P. fluorescens and A. baumannii other isolates identified include Vibrio and Myxobacteria. All bacteria were cocci-shaped except a few bacilli. In term of bacteria number and morphological characteristics, ice-chilled preserved fish was better than salt preserved fish. Overall, less number of bacteria was observed in both ice-chilled and sea salt preserved fish. The result of this study indicated that the quick preservation is a very important factor to control bacterial load in the preserved fish.
The results of this study indicate that the important viral agents associated with lower respiratory tract infections in young children are respiratory syncytial virus, rhinovirus, and parainfluenza virus, particularly in those under 2 years of age. This is in close agreement with studies done in temperate climates. Influenza A virus is seasonal and plays an important role in upper respiratory tract infections in older children.
Study site: Inpatients and outpatients, University Malaya Medical Centre (UMMC), Kuala Lumpur, Malaysia
The aim of this study was to determine the best parameter for extracting phenolic-enriched kenaf (Hibiscus cannabinus L.) seeds by a pulsed ultrasonic-assisted extraction. The antioxidant activities of ultrasonic-assisted kenaf seed extracts (KSE) were determined by a 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity assay, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging assay, β -carotene bleaching inhibition assay, and ferric reducing antioxidant power (FRAP) assay. Total phenolic content (TPC) and total flavonoid content (TFC) evaluations were carried out to determine the phenolic and flavonoid contents in KSE. The KSE from the best extraction parameter was then subjected to high performance liquid chromatography (HPLC) to quantify the phenolic compounds. The optimised extraction condition employed 80% ethanol for 15 min, with the highest values determined for the DPPH, ABTS, and FRAP assay. KSE contained mainly tannic acid (2302.20 mg/100 g extract) and sinapic acid (1198.22 mg/100 g extract), which can be used as alternative antioxidants in the food industry.
The fermentation of cocoa pulp is one of the few remaining large-scale spontaneous microbial processes in today's food industry. The microbiota involved in cocoa pulp fermentations is complex and variable, which leads to inconsistent production efficiency and cocoa quality. Despite intensive research in the field, a detailed and comprehensive analysis of the microbiota is still lacking, especially for the expanding Asian production region. Here, we report a large-scale, comprehensive analysis of four spontaneous Malaysian cocoa pulp fermentations across two time points in the harvest season and two fermentation methods. Our results show that the cocoa microbiota consists of a "core" and a "variable" part. The bacterial populations show a remarkable consistency, with only two dominant species, Lactobacillus fermentum and Acetobacter pasteurianus. The fungal diversity is much larger, with four dominant species occurring in all fermentations ("core" yeasts), and a large number of yeasts that only occur in lower numbers and specific fermentations ("variable" yeasts). Despite this diversity, a clear pattern emerges, with early dominance of apiculate yeasts and late dominance of Saccharomyces cerevisiae. Our results provide new insights into the microbial diversity in Malaysian cocoa pulp fermentations and pave the way for the selection of starter cultures to increase efficiency and consistency.
One of the appropriate development technology options for the treatment of wastewater contaminated with diesel is constructed wetlands (CWs). Throughout 72 days of exposure, sampling was carried out for monitoring of physical parameters, plant growth and the efficiency of total petroleum hydrocarbon (TPH) removal, as an indication for diesel contamination, to assess the pilot-scale performance. Four pilot CWs with a horizontal sub-surface flow system were applied using the bulrush of Scirpus grossus. The CWs were loaded with different diesel concentrations of 0, 0.1, 0.2 and 0.25% (Vdiesel/Vwater). The TPH removal efficiencies were 82, 71, and 67% at the end of 72 days for diesel concentrations of 0.1, 0.2, and 0.25% respectively. In addition, the high removal efficiency of total suspended solids and chemical oxygen demand (COD) were 100 and 75.4% respectively, for a diesel concentration of 0.1%. It was concluded that S. grossus is a potential plant that can be used in a well-operated CW for restoring 0.1% diesel-contaminated water.
An alkaloid from Maclurodendron porteri has been isolated and characterized. Extraction process was conducted by acid-base extraction method followed by column chromatography. The structure was established by nuclear magnetic resonance spectroscopy and mass spectrometry. The compound was identified as haplophytin B which occurs commonly in the Rutaceae family. However, this is the first time this alkaloid was isolated and reported from the species. The compound showed no inhibition against Staphylococus aureus, Pseudomonas aeruginosa, Bacillus cereus and Escherichia coli and no cytotoxic activity against H199 and A549 cell lines.
Rutin is a common dietary flavonoid that is widely consumed from plant-derived beverages and foods as traditional and folkloric medicine worldwide. Rutin is believed to exhibit significant pharmacological activities, including anti-oxidation, anti-inflammation, anti-diabetic, anti-adipogenic, neuroprotective and hormone therapy. Till date, over 130 registered therapeutic medicinal preparations are containing rutin in their formulations. This article aims to critically review the extraction methods for plant-based rutin and its pharmacological activities. This review provides comprehensive data on the performance of rutin extraction methods and the extent of its pharmacological activities using various in vitro and in vivo experimental models.