Displaying publications 1261 - 1280 of 1777 in total

Abstract:
Sort:
  1. Sarsaifi K, Haron AW, Vejayan J, Yusoff R, Hani H, Omar MA, et al.
    Theriogenology, 2015 Oct 1;84(6):956-68.
    PMID: 26119476 DOI: 10.1016/j.theriogenology.2015.05.035
    The present study evaluated the relationship between Bali bull (Bos javanicus) seminal plasma proteins and different semen quality parameters. Semen samples from 10 mature Bali bulls were evaluated for conventional semen parameters (general motility, viability, and normal morphology), sperm functionality (acrosome reaction, sperm penetration rate, sperm penetration index), sperm kinetics (computer-assisted semen analysis parameters such as sperm velocity), and sperm morphology (acrosome and membrane integrity). Frozen-thawed semen with higher sperm motility, viability, acrosome integrity, and membrane integrity (P < 0.05) are consistently higher in acrosome reaction and sperm penetration assay. Three bulls showed the highest, four bulls displayed the medium, and the remaining three bulls showed the lowest for all sperm parameters and SPA. The proteome maps of seminal plasma from high-quality and low-quality Bali bulls were also established. Seminal plasma of both high-quality and low-quality Bali bulls was subjected to two-dimensional SDS-PAGE with isoelectric point ranged from 3 to 10 and molecular weight from 10 to 250 kDa. Approximately 116 spots were detected with Blue Silver stain, and of these spots, 29 were selected and identified by MALDI-TOF/TOF-MS/MS. A majority of the proteins visualized in the seminal plasma two-dimensional maps was successfully identified. An essential group of the identified spots represented binder of sperm 1 (BSP1), clusterin, spermadhesin, tissue inhibitor of metalloproteinases 2 (TIMP-2), and phospholipase A2 (PLA2). Other proteins found in high abundance included seminal ribonuclease, serum albumin, cationic trypsin, and peptide similar to β2 microglobulin. Thus, a reference map of Bali bull seminal plasma proteins has been generated for the very first time and can be used to relate protein pattern changes to physiopathologic events that may influence Bali bull reproductive performance.
  2. Lawal AA, Hassan MA, Zakaria MR, Yusoff MZM, Norrrahim MNF, Mokhtar MN, et al.
    Bioresour Technol, 2021 Jul;332:125070.
    PMID: 33878542 DOI: 10.1016/j.biortech.2021.125070
    The influence of biomass cellulosic content on biochar nanopore structure and adsorption capacity in aqueous phase was scarcely reported. Commercial cellulose (100% cellulose), oil palm frond (39.5% cellulose), and palm kernel shell (20.5% cellulose) were pyrolyzed AT 630 °C, characterized and tested for the adsorption of iodine and organic contaminants. The external surface area and average pore size increased with cellulosic content, where commercial cellulose formed biochar with external surface area of 95.4 m2/g and average pore size of 4.1 nm. The biochar from commercial cellulose had the largest adsorption capacities: 371.40 mg/g for iodine, 86.7 mg/L for tannic acid, 17.89 mg/g for COD and 60.35 mg/g for colour, while biochar from palm kernel shell had the least adsorption capacities. The cellulosic content reflected the differences in biochar nanopore structure and adsorption capacities, signifying the suitability of highly cellulosic biomass for producing biochar to effectively treat wastewater.
  3. Monir MS, Yusoff SBM, Zulperi ZBM, Hassim HBA, Mohamad A, Ngoo MSBMH, et al.
    BMC Vet Res, 2020 Jul 02;16(1):226.
    PMID: 32615969 DOI: 10.1186/s12917-020-02443-y
    BACKGROUND: Streptococcosis and Motile Aeromonad Septicemia (MAS) are important diseases of tilapia, Oreochromis spp. and causes huge economic losses in aquaculture globally. The feed-based vaccination may be an alternative to minimize major infectious diseases in tilapia. Thus, this study aims to evaluate the haemato-immunological responses and effectiveness of a newly developed feed-based killed bivalent vaccine against Streptococcus iniae and Aeromonas hydrophila in hybrid red tilapia. A total of 495 hybrid red tilapia of 61.23 ± 4.95 g were distributed into 5 groups (each with triplicate). The fish were immunized orally through bivalent (combined S. iniae and A. hydrophila) spray vaccine (BS group), bivalent formulate vaccine (BF group), monovalent S. iniae vaccine (MS group), monovalent A. hydrophila vaccine (MA group) and unvaccinated as a control group. The vaccine was orally administered on days 0, 14 and 42 applied feed-based bacterin at 5% body weight. The blood and spleen samples were collected from all groups on 7, 21 and 49 days post-vaccination, and also 96 h post-infection to assess their haemato-immune responses.

    RESULTS: Compared with the unvaccinated group, leukocyte, lymphocytes, monocytes, granulocytes counts in vaccinated groups were significantly (P 

  4. Farahin AW, Natrah I, Nagao N, Yusoff FM, Shariff M, Banerjee S, et al.
    Front Bioeng Biotechnol, 2021;9:568776.
    PMID: 33585428 DOI: 10.3389/fbioe.2021.568776
    Microalgae can use either ammonium or nitrate for its growth and vitality. However, at a certain level of concentration, ammonium nitrogen exhibits toxicity which consequently can inhibit microalgae productivity. Therefore, this study is aimed to investigate the tolerance of Tetraselmis tetrathele to high ammonium nitrogen concentrations and its effects on growth rate, photosynthetic efficiency (F
    v
    /F
    m
    ), pigment contents (chlorophyll a, lutein, neoxanthin, and β-carotene), and fatty acids production. Experiments were performed at different ammonium nitrogen concentrations (0.31-0.87 gL-1) for 6 days under a light source with an intensity of 300 μmol photons m-2 s-1 and nitrate-nitrogen source as the experimental control. The findings indicated no apparent enhancement of photosynthetic efficiency (Fv/Fm) at high levels of ammonium nitrogen (


    NH


    4


    +


    -N) for T. tetrathele within 24 h. However, after 24 h, the photosynthetic efficiency of T. tetrathele increased significantly (p < 0.05) in high concentration of


    NH


    4


    +


    -N. Chlorophyll a content in T. tetrathele grown in all of the different


    NH


    4


    +


    -N levels increased significantly compared to nitrate-nitrogen (NO3-N) treatment (p < 0.05); which supported that this microalgal could grow even in high level of


    NH


    4


    +


    -N concentrations. The findings also indicated that T. tetrathele is highly resistant to high ammonium nitrogen which suggests T. tetrathele to be used in the aquaculture industry for bioremediation purpose to remove ammonium nitrogen, thus reducing the production cost while improving the water quality.
  5. Yusof NY, Muhammad Yusoff F, Muhammad Harish S, Ahmad MN, Khalid MF, Mohd Nor F, et al.
    Microbiol Resour Announc, 2019 Jul 11;8(28).
    PMID: 31296668 DOI: 10.1128/MRA.00015-19
    The Gram-negative pathogenic spirochetal bacteria Leptospira spp. cause leptospirosis in humans and livestock animals. Leptospira kmetyi strain LS 001/16 was isolated from a soil sample associated with a leptospirosis patient in Kelantan, which is among the states in Malaysia with a high reported number of disease cases. Here, we report the complete genome sequence of Leptospira kmetyi strain LS 001/16.
  6. Sowtali SN, Harith S, Mohd Shah AS, Ishak NA, Yusoff DM, Draman CR, et al.
    Saudi J Kidney Dis Transpl, 2020 3 5;31(1):118-128.
    PMID: 32129204 DOI: 10.4103/1319-2442.279931
    Knowledge limitation is a major cause of the increasing number of chronic kidney disease (CKD) patients in Malaysia and the world. Nurses are responsible for identifying the patients' needs to come up with appropriate discharge plans which might include educational activities. The objective of this study was to determine the baseline information (socio- demographic background, as well as medical and lifestyle histories), along with educational needs of CKD patients. A total of 116 CKD patients who attended the Nephrology Clinic of Hospital Tengku Ampuan Afzan were recruited. Patients who fulfilled the inclusion criteria were selected between April and May 2017. Data were obtained via semi-guided questionnaires; the patients were given enough time to complete the required items. The CKD educational needs' assessment consisted of seven domains: general information, chronic illness management, complications, self-management, medications, treatment, and financial status. Majority of the patients were men (53.4%), aged 54.65 ± 16.49 years, secondary school-finishers (49.1%), and jobless (48.3%). In terms of medical and life-style histories, most patients were diagnosed with end-stage renal disease (51.7%), hypertension (96.6%), diabetes (51.7%), and anemia (25.9%). The patients were interested to know the complications of kidney disease (57.8%), management of diseases like hypertension (58.6%), complications like edema (55.2%), indications for medication (73.3%), self-management or fluid control (37.9%), hemodialysis (37.1%), and financial status (21.6%). Thus, strengthening patient education strategies in the clinics, hospitals, and community settings should be given due attention by relevant healthcare professionals.
  7. Saleem M, Ghazali MB, Wahab MAMA, Yusoff NM, Mahsin H, Seng CE, et al.
    Adv Exp Med Biol, 2020;1292:1-12.
    PMID: 29687286 DOI: 10.1007/5584_2018_147
    Approximately 5-10% of breast cancers are attributable to genetic susceptibility. Mutations in the BRCA1 and BRCA2 genes are the best known genetic factors to date. The goal of this study was to determine the structure and distribution of haplotypes of the BRCA1 and BRCA2 genes in early-onset breast cancer patients. We enrolled 70 patients diagnosed with early-onset breast cancer. A total of 21 SNPs (11 on BRCA1 and 10 on BRCA2) and 1 dinucleotide deletion on BRCA1 were genotyped using nested allele-specific PCR methods. Linkage disequilibrium (LD) analysis was conducted, and haplotypes were deduced from the genotype data. Two tightly linked LD blocks were observed on each of the BRCA1 and BRCA2 genes. Variant-free haplotypes (TAT-AG for BRCA1 and ATA-AAT for BRCA2) were observed at a frequency of more than 50% on each gene along with variable frequencies of derived haplotypes. The variant 3'-subhaplotype CGC displayed strong LD with 5'-subhaplotypes GA, AA, and GG on BRCA1 gene. Haplotypes ATA-AGT, ATC-AAT, and ATA-AAC were the variant haplotypes frequent on BRCA2 gene. Although the clinical significance of these derived haplotypes has not yet been established, it is expected that some of these haplotypes, especially the less frequent subhaplotypes, eventually will be shown to be indicative of a predisposition to early-onset breast cancer.
  8. Yang SK, Yusoff K, Thomas W, Akseer R, Alhosani MS, Abushelaibi A, et al.
    Sci Rep, 2020 01 21;10(1):819.
    PMID: 31964900 DOI: 10.1038/s41598-019-55601-0
    Misuse of antibiotics in the clinical and agricultural sectors has caused the emergence of multidrug-resistant (MDR) Klebsiella pneumoniae which contributes a threat to human health. In this study, we assessed the feasibility of lavender essential oil (LVO) as an antimicrobial agent in combinatory therapy with meropenem in suppressing the growth of carbapenemase-producing K. pneumoniae (KPC-KP). Synergistic interactions between LVO and meropenem were detected, which significantly reduce the inhibitory concentration of both LVO and meropenem by 15 and 4-fold respectively. Comparative proteomic profiling identified a disruption in the bacterial membrane via oxidative stress that was indicated by loss of membrane and cytoplasmic proteins and the upregulation of oxidative regulators. As a proof of concept, zeta potential measurements showed a change in cell surface charge while outer membrane permeability measurement indicated an increase in membrane permeability following exposure to LVO. This was indicative of a disrupted outer membrane. Ethidium bromide influx/efflux assays demonstrated no significant efflux pump inhibition by LVO, and scanning electron microscopy revealed irregularities on the cell surface after exposure to LVO. Oxidative stress was also detected with increased level of ROS and lipid peroxidation in LVO-treated cells. In conclusion, our data suggest that LVO induced oxidative stress in K. pneumoniae which oxidizes the outer membrane, enabling the influx of generated ROS, LVO and meropenem into the bacterial cells, causing damage to the cells and eventually death.
  9. Foo SC, Yusoff FM, Ismail M, Basri M, Yau SK, Khong NMH, et al.
    J Biotechnol, 2017 Jan 10;241:175-183.
    PMID: 27914891 DOI: 10.1016/j.jbiotec.2016.11.026
    Natural antioxidants from sustainable sources are favoured to accommodate worldwide antioxidant demand. In addition to bioprospecting for natural and sustainable antioxidant sources, this study aimed to investigate the relationship between the bioactives (i.e. carotenoid and phenolic acids) and the antioxidant capacities in fucoxanthin-producing algae. Total carotenoid, phenolic acid, fucoxanthin contents and fatty acid profile of six species of algae (five microalgae and one macroalga) were quantified followed by bioactivity evaluation using four antioxidant assays. Chaetoceros calcitrans and Isochrysis galbana displayed the highest antioxidant activity, followed by Odontella sinensis and Skeletonema costatum which showed moderate bioactivities. Phaeodactylum tricornutum and Saccharina japonica exhibited the least antioxidant activities amongst the algae species examined. Pearson correlation and multiple linear regression showed that both carotenoids and phenolic acids were significantly correlated (p<0.05) with the antioxidant activities, indicating the influence of these bioactives on the algal antioxidant capacities.
  10. Dakheel KH, Rahim RA, Neela VK, Al-Obaidi JR, Hun TG, Isa MNM, et al.
    BMC Microbiol, 2019 05 28;19(1):114.
    PMID: 31138130 DOI: 10.1186/s12866-019-1484-9
    BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) biofilm producers represent an important etiological agent of many chronic human infections. Antibiotics and host immune responses are largely ineffective against bacteria within biofilms. Alternative actions and novel antimicrobials should be considered. In this context, the use of phages to destroy MRSA biofilms presents an innovative alternative mechanism.

    RESULTS: Twenty-five MRSA biofilm producers were used as substrates to isolate MRSA-specific phages. Despite the difficulties in obtaining an isolate of this phage, two phages (UPMK_1 and UPMK_2) were isolated. Both phages varied in their ability to produce halos around their plaques, host infectivity, one-step growth curves, and electron microscopy features. Furthermore, both phages demonstrated antagonistic infectivity on planktonic cultures. This was validated in an in vitro static biofilm assay (in microtiter-plates), followed by the visualization of the biofilm architecture in situ via confocal laser scanning microscopy before and after phage infection, and further supported by phages genome analysis. The UPMK_1 genome comprised 152,788 bp coding for 155 putative open reading frames (ORFs), and its genome characteristics were between the Myoviridae and Siphoviridae family, though the morphological features confined it more to the Siphoviridae family. The UPMK_2 has 40,955 bp with 62 putative ORFs; morphologically, it presented the features of the Podoviridae though its genome did not show similarity with any of the S. aureus in the Podoviridae family. Both phages possess lytic enzymes that were associated with a high ability to degrade biofilms as shown in the microtiter plate and CLSM analyses.

    CONCLUSIONS: The present work addressed the possibility of using phages as potential biocontrol agents for biofilm-producing MRSA.

  11. Lo FF, Kow KW, Kung F, Ahamed F, Kiew PL, Yeap SP, et al.
    Sci Total Environ, 2021 Aug 01;780:146337.
    PMID: 33770606 DOI: 10.1016/j.scitotenv.2021.146337
    Nano-magnetites are widely researched for its potential as an excellent adsorbent in many applications. However, the efficiency of the nano-magnetites are hindered by their tendency to agglomerate. In this work, we dispersed and embedded the nano-magnetites in a porous silica gel matrix to form a nanocomposite to reduce the extent of agglomeration and to enhance the adsorption performance. Our experimental results showed that the removal efficiency of Cu2+ ion has improved by 46% (22.4 ± 2.2%) on the nano-magnetite-silica-gel (NMSG) nanocomposite as compared to pure nano-magnetites (15.3 ± 0.6%). The adsorption capacity is further enhanced by 39% (from 11.2 ± 1.1 to 15.6 ± 1.6 mg/g) by subjecting the NMSG to a magnetic field prior to adsorption. We infer that the magnetic field aligned the magnetic domains within the nano-magnetites, resulting in an increased Lorentz force during adsorption. Similar alignment of magnetic domains is near to impossible in pure nano-magnetites due to severe agglomeration. We further found that the adsorption capacity of the NMSG can be manipulated with an external magnetic field by varying the strength and the configurations of the field. Equipped with proper process design, our finding has great potentials in processes that involve ion-adsorptions, for example, NMSG can: (i) replace/reduce chemical dosing in controlling adsorption kinetics, (ii) replace/reduce complex chemicals required in ion-chromatography columns, and (iii) reduce wastage of nano-adsorbents by immobilizing it in a porous matrix.
  12. Lau SX, Leong YY, Ng WH, Ng AWP, Ismail IS, Yusoff NM, et al.
    Cell Biol Int, 2017 Jun;41(6):697-704.
    PMID: 28403524 DOI: 10.1002/cbin.10774
    Studies showed that co-transplantation of mesenchymal stem cells (MSCs) and cord blood-derived CD34+hematopoietic stem cells (HSCs) offered greater therapeutic effects but little is known regarding the effects of human Wharton's jelly derived MSCs on HSC expansion and red blood cell (RBC) generation in vitro. This study aimed to investigate the effects of MSCs on HSC expansion and differentiation. HSCs were co-cultured with MSCs or with 10% MSCs-derived conditioned medium, with HSCs cultured under standard medium served as a control. Cell expansion rates, number of mononuclear cell post-expansion and number of enucleated cells post-differentiation were evaluated. HSCs showed superior proliferation in the presence of MSC with mean expansion rate of 3.5 × 108 ± 1.8 × 107after day 7 compared to the conditioned medium and the control group (8.9 × 107 ± 1.1 × 108and 7.0 × 107 ± 3.3 × 106respectively, P 
  13. Kok AD, Mohd Yusoff NF, Sekeli R, Wee CY, Lamasudin DU, Ong-Abdullah J, et al.
    Front Plant Sci, 2021;12:667434.
    PMID: 34149763 DOI: 10.3389/fpls.2021.667434
    Pluronic F-68 (PF-68) is a non-ionic surfactant used in plant tissue culture as a growth additive. Despite its usage as a plant growth enhancer, the mechanism underlying the growth-promoting effects of PF-68 remains largely unknown. Hence, this study was undertaken to elucidate the growth-promoting mechanism of PF-68 using recalcitrant MR 219 callus as a model. Supplementation of 0.04% PF-68 (optimum concentration) was shown to enhance callus proliferation. The treated callus recorded enhanced sugar content, protein content, and glutamate synthase activity as exemplified in the comparative proteome analysis, showing protein abundance involved in carbohydrate metabolism (alpha amylase), protein biosynthesis (ribosomal proteins), and nitrogen metabolism (glutamate synthase), which are crucial to plant growth and development. Moreover, an increase in nutrients uptake was also noted with potassium topping the list, suggesting a vital role of K in governing plant growth. In contrast, 0.10% PF-68 (high concentration) induced stress response in the callus, revealing an increment in phenylalanine ammonia lyase activity, malondialdehyde content, and peroxidase activity, which were consistent with high abundance of phenylalanine ammonia lyase, peroxidase, and peroxiredoxin proteins detected and concomitant with a reduced level of esterase activity. The data highlighted that incorporation of PF-68 at optimum concentration improved callus proliferation of recalcitrant MR 219 through enhanced carbohydrate metabolism, nitrogen metabolism, and nutrient uptake. However, growth-promoting effects of PF-68 are concentration dependent.
  14. Chan LC, Kalyanasundram J, Leong SW, Masarudin MJ, Veerakumarasivam A, Yusoff K, et al.
    BMC Cancer, 2021 May 27;21(1):625.
    PMID: 34044804 DOI: 10.1186/s12885-021-08345-y
    BACKGROUND: Newcastle disease virus (NDV) is an oncolytic virus with excellent selectivity against cancer cells, both in vitro and in vivo. Unfortunately, prolonged in vitro NDV infection results in the development of persistent infection in the cancer cells which are then able to resist NDV-mediated oncolysis. However, the mechanism of persistency of infection remains poorly understood.

    METHODS: In this study, we established persistently NDV-infected EJ28 bladder cancer cells, designated as EJ28P. Global transcriptomic analysis was subsequently carried out by microarray analysis. Differentially expressed genes (DEGs) between EJ28 and EJ28P cells identified by the edgeR program were further analysed by Gene Set Enrichment Analysis (GSEA) and Ingenuity Pathway Analysis (IPA) analyses. In addition, the microarray data were validated by RT-qPCR.

    RESULTS: Persistently NDV-infected EJ28 bladder cancer cells were successfully established and confirmed by flow cytometry. Microarray analysis identified a total of 368 genes as differentially expressed in EJ28P cells when compared to the non-infected EJ28 cells. GSEA revealed that the Wnt/β-catenin and KRAS signalling pathways were upregulated while the TGF-β signalling pathway was downregulated. Findings from this study suggest that the upregulation of genes that are associated with cell growth, pro-survival, and anti-apoptosis may explain the survivability of EJ28P cells and the development of persistent infection of NDV.

    CONCLUSIONS: This study provides insights into the transcriptomic changes that occur and the specific signalling pathways that are potentially involved in the development and maintenance of NDV persistency of infection in bladder cancer cells. These findings warrant further investigation and is crucial towards the development of effective NDV oncolytic therapy against cancer.

  15. Lavinya AA, Razali RA, Razak MA, Mohamed R, Moses EJ, Soundararajan M, et al.
    Haematologica, 2021 06 01;106(6):1758-1761.
    PMID: 33179475 DOI: 10.3324/haematol.2020.268581
    Not available.
  16. Awaluddin SM, Ismail N, Yasin SM, Zakaria Y, Mohamed Zainudin N, Kusnin F, et al.
    Front Public Health, 2020;8:577407.
    PMID: 33384977 DOI: 10.3389/fpubh.2020.577407
    Introduction: The trends of tuberculosis (TB) treatment success rate among children in Malaysia plateaued at 90% from 2014 to 2017. Malaysia sets a higher treatment success target of 95% to be achieved in line with an affordable, accessible, and holistic approach in managing TB among children. Objective: This study aims to explore the parents' experiences and perspectives toward achieving treatment success among children who were diagnosed with TB in two districts in Selangor state, Malaysia. Methods: The study was conducted using phenomenology study design via an in-depth interview of 15 mothers who were purposively sampled from the list of pediatric TB cases in the MyTB version 2.1 database in Klang and Petaling Districts of Selangor state. The R-based qualitative data analysis package of R version 0.2-8 was used to perform the thematic analysis. Results: Two main themes were identified from this study. The first theme was trust toward the healthcare services with the subthemes of acceptance, self-efficacy, holistic care, and perceived benefits. The second theme was the motivation to take or continue medication. The subthemes were support from family, healthcare workers' (HCWs') support, the convenience of healthcare services, community support, personal strength, and child's character. Conclusion: TB treatment success for children can be achieved when parents develop trust in healthcare services and have strong motivational factors to remain steadfast in achieving a successful treatment goal. Psychosocial support should be provided to the primary caregiver who faced any difficulty, while good relationships between parents and HCWs should be maintained. These results will inform the TB program managers to strengthen the holistic approach and identify the motivational factors among parents of children with TB disease.
  17. Zulqarnain, Mohd Yusoff MH, Ayoub M, Ramzan N, Nazir MH, Zahid I, et al.
    ACS Omega, 2021 Jul 27;6(29):19099-19114.
    PMID: 34337248 DOI: 10.1021/acsomega.1c02402
    The energy demand of the world is skyrocketing due to the exponential economic growth and population expansion. To meet the energy requirement, the use of fossil fuels is not a good decision, causing environmental pollution such as CO2 emissions. Therefore, the use of renewable energy sources like biofuels can meet the energy crisis especially for countries facing oil shortages such as Pakistan. This review describes the comparative study of biodiesel synthesis for various edible oils, non-edible oils, and wastes such as waste plastic oil, biomass pyrolysis oil, and tyre pyrolysis oil in terms of their oil content and extraction, cetane number, and energy content. The present study also described the importance of biodiesel synthesis via catalytic transesterification and its implementation in Pakistan. Pakistan is importing an extensive quantity of cooking oil that is used in the food processing industries, and as a result, a huge quantity of waste cooking oil (WCO) is generated. The potential waste oils for biodiesel synthesis are chicken fat, dairy scum, WCO, and tallow oil that can be used as potential substrates of biodiesel. The implementation of a biodiesel program as a replacement of conventional diesel will help to minimize the oil imports and uplift the country's economy. Biodiesel production via homogeneous and heterogeneous catalyzed transesterification is more feasible among all transesterification processes due to a lesser energy requirement and low cost. Therefore, biodiesel synthesis and implementation could minimize the imports of diesel by significantly contributing to the overall Gross Domestic Product (GDP). Although, waste oil can meet the energy needs, more available cultivation land should be used for substrate cultivation. In addition, research is still needed to explore innovative solvents and catalysts so that overall biodiesel production cost can be minimized. This would result in successful biodiesel implementation in Pakistan.
  18. Aldoghachi AF, Baharudin A, Ahmad U, Chan SC, Ong TA, Yunus R, et al.
    Dis Markers, 2019;2019:3875147.
    PMID: 31636736 DOI: 10.1155/2019/3875147
    The ceramide synthase 2 (CERS2) gene has been linked to tumour recurrence and invasion in many different types of cancers including bladder cancer. In this study, the expression levels of CERS2 in bladder cancer cell lines were analysed using qRT-PCR and the protein expression in clinical bladder cancer histopathological specimens were examined via immunohistochemistry. The potential utility of CERS2 as a predictive biomarker of response to oncolytic virotherapy was assessed by correlating the CERS2 mRNA expression to IC50 values of cells treated with the Newcastle disease virus (NDV), AF2240 strain. This study demonstrates that CERS2 is differentially expressed in different types of bladder cancer cell lines and that the siRNA-mediated downregulation of the expression of CERS2 reduces the migratory potential of UMUC1 bladder cancer cells. However, there were no significant correlations between the expression levels of the CERS2 protein with bladder cancer grade/stage or between the IC50 values of cells treated with NDV and CERS2 expression. Although the utility of CERS2 expression may be limited, its potential as an antimigration cancer therapeutic should be further examined.
  19. Bilema M, Aman MY, Hassan NA, Al-Saffar Z, Mashaan NS, Memon ZA, et al.
    Materials (Basel), 2021 Jun 23;14(13).
    PMID: 34201413 DOI: 10.3390/ma14133482
    The reclaimed asphalt pavement (RAP) has become a moderately common practice in most countries; Hence, rejuvenating materials with RAP have earned publicity in the asphalt manufacturers, mainly due to the increasing raw material costs. In this study, the crumb rubber (CR) and waste frying oil (WFO) utilized as waste materials to restore the properties and enhance the rutting resistance of the RAP. Several physical, rheological, chemical properties of bituminous binders were tested. The result showed that the RAP bituminous binders incorporating WFO and CR decreased softening points and the increased penetration value; these translate to an increase in penetration index. Moreover, the viscosity of the WFO/CR combination reclaimed asphalt pavement binder showed better workability and stiffness, as well as a low storage stability temperature (less than 2.2 °C) with an acceptable loss upon heating. Without chemical reaction was observed between the waste-frying oil with the rubberized binder and the reclaimed asphalt pavement binder. Additionally, the WFO/CR rheological properties combined with the reclaimed asphalt pavement binder were comparable to the control sample. The incorporation of CR with WFO as a hybrid rejuvenator enhanced the rutting resistance. Therefore, the presence of WFO/CR has a considerable influence on the RAP binder properties while preserving a better environment and reducing pollution by reusing waste materials.
  20. Humayun M, Ullah H, Tahir AA, Bin Mohd Yusoff AR, Mat Teridi MA, Nazeeruddin MK, et al.
    Chem Rec, 2021 Jul;21(7):1811-1844.
    PMID: 33887089 DOI: 10.1002/tcr.202100067
    Recently, polymeric carbon nitride (g-C3 N4 ) as a proficient photo-catalyst has been effectively employed in photocatalysis for energy conversion, storage, and pollutants degradation due to its low cost, robustness, and environmentally friendly nature. The critical review summarized the recent development, fundamentals, nanostructures design, advantages, and challenges of g-C3 N4 (CN), as potential future photoactive material. The review also discusses the latest information on the improvement of CN-based heterojunctions including Type-II, Z-scheme, metal/CN Schottky junctions, noble metal@CN, graphene@CN, carbon nanotubes (CNTs)@CN, metal-organic frameworks (MOFs)/CN, layered double hydroxides (LDH)/CN heterojunctions and CN-based heterostructures for H2 production from H2 O, CO2 conversion and pollutants degradation in detail. The optical absorption, electronic behavior, charge separation and transfer, and bandgap alignment of CN-based heterojunctions are discussed elaborately. The correlations between CN-based heterostructures and photocatalytic activities are described excessively. Besides, the prospects of CN-based heterostructures for energy production, storage, and pollutants degradation are discussed.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links