Displaying publications 121 - 140 of 1072 in total

Abstract:
Sort:
  1. El Yadini A, Elouafy Y, Amiri-Ardekani E, Shafiee M, Firouzi A, Sasani N, et al.
    Molecules, 2023 Feb 10;28(4).
    PMID: 36838696 DOI: 10.3390/molecules28041708
    Retama monosperma L. (Boiss.) or Genista monosperma L. (Lam.), known locally as "R'tam", is a spontaneous and annual herb that belongs to the Fabaceae family. It is native to the Mediterranean regions, specifically in the desert areas and across the Middle Atlas in Morocco. This plant has been extensively used in folk medicine and it is rich in bioactive compounds, including polyphenols, flavonoids, and alkaloids. Current research efforts are focusing on the development of novel natural drugs as alternatives to various organic and non-organic chemical products from Retama monosperma. In addition, extract, and isolated compounds obtained from different parts of the chosen plant have been described to exhibit multiple biological and pharmacological properties such as antioxidant, anti-aging, anti-inflammatory, antihypertensive, anti-helminthic, disinfectant, diuretic, and hypoglycemic effects. The plant-derived extract also acts as an antimicrobial agent, which is highly efficient in the treatment of bacterial, viral, and fungal infections. Its antiproliferative effects are associated with some mechanisms, such as the inhibition of cell cycle arrest and apoptosis. In light of these assessments, we critically highlight the beneficial effects of the flowers, stems, seeds extracts, and isolated compounds from R. monosperma (L.) Boiss in human health care, industrial, and other applications, as well as the possible ways to be employed as a potential natural source for future drug discovery.
    Matched MeSH terms: Apoptosis
  2. Koike H, Harada M, Kusamoto A, Xu Z, Tanaka T, Sakaguchi N, et al.
    Front Endocrinol (Lausanne), 2023;14:1124405.
    PMID: 36875481 DOI: 10.3389/fendo.2023.1124405
    Polycystic ovary syndrome (PCOS) is the most common endocrine disorder among reproductive-age women, affecting up to 15% of women in this group, and the most common cause of anovulatory infertility. Although its etiology remains unclear, recent research has revealed the critical role of endoplasmic reticulum (ER) stress in the pathophysiology of PCOS. ER stress is defined as a condition in which unfolded or misfolded proteins accumulate in the ER because of an imbalance in the demand for protein folding and the protein-folding capacity of the ER. ER stress results in the activation of several signal transduction cascades, collectively termed the unfolded protein response (UPR), which regulates various cellular activities. In principle, the UPR restores homeostasis and keeps the cell alive. However, if the ER stress cannot be resolved, it induces programmed cell death. ER stress has recently been recognized to play diverse roles in both physiological and pathological conditions of the ovary. In this review, we summarize current knowledge of the roles of ER stress in the pathogenesis of PCOS. ER stress pathways are activated in the ovaries of both a mouse model of PCOS and in humans, and local hyperandrogenism in the follicular microenvironment associated with PCOS is responsible for activating these. The activation of ER stress contributes to the pathophysiology of PCOS through multiple effects in granulosa cells. Finally, we discuss the potential for ER stress to serve as a novel therapeutic target for PCOS.
    Matched MeSH terms: Apoptosis
  3. El Omari N, Bakrim S, Khalid A, Abdalla AN, Almalki WH, Lee LH, et al.
    Biomed Pharmacother, 2023 Aug;164:114886.
    PMID: 37224752 DOI: 10.1016/j.biopha.2023.114886
    Panobinostat, also known as Farydak®, LBH589, PNB, or panobinostat lactate, is a hydroxamic acid that has been approved by the Food and Drug Administration (FDA) for its anti-cancer properties. This orally bioavailable drug is classified as a non-selective histone deacetylase inhibitor (pan-HDACi) that inhibits class I, II, and IV HDACs at nanomolar levels due to its significant histone modifications and epigenetic mechanisms. A mismatch between histone acetyltransferases (HATs) and HDACs can negatively affect the regulation of the genes concerned, which in turn can contribute to tumorigenesis. Indeed, panobinostat inhibits HDACs, potentially leading to acetylated histone accumulation, re-establishing normal gene expression in cancer cells, and helping to drive multiple signaling pathways. These pathways include induction of histone acetylation and cytotoxicity for the majority of tested cancer cell lines, increased levels of p21 cell cycle proteins, enhanced amounts of pro-apoptotic factors (such as caspase-3/7 activity and cleaved poly (ADP-ribose) polymerase (PARP)) associated with decreased levels of anti-apoptotic factors [B-cell lymphoma 2 (Bcl-2) and B-cell lymphoma-extra-large (Bcl-XL)], as well as regulation of immune response [upregulated programmed death-ligand 1 (PD-L1) and interferon gamma receptor 1 (IFN-γR1) expression] and other events. The therapeutic outcome of panobinostat is therefore mediated by sub-pathways involving proteasome and/or aggresome degradation, endoplasmic reticulum, cell cycle arrest, promotion of extrinsic and intrinsic processes of apoptosis, tumor microenvironment remodeling, and angiogenesis inhibition. In this investigation, we aimed to pinpoint the precise molecular mechanism underlying panobinostat's HDAC inhibitory effect. A more thorough understanding of these mechanisms will greatly advance our knowledge of cancer cell aberrations and, as a result, provide an opportunity for the discovery of significant new therapeutic perspectives through cancer therapeutics.
    Matched MeSH terms: Apoptosis
  4. Simon C, Soga T, Parhar I
    Int J Mol Sci, 2023 Mar 23;24(7).
    PMID: 37047030 DOI: 10.3390/ijms24076056
    The hypothalamic neurohormone kisspeptin-10 (KP-10) was inherently implicated in cholinergic pathologies when aberrant fluctuations of expression patterns and receptor densities were discerned in neurodegenerative micromilieus. That said, despite variable degrees of functional redundancy, KP-10, which is biologically governed by its cognate G-protein-coupled receptor, GPR54, attenuated the progressive demise of α-synuclein (α-syn)-rich cholinergic-like neurons. Under explicitly modeled environments, in silico algorithms further rationalized the surface complementarities between KP-10 and α-syn when KP-10 was unambiguously accommodated in the C-terminal binding pockets of α-syn. Indeed, the neuroprotective relevance of KP-10's binding mechanisms can be insinuated in the amelioration of α-syn-mediated neurotoxicity; yet it is obscure whether these extenuative circumstances are contingent upon prior GPR54 activation. Herein, choline acetyltransferase (ChAT)-positive SH-SY5Y neurons were engineered ad hoc to transiently overexpress human wild-type or E46K mutant α-syn while the mitigation of α-syn-induced neuronal death was ascertained via flow cytometric and immunocytochemical quantification. Recapitulating the specificity observed on cell viability, exogenously administered KP-10 (0.1 µM) substantially suppressed wild-type and E46K mutant α-syn-mediated apoptosis and mitochondrial depolarization in cholinergic differentiated neurons. In particular, co-administrations with a GPR54 antagonist, kisspeptin-234 (KP-234), failed to abrogate the robust neuroprotection elicited by KP-10, thereby signifying a GPR54 dispensable mechanism of action. Consistent with these observations, KP-10 treatment further diminished α-syn and ChAT immunoreactivity in neurons overexpressing wild-type and E46K mutant α-syn. Overall, these findings lend additional credence to the previous notion that KP-10's binding zone may harness efficacious moieties of neuroprotective intent.
    Matched MeSH terms: Apoptosis
  5. Zhu C, Zhou W, Han M, Yang Y, Li Y, Jiang Q, et al.
    Sci Total Environ, 2023 Sep 15;891:164460.
    PMID: 37247739 DOI: 10.1016/j.scitotenv.2023.164460
    Microplastics and nanoplastics (MPs and NPs) are abundant, persistent, and widespread environmental pollutants that are of increasing concern as they pose a serious threat to ecosystems and aquatic species. Identifying the ecological effects of NPs pollution requires understanding the effects of changing nanoplastics concentrations in aquatic organisms. Monopterus albus were orally fed three different concentrations of 100 nm polystyrene nanoplastics (PS-NPs): 0.05 %, 0.5 %, and 1 % of the feed for 28 days. Nanoplastics significantly activated the PPAR signaling pathway, Acyl-CoA oxidase 1 (ACOX1), carnitine palmitoyltransferase 1a (CPT1A), angiopoietin-like 4 (ANGPTL4), and phosphoenolpyruvate carboxykinase (PCK) at the mRNA level, resulting in disturbed lipid metabolism. Glutathione peroxidase (GSH-px) activity, catalase (CAT) activity, and malondialdehyde (MDA) were significantly elevated in the high nanoplastics-feeding exposure group, leading to oxidative stress in the liver. Overexpression of the cytokines genes Interleukin 1 (IL1B) and Interleukin-8 (IL8), Tumor necrosis factor alpha (TNF-α), activation of MAPK signaling pathway, and increased gene expression of c-Jun amino-terminal kinases (JNK) and p38 indicate that exposure to NPs may lead to hepatopancreas apoptosis through oxidative stress and inflammation. In summary, dietary PS-NPs exposure alters hepatic glycolipid metabolism, triggering inflammatory responses and apoptosis in M. albus. The results of this study provide valuable ecotoxicological data for a better understanding of the biological fate and effects of nanoplastics in M. albus.
    Matched MeSH terms: Apoptosis
  6. Kciuk M, Alam M, Ali N, Rashid S, Głowacka P, Sundaraj R, et al.
    Molecules, 2023 Jul 06;28(13).
    PMID: 37446908 DOI: 10.3390/molecules28135246
    Cellular signaling pathways involved in the maintenance of the equilibrium between cell proliferation and apoptosis have emerged as rational targets that can be exploited in the prevention and treatment of cancer. Epigallocatechin-3-gallate (EGCG) is the most abundant phenolic compound found in green tea. It has been shown to regulate multiple crucial cellular signaling pathways, including those mediated by EGFR, JAK-STAT, MAPKs, NF-κB, PI3K-AKT-mTOR, and others. Deregulation of the abovementioned pathways is involved in the pathophysiology of cancer. It has been demonstrated that EGCG may exert anti-proliferative, anti-inflammatory, and apoptosis-inducing effects or induce epigenetic changes. Furthermore, preclinical and clinical studies suggest that EGCG may be used in the treatment of numerous disorders, including cancer. This review aims to summarize the existing knowledge regarding the biological properties of EGCG, especially in the context of cancer treatment and prophylaxis.
    Matched MeSH terms: Apoptosis
  7. Pandrangi SL, Chittineedi P, Chalumuri SS, Meena AS, Neira Mosquera JA, Sánchez Llaguno SN, et al.
    Molecules, 2022 May 07;27(9).
    PMID: 35566360 DOI: 10.3390/molecules27093011
    Iron is a crucial element required for the proper functioning of the body. For instance, hemoglobin is the vital component in the blood that delivers oxygen to various parts of the body. The heme protein present in hemoglobin comprises iron in the form of a ferrous state which regulates oxygen delivery. Excess iron in the body is stored as ferritin and would be utilized under iron-deficient conditions. Surprisingly, cancer cells as well as cancer stem cells have elevated ferritin levels suggesting that iron plays a vital role in protecting these cells. However, apart from the cytoprotective role iron also has the potential to induce cell death via ferroptosis which is a non-apoptotic cell death dependent on iron reserves. Apoptosis a caspase-dependent cell death mechanism is effective on cancer cells however little is known about its impact on cancer stem cell death. This paper focuses on the molecular characteristics of apoptosis and ferroptosis and the importance of switching to ferroptosis to target cancer stem cells death thereby preventing cancer relapse. To the best of our knowledge, this is the first review to demonstrate the importance of intracellular iron in regulating the switching of tumor cells and therapy resistant CSCs from apoptosis to ferroptosis.
    Matched MeSH terms: Apoptosis
  8. Lau MF, Chua KH, Sabaratnam V, Kuppusamy UR
    Sci Prog, 2020;103(1):36850419886448.
    PMID: 31795844 DOI: 10.1177/0036850419886448
    Colorectal cancer is one of the most prevalent noncommunicable diseases worldwide. 5-Fluorouracil is the mainstay of chemotherapy for colorectal cancer. Previously, we have demonstrated that high glucose diminishes the cytotoxicity of 5-fluorouracil by promoting cell cycle progression. The synergistic impact of rosiglitazone on 5-fluorouracil-induced apoptosis was further investigated in this study. Besides control cell lines (CCD-18Co), two human colonic carcinoma cell lines (HCT 116 and HT 29) were exposed to different treatments containing 5-fluorouracil, rosiglitazone or 5-fluorouracil/rosiglitazone combination under normal glucose (5.5 mM) and high-glucose (25 mM) conditions. The cellular oxidative stress level was evaluated with biomarkers of nitric oxide, advanced oxidation protein products, and reduced glutathione. The cell apoptosis was assessed using flow cytometry technique. High glucose caused the production of reduced glutathione in HCT 116 and HT 29 cells. Correspondingly, high glucose suppressed the apoptotic effect of 5-fluorouracil and rosiglitazone. As compared to 5-fluorouracil alone (2 µg/mL), addition of rosiglitazone significantly enhanced the apoptosis (increment rate of 5-20%) in a dose-dependent manner at normal glucose and high glucose levels. This study indicates that high-glucose-induced reduced glutathione confers resistance to apoptosis, but it can be overcome upon treatment of 5-fluorouracil and 5-fluorouracil/rosiglitazone combination. Rosiglitazone may be a promising antidiabetic drug to reduce the chemotherapeutic dose of 5-fluorouracil for colorectal cancer complicated with hyperglycemia.
    Matched MeSH terms: Apoptosis
  9. Zhang H, Rios RS, Boursier J, Anty R, Chan WK, George J, et al.
    Chin Med J (Engl), 2023 Feb 05;136(3):341-350.
    PMID: 36848175 DOI: 10.1097/CM9.0000000000002603
    BACKGROUND: Liver biopsy for the diagnosis of non-alcoholic steatohepatitis (NASH) is limited by its inherent invasiveness and possible sampling errors. Some studies have shown that cytokeratin-18 (CK-18) concentrations may be useful in diagnosing NASH, but results across studies have been inconsistent. We aimed to identify the utility of CK-18 M30 concentrations as an alternative to liver biopsy for non-invasive identification of NASH.

    METHODS: Individual data were collected from 14 registry centers on patients with biopsy-proven non-alcoholic fatty liver disease (NAFLD), and in all patients, circulating CK-18 M30 levels were measured. Individuals with a NAFLD activity score (NAS) ≥5 with a score of ≥1 for each of steatosis, ballooning, and lobular inflammation were diagnosed as having definite NASH; individuals with a NAS ≤2 and no fibrosis were diagnosed as having non-alcoholic fatty liver (NAFL).

    RESULTS: A total of 2571 participants were screened, and 1008 (153 with NAFL and 855 with NASH) were finally enrolled. Median CK-18 M30 levels were higher in patients with NASH than in those with NAFL (mean difference 177 U/L; standardized mean difference [SMD]: 0.87 [0.69-1.04]). There was an interaction between CK-18 M30 levels and serum alanine aminotransferase, body mass index (BMI), and hypertension ( P  

    Matched MeSH terms: Apoptosis
  10. Jena MK, Khan FB, Ali SA, Abdullah A, Sharma AK, Yadav V, et al.
    Artif Cells Nanomed Biotechnol, 2023 Dec;51(1):491-508.
    PMID: 37694522 DOI: 10.1080/21691401.2023.2252872
    The mammary gland is a dynamic organ with various physiological processes like cellular proliferation, differentiation, and apoptosis during the pregnancy-lactation-involution cycle. It is essential to understand the molecular changes during the lactogenic differentiation of mammary epithelial cells (MECs, the milk-synthesizing cells). The MECs are organized as luminal milk-secreting cells and basal myoepithelial cells (responsible for milk ejection by contraction) that form the alveoli. The branching morphogenesis and lactogenic differentiation of the MECs prepare the gland for lactation. This process is governed by many molecular mediators including hormones, growth factors, cytokines, miRNAs, regulatory proteins, etc. Interestingly, various signalling pathways guide lactation and understanding these molecular transitions from pregnancy to lactation will help researchers design further research. Manipulation of genes responsible for milk synthesis and secretion will promote augmentation of milk yield in dairy animals. Identifying protein signatures of lactation will help develop strategies for persistent lactation and shortening the dry period in farm animals. The present review article discusses in details the physiological and molecular changes occurring during lactogenic differentiation of MECs and the associated hormones, regulatory proteins, miRNAs, and signalling pathways. An in-depth knowledge of the molecular events will aid in developing engineered cellular models for studies related to mammary gland diseases of humans and animals.
    Matched MeSH terms: Apoptosis
  11. Zulpa AK, Barathan M, Iyadorai T, Mariappan V, Vadivelu J, Teh CSJ, et al.
    World J Microbiol Biotechnol, 2023 Oct 06;39(12):333.
    PMID: 37801157 DOI: 10.1007/s11274-023-03767-1
    pks+ Escherichia coli (E. coli) triggers genomic instability in normal colon cells which leads to colorectal cancer (CRC) tumorigenesis. Previously, we reported a significant presentation of pks+ E. coli strains in CRC patients' biopsies as compared to healthy cohorts. In this work, using an in vitro infection model, we further explored the ability of these strains in modulating cell cycle arrest and activation of apoptotic mediators in both primary colon epithelial cells (PCE) and CRC cells (HCT-116). Sixteen strains, of which eight tumours and the matching non-malignant tissues, respectively, from eight pks+ E. coli CRC patients were subjected to BrDU staining and cell cycle analysis via flow cytometry, while a subset of these strains underwent analysis of apoptotic mediators including caspase proteins, cellular reactive oxygen species (cROS) and mitochondrial membrane potential (MMP) via spectrophotometry as well as proinflammatory cytokines via flow cytometry. Data revealed that all strains exerted S-phase cell cycle blockade in both cells and G2/M phase in PCE cells only. Moreover, more significant upregulation of Caspase 9, cROS, proinflammatory cytokines and prominent downregulation of MMP were detected in HCT-116 cells indicating the potential role of pks related bacterial toxin as anticancer agent as compared to PCE cells which undergo cellular senescence leading to cell death without apparent upregulation of apoptotic mediators. These findings suggest the existence of discrepancies underlying the mechanism of action of pks+ E. coli on both cancer and normal cell lines. This work propounds the rationale to further understand the mechanism underlying pks+ E. coli-mediated CRC tumorigenesis and cancer killing.
    Matched MeSH terms: Apoptosis
  12. Marunganathan V, Kumar MSK, Kari ZA, Giri J, Shaik MR, Shaik B, et al.
    Mol Biol Rep, 2024 Jan 07;51(1):89.
    PMID: 38184807 DOI: 10.1007/s11033-023-09146-1
    BACKGROUND: Kappaphycus alvarezii, a marine red algae species, has gained significant attention in recent years due to its versatile bioactive compounds. Among these, κ-carrageenan (CR), a sulfated polysaccharide, exhibits remarkable antimicrobial properties. This study emphasizes the synergism attained by functionalizing zinc oxide nanoparticles (ZnO NPs) with CR, thereby enhancing its antimicrobial efficacy and target specificity against dental pathogens.

    METHODS: In this study, we synthesized ZnO-CR NPs and characterized them using SEM, FTIR, and XRD techniques to authenticate their composition and structural attributes. Moreover, our investigation revealed that ZnO-CR NPs possess better free radical scavenging capabilities, as evidenced by their effective activity in the DPPH and ABTS assay.

    RESULTS: The antimicrobial properties of ZnO-CR NPs were systematically assessed using a zone of inhibition assay against dental pathogens of S. aureus, S. mutans, E. faecalis, and C. albicans, demonstrating their substantial inhibitory effects at a minimal concentration of 50 μg/mL. We elucidated the interaction between CR and the receptors of dental pathogens to further understand their mechanism of action. The ZnO-CR NPs demonstrated a dose-dependent anticancer effect at concentrations of 5 μg/mL, 25 μg/mL, 50 μg/mL, and 100 μg/mL on KB cells, a type of Human Oral Epidermal Carcinoma. The mechanism by which ZnO-CA NPs induced apoptosis in KB cells was determined by observing an increase in the expression of the BCL-2, BAX, and P53 genes.

    CONCLUSION: Our findings unveil the promising potential of ZnO-CR NPs as a candidate with significant utility in dental applications. The demonstrated biocompatibility, potent antioxidant and antiapoptotic activity, along with impressive antimicrobial efficacy position these NPs as a valuable resource in the ongoing fight against dental pathogens and oral cancer.

    Matched MeSH terms: Apoptosis
  13. Zhao S, Chen J, Cao S, Wang H, Chen H, Wei Y, et al.
    Plant Physiol Biochem, 2024 Mar;208:108480.
    PMID: 38437751 DOI: 10.1016/j.plaphy.2024.108480
    It is well established that programmed cell death (PCD) occurred in broccoli during postharvest senescence, but no studies have been conducted on the regulation of broccoli cytochrome f by mannose treatment and its relationship with PCD. In this study, we treated broccoli buds with mannose to investigate the changes in color, total chlorophyll content, gene expression related to chlorophyll metabolism, chloroplast structure, and cytochrome f determination during postharvest storage. In addition, to investigate the effect of cytochrome f on PCD, we extracted cytochrome f from broccoli and treated Nicotiana tabacum L. cv Bright Yellow 2 (BY-2) cells with extracted cytochrome f from broccoli at various concentrations. The results showed that cytochrome f can induce PCD in tobacco BY-2 cells, as evidenced by altered cell morphology, nuclear chromatin disintegration, DNA degradation, decreased cell viability, and increased caspase-3-like protease production. Taken together, our study indicated that mannose could effectively delay senescence of postharvest broccoli by inhibiting the expression of gene encoding cytochrome f which could induce PCD.
    Matched MeSH terms: Apoptosis
  14. Rahman HS, Rasedee A, How CW, Zeenathul NA, Chartrand MS, Yeap SK, et al.
    Int J Nanomedicine, 2015;10:1649-66.
    PMID: 25767386 DOI: 10.2147/IJN.S67113
    Cancer nanotherapy is progressing rapidly with the introduction of many innovative drug delivery systems to replace conventional therapy. Although the antitumor activity of zerumbone (ZER) has been reported, there has been no information available on the effect of ZER-loaded nanostructured lipid carrier (NLC) (ZER-NLC) on murine leukemia cells. In this study, the in vitro and in vivo effects of ZER-NLC on murine leukemia induced with WEHI-3B cells were investigated. The results from 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide, Hoechst 33342, Annexin V, cell cycle, and caspase activity assays showed that the growth of leukemia cells in vitro was inhibited by ZER-NLC. In addition, outcomes of histopathology, transmission electron microscopy, and Tdt-mediated dUTP nick-end labeling analyses revealed that the number of leukemia cells in the spleen of BALB/c leukemia mice significantly decreased after 4 weeks of oral treatment with various doses of ZER-NLC. Western blotting and reverse-transcription quantitative polymerase chain reaction assays confirmed the antileukemia effects of ZER-NLC. In conclusion, ZER-NLC was shown to induce a mitochondrial-dependent apoptotic pathway in murine leukemia. Loading of ZER in NLC did not compromise the anticancer effect of the compound, suggesting ZER-NLC as a promising and effective delivery system for treatment of cancers.
    Matched MeSH terms: Apoptosis/drug effects
  15. Jaganathan SK, Balaji A, Vellayappan MV, Asokan MK, Subramanian AP, John AA, et al.
    Anticancer Agents Med Chem, 2015;15(1):48-56.
    PMID: 25052987
    Recent statistics revealed that cancer is one among the main reasons for death throughout the world. Several treatments are available but still there is no cure when it is detected at late stages. One of the treatment modes for cancer is chemotherapy which utilizes anticancer drugs in order to eradicate the cancer cells by apoptosis. Apoptosis is a programmed cell death through which body maintains homeostasis or kills cancer cells by utilizing its cell machinery. Recent researches have concluded that dietary agents have a putative role in instituting apoptosis of cancer cells. Honey, one of the victuals rich in antioxidants, has a long-standing exposure to humans and its role in cancer prevention and treatment is a topic of current interest. Various researchers have been experimenting honey against different cancers and provided valuable insights about the apoptosis induced by the honey. This review will highlight the recent findings of apoptotic mechanism involved in different cancer cells. Further it also reports antitumor activity of honey in some animal models. Hence it is high-time to initiate more preclinical trials as well as clinical experiments which would further add to the knowledge of anticancer nature of honey and also endorse honey as a potential candidate in the war against cancer.
    Matched MeSH terms: Apoptosis/drug effects*
  16. Rahman HS, Rasedee A, Yeap SK, Othman HH, Chartrand MS, Namvar F, et al.
    Biomed Res Int, 2014;2014:920742.
    PMID: 25025076 DOI: 10.1155/2014/920742
    Zerumbone (ZER) is a naturally occurring dietary compound, present in many natural foods consumed today. The compound derived from several plant species of the Zingiberaceae family that has been found to possess multiple biomedical properties, such as antiproliferative, antioxidant, anti-inflammatory, and anticancer activities. However, evidence of efficacy is sparse, pointing to the need for a more systematic review for assessing scientific evidence to support therapeutic claims made for ZER and to identify future research needs. This review provides an updated overview of in vitro and in vivo investigations of ZER, its cancer chemopreventive properties, and mechanisms of action. Therapeutic effects of ZER were found to be scientifically plausible and could be explained partially by in vivo and in vitro pharmacological activities. Much of the research outlined in this paper will serve as a foundation to explain ZER anticancer bioactivity, which will open the door for the development of strategies in the treatment of malignancies using ZER.
    Matched MeSH terms: Apoptosis/drug effects
  17. Yen HK, Fauzi AR, Din LB, McKelvey-Martin VJ, Meng CK, Inayat-Hussain SH, et al.
    PMID: 25107315 DOI: 10.1186/1472-6882-14-295
    Selective Alzheimer Disease Indicator-1 (or Seladin-1) is a multifunctional protein first discovered by downregulation of its expression in Alzheimer's disease. Interestingly, the expression of this protein is upregulated in several cancers, including primary bladder cancer. However, its role in cancer formation has yet to be discovered. Goniothalamin is a natural product that has been demonstrated to induce apoptosis in various cancer cell lines. In this study, we have elucidated the role of Seladin-1 in goniothalamin-induced cytotoxicity towards human urinary bladder cancer cell line RT4.
    Matched MeSH terms: Apoptosis/drug effects*
  18. Jothy SL, Oon CE, Sasidharan S
    Asian Pac J Cancer Prev, 2014;15(3):1501.
    PMID: 24606490
    Matched MeSH terms: Apoptosis/drug effects*
  19. Azmi MN, Gény C, Leverrier A, Litaudon M, Dumontet V, Birlirakis N, et al.
    Molecules, 2014;19(2):1732-47.
    PMID: 24492595 DOI: 10.3390/molecules19021732
    A phytochemical investigation of the methanolic extract of the bark of Endiandra kingiana led to the isolation of seven new tetracyclic endiandric acid analogues, kingianic acids A-G (1-7), together with endiandric acid M (8), tsangibeilin B (9) and endiandric acid (10). Their structures were determined by 1D- and 2D-NMR analysis in combination with HRMS experiments. The structure of compounds 9 and 10 were confirmed by single-crystal X-ray diffraction analysis. These compounds were screened for Bcl-xL and Mcl-1 binding affinities and cytotoxic activity on various cancer cell lines. Compound 5 showed moderate cytotoxic activity against human colorectal adeno-carcinoma (HT-29) and lung adenocarcinoma epithelial (A549) cell lines, with IC50 values in the range 15-17 µM, and compounds 3, 6 and 9 exhibited weak binding affinity for the anti-apoptotic protein Mcl-1.
    Matched MeSH terms: Apoptosis/drug effects
  20. Yunos NM, Mutalip SS, Jauri MH, Yu JQ, Huq F
    Anticancer Res, 2013 Oct;33(10):4365-71.
    PMID: 24123004
    Andrographolide (Andro) is a diterpenoid that is isolated from Andrographis paniculata and reported to be active against several cancer cell lines. However, few in-depth studies have been carried out on its effects on ovarian cancer cell lines alone or in combination with cisplatin (Cis), which is commonly used to treat ovarian cancer. The aim of this study was to determine the anti-proliferative and apoptotic effects of Andro administered alone and in combination with Cis in the ovarian A2780 and A2780(cisR) cancer cell lines using five different sequences of administration (Cis/Andro h): 0/0h, 4/0 h, 0/4 h, 24/0 h and 0/24 h. The results were evaluated in terms of medium-effect dose (Dm) and combination indices (CI) using the CalcuSyn software. Unlike Cis, whose activity was lower in the resistant A2780(cisR) cell line than in the parent A2780 cell line, Andro was found to be three times more active in the A2780(cisR) cell line as compared to that in A2780 cell line. Synergism was observed when Cis and Andro were administered using the sequences 0/4 h and 4/0 h. The percentage of apoptotic cell death was found to be greater for the 0/4 h combination of Andro and Cis as compared to those values from single-drug treatments. The results may be clinically significant if confirmed in vivo.
    Matched MeSH terms: Apoptosis/drug effects*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links