Displaying publications 121 - 140 of 54746 in total

Abstract:
Sort:
  1. Saeed MEM, Boulos JC, Elhaboub G, Rigano D, Saab A, Loizzo MR, et al.
    Phytomedicine, 2019 Sep;62:152945.
    PMID: 31132750 DOI: 10.1016/j.phymed.2019.152945
    BACKGROUND: Cucurbitacin E (CuE) is an oxygenated tetracyclic triterpenoid isolated from the fruits of Citrullus colocynthis (L.) Schrad.

    PURPOSE: This study outlines CuE's cytotoxic activity against drug-resistant tumor cell lines. Three members of ABC transporters superfamily, P-glycoprotein (P-gp), breast cancer resistance protein (BCRP) and ABCB5 were investigated, whose overexpression in tumors is tightly linked to multidrug resistance. Further factors of drug resistance studied were the tumor suppressor TP53 and the epidermal growth factor receptor (EGFR).

    METHODS: Cytotoxicity assays (resazurin assays) were used to investigate the activity of Citrullus colocynthis and CuE towards multidrug resistant cancer cells. Molecular docking (In silico) has been carried out to explore the CuE's mode of binding to ABC transporters (P-gp, BCRP and ABCB5). The visualization of doxorubicin uptake was done by a Spinning Disc Confocal Microscope. The assessment of proteins expression was done by western blotting analysis. COMPARE and hierarchical cluster analyses were applied to identify, which genes correlate with sensitivity or resistance to cucurbitacins (CuA, CuB, CuE, CuD, CuI, and CuK).

    RESULTS: Multidrug-resistant cells overexpressing P-gp or BCRP were cross-resistant to CuE. By contrast, TP53 knock-out cells were sensitive to CuE. Remarkably, resistant cells transfected with oncogenic ΔEGFR or ABCB5 were hypersensitive (collateral sensitive) to CuE. In silico analyses demonstrated that CuE is a substrate for P-gp and BCRP. Immunoblot analyses highlighted that CuE targeted EGFR and silenced its downstream signaling cascades. The most striking result that emerged from the doxorubicin uptake by ABCB5 overexpressing cells is that CuE is an effective inhibitor for ABCB5 transporter when compared with verapamil. The COMPARE analyses of transcriptome-wide expression profiles of tumor cell lines of the NCI identified common genes involved in cell cycle regulation, cellular adhesion and intracellular communication for different cucurbitacins.

    CONCLUSION: CuE represents a potential therapeutic candidate for the treatment of certain types of refractory tumors. To best of our knowledge, this is the first time to identify CuE and verapamil as inhibitors for ABCB5 transporter.

    Matched MeSH terms: Humans
  2. Mohd-Tahir NA, Li SC
    PLoS One, 2019;14(2):e0212832.
    PMID: 30817790 DOI: 10.1371/journal.pone.0212832
    INTRODUCTION: Renin-angiotensin system inhibitors (RAS) drugs have a proteinuria-reducing effect that could prevent the progression of kidney disease in diabetic patients. Our study aimed to assess the budget impact based on healthcare payer perspective of increasing uptake of RAS drugs into the current treatment mix of standard anti-hypertensive treatments to prevent progression of kidney disease in patient's comorbid with hypertension and diabetes.

    METHODS: A Markov model of a Malaysian hypothetical cohort aged ≥30 years (N = 14,589,900) was used to estimate the total and per-member-per-month (PMPM) costs of RAS uptake. This involved an incidence and prevalence rate of 9.0% and 10.53% of patients with diabetes and hypertension respectively. Transition probabilities of health stages and costs were adapted from published data.

    RESULTS: An increasing uptake of RAS drugs would incur a projected total treatment cost ranged from MYR 4.89 billion (PMPM of MYR 27.95) at Year 1 to MYR 16.26 billion (PMPM of MYR 92.89) at Year 5. This would represent a range of incremental costs between PMPM of MYR 0.20 at Year 1 and PMPM of MYR 1.62 at Year 5. Over the same period, the care costs showed a downward trend but drug acquisition costs were increasing. Sensitivity analyses showed the model was minimally affected by the changes in the input parameters.

    CONCLUSION: Mild impact to the overall healthcare budget has been reported with an increased utilization of RAS. The long-term positive health consequences of RAS treatment would reduce the cost of care in preventing deterioration of kidney function, thus offsetting the rising costs of purchasing RAS drugs. Optimizing and increasing use of RAS drugs would be considered an affordable and rational strategy to reduce the overall healthcare costs in Malaysia.

    Matched MeSH terms: Humans
  3. Goldhaber SZ, Ageno W, Casella IB, Chee KH, Schellong S, Singer DE, et al.
    Am J Med, 2020 08;133(8):936-945.
    PMID: 32325043 DOI: 10.1016/j.amjmed.2020.03.036
    BACKGROUND: The safety and efficacy of nonvitamin K antagonist oral anticoagulants (NOACs) for the treatment of venous thromboembolism (VTE) have been established in randomized controlled trials, but limited data are available on their use in clinical practice across geographical regions.

    METHODS: In the international RE-COVERY DVT/PE observational study (enrollment January 2016 to May 2017), we sought to characterize the patient population and describe the prescribed anticoagulant. Patient characteristics and anticoagulants administered after objective diagnosis of VTE were recorded at the baseline visit and again at hospital discharge or at 14 days after the diagnosis, whichever was later.

    RESULTS: A total of 6095 patients were included, 50.2% were male, and the mean age was 61.5 years. The most common comorbidities were hypertension (35%), diabetes mellitus (11%), cancer (11%), prior VTE(11%), and trauma/surgery (7%). Overall, 77% of patients received oral anticoagulants, with 54% on NOACs and 23% on vitamin K antagonists (VKAs); 20% received parenteral anticoagulation only. NOACs comprised about 60% of anticoagulant treatment in Europe and Asia but substantially less in Latin America (29%) and the Middle East (21%). For NOAC therapies, the distribution (as a percentage of the total cohort) was rivaroxaban 25.6%, dabigatran 15.5%, apixaban 11.3%, and edoxaban 1.7%. Treatment with NOACs was less frequent in patients who had cancer, chronic renal disease, heart failure, or stroke.

    CONCLUSIONS: These findings enhance our understanding of baseline characteristics and the initial management of patients with VTE in routine practice.

    Matched MeSH terms: Humans
  4. Manikam SD, Manikam ST, Stanslas J
    J Pharm Pharmacol, 2009 Jan;61(1):69-78.
    PMID: 19126299 DOI: 10.1211/jpp/61.01.0010
    The growth inhibiting potential of andrographolide was evaluated in three acute promyelocytic leukaemia cell line models (HL-60, NB4 and all-trans retinoic acid (ATRA)-resistant NB4-R2).
    Matched MeSH terms: Humans
  5. Shafiee MN, Malik DA, Yunos RI, Atiomo W, Omar MH, Ghani NA, et al.
    Gynecol Endocrinol, 2015 Apr;31(4):286-90.
    PMID: 25495168 DOI: 10.3109/09513590.2014.989982
    The aim of this proof-of-concept study was to determine the effects of three-month Metformin therapy on the expression of tumor-regulatory genes (p53, cyclin D2 and BCL-2) in the endometrium of women with polycystic ovary syndrome (PCOS). A total of 40 women, aged between 21 and 45 years with PCOS (Rotterdam criteria) were recruited. The participants were assessed at pre- and 3-month-post-Metformin therapy for the menstrual regularities, weight reduction, Ferriman Galway scores, fasting blood glucose (FBG), total cholesterol, LDL, HDL and p53, BCL-2 and cyclin D2 gene expression. Five participants conceived spontaneously after the initial recruitment. Majority (68%) resumed regular menstrual cycles after Metformin. There were significant reduction in BMI (p = 0.001), weight (p = 0.001) and Ferriman Galway scores (p = 0.001). A significant improvement was seen in mean FBG (p = 0.002), total cholesterol (p = 0.001), LDL (p = 0.003) and HDL cholesterol levels (p = 0.015). Tumor suppressor gene (p53) was significantly up-regulated after Metformin (10 out of 14 women), with p value 0.016. BCL-2 and cyclin D2 (oncogenes) were slightly up-regulated without significant difference (p = 0.119 and 0.155, respectively). In conclusion, Metformin therapy improved clinical and metabolic parameters in women with PCOS and up-regulated p53 tumor suppressor gene significantly. Further studies are however required to independently validate our findings.
    Matched MeSH terms: Humans
  6. Jabbarzadeh Kaboli P, Leong MP, Ismail P, Ling KH
    Pharmacol Rep, 2019 Feb;71(1):13-23.
    PMID: 30343043 DOI: 10.1016/j.pharep.2018.07.005
    BACKGROUND: Berberine is an alkaloid plant-based DNA intercalator that affects gene regulation, particularly expression of oncogenic and tumor suppressor proteins. The effects of berberine on different signaling proteins remains to be elucidated. The present study aimed to identify the effects of berberine against key oncogenic proteins in breast cancer cells.

    METHODS: Molecular docking and molecular dynamics simulations were used for EGFR, p38, ERK1/2, and AKT. The effects of berberine and lapatinib on MAPK and PI3K pathways in MDA-MB231 and MCF-7 cells were evaluated using immunoflorescence assays, and the amounts of phosphorylated kinases were compared to total kinases after treating with different concentrations of berberine.

    RESULTS: Simulations showed berberine accurately interacted with EGFR, AKT, P38, and ERK1/2 active sites in silico (scores = -7.57 to -7.92 Kcal/mol) and decreased the levels of active forms of corresponding enzymes in both cell lines; however, berberine binding to p38 showed less stability. Cytotoxicity analysis indicated that MDA-MB231 cells were resistant to berberine compared to MCF-7 cells [72 h IC50 = 50 versus 15 μM, respectively). Also, lapatinib strongly activated AKT but suppressed EGFR in MDA-MB231 cells. The activity of EGFR, AKT, P38, and ERK1/2 were affected by berberine; however, berberine dramatically reduced EGFR and AKT phosphorylation.

    CONCLUSION: By way of its multikinase inhibitory effects, berberine might be a useful replacement for lapatinib, an EGFR inhibitor which can cause acquired drug resistance in patients.

    Matched MeSH terms: Humans
  7. Skowronski DM, De Serres G, Dickinson J, Petric M, Mak A, Fonseca K, et al.
    J Infect Dis, 2009 Jan 15;199(2):168-79.
    PMID: 19086914 DOI: 10.1086/595862
    Trivalent inactivated influenza vaccine (TIV) is reformulated annually to contain representative strains of 2 influenza A subtypes (H1N1 and H3N2) and 1 B lineage (Yamagata or Victoria). We describe a sentinel surveillance approach to link influenza variant detection with component-specific vaccine effectiveness (VE) estimation.
    Matched MeSH terms: Humans
  8. Upadhyay N, Tilekar K, Safuan S, Kumar AP, Schweipert M, Meyer-Almes FJ, et al.
    Bioorg Chem, 2021 11;116:105350.
    PMID: 34547645 DOI: 10.1016/j.bioorg.2021.105350
    In the present study, two novel series of compounds incorporating naphthyl and pyridyl linker were synthesized and biological assays revealed 5-((6-(2-(5-(2-chlorophenyl)-3-(4-fluorophenyl)-4,5-dihydro-1H-pyrazol-1-yl)-2-oxoethoxy) naphthalene-2-yl)methylene)thiazolidine-2,4-dione (14b) as the most potent dual inhibitors of vascular endothelial growth factors receptor-2 (VEGFR-2) and histone deacetylase 4 (HDAC4). Compounds 13b, 14b, 17f, and 21f were found to stabilize HDAC4; where, pyridyl linker swords were endowed with higher stabilization effects than naphthyl linker. Also, 13b and 14b showed best inhibitory activity on VEGFR-2 as compared to others. Compound 14b was most potent as evident by in-vitro and in-vivo biological assessments. It displayed anti-angiogenic potential by inhibiting endothelial cell proliferation, migration, tube formation and also suppressed new capillary formation in the growing chick chorioallantoic membranes (CAMs). It showed selectivity and potency towards HDAC4 as compared to other HDAC isoforms. Compound 14b (25 mg/kg, i.p.) also indicated exceptional antitumor efficacy on in-vivo animal xenograft model of human colorectal adenocarcinoma (HT-29). The mechanism of action of 14b was also confirmed by western blot.
    Matched MeSH terms: Humans
  9. Tee ES, Kandiah M, Ali J, Kandiah V, Zahari MR, Kuladevan R, et al.
    Malays J Reprod Health, 1984 Jun;2(1):32-50.
    PMID: 12267519
    The study presents recent data on the prevalence and pattern of nutritional anemia in the Maternity Hospital, Kuala Lumpur. A total of 309 pregnant women in their third trimester, of Malay, Chinese and Indian origin from the lower socio-economic strata were randomly selected for the study. Hematological indices (including Hb, PCV, MCHC, and TRBC), serum iron, transferrin saturation and ferritin, serum folate as well as protein and albumin were determined. Based on Hb and PCV values, 30-40 percent of the women could be considered anemic; approximately 50 percent of them presented with unsatisfactory serum iron, transferrin saturation and ferritin values; 60.9 percent had low serum folate levels; and about 30 percent may be considered to be of poor protein nutriture. Anemia in the study population was seen to be related mostly to iron and to a lesser extent, folate deficiency. Hematological, iron, folate and protein status was observed to be the poorest amongst the Indian women, better in the Malay group and generally the best amongst the Chinese women. Birth records of 169 of these women revealed that all of them had live births. Nearly all the infants were delivered by normal vaginal delivery (NVD) The mean gestational age was 38.6 weeks. One of the infants had a birth weight of <2.0 kg; incidence of low birth weight, <2.5 kg, was 8.3 percent. Although there was a trend of deteriorating hematological, iron and protein status of women from the 0, 1 -3 and >=4 parity groups, these differences were not statlstlcally significant.
    Matched MeSH terms: Humans
  10. Khoo SP, Lim WT, Rajasuriar R, Nasir NH, Gravitt P, Woo YL
    Cancer Prev Res (Phila), 2021 01;14(1):105-112.
    PMID: 32917643 DOI: 10.1158/1940-6207.CAPR-20-0280
    Vaginal self-sampling for human papillomavirus (HPV) testing can potentially increase cervical screening coverage. This study aimed to investigate the acceptability of vaginal self-sampling for HPV testing and factors that might influence a woman's preference for this as a cervical screening method. This was a cross-sectional study that recruited 725 women from the urban and suburban areas of Selangor, Malaysia. All study participants were instructed to self-collect vaginal sample using a dry flocked swab before responding to a detailed questionnaire documenting their experience and preference for self-sampling. Most of the study participants (>80%) perceived vaginal self-sampling as easy, convenient, not embarrassing, comfortable, and were confident in performing the test. This suggests high acceptability toward vaginal self-sampling for HPV testing. Of the 725 women, 83% preferred self-sampling HPV testing over healthcare personnel sampling HPV testing and Pap test. Women with higher household income and full-time employment status were more likely to prefer self-sampling. Those who had not undergone Pap test also expressed preference for self-sampling HPV testing. Convenience and women's confidence in performing a vaginal self-sampling for HPV testing were the independent key factors that influenced the preference for self-sampling method. Vaginal self-sampling for HPV testing is highly acceptable among Malaysian women. It is the preferred choice as a primary cervical screening method and serves as an alternative to healthcare-acquired sample for Pap test. PREVENTION RELEVANCE: Organized cervical cancer screening remains unachievable in many countries. Self-sampling HPV testing is an evidence-based method that can remove barriers to cervical screening. This is particularly important for developing countries in order to achieve the WHO global strategy to accelerate cervical cancer elimination.
    Matched MeSH terms: Humans
  11. Dyari HRE, Rawling T, Chen Y, Sudarmana W, Bourget K, Dwyer JM, et al.
    FASEB J, 2017 12;31(12):5246-5257.
    PMID: 28798154 DOI: 10.1096/fj.201700033R
    A saturated analog of the cytochrome P450-mediated ω-3-17,18-epoxide of ω-3-eicosapentaenoic acid (C20E) activated apoptosis in human triple-negative MDA-MB-231 breast cancer cells. This study evaluated the apoptotic mechanism of C20E. Increased cytosolic cytochrome c expression and altered expression of pro- and antiapoptotic B-cell lymphoma-2 proteins indicated activation of the mitochondrial pathway. Caspase-3 activation by C20E was prevented by pharmacological inhibition and silencing of the JNK and p38 MAP kinases (MAPK), upstream MAPK kinases MKK4 and MKK7, and the upstream MAPK kinase kinase apoptosis signal-regulating kinase 1 (ASK1). Silencing of the death receptor TNF receptor 1 (TNFR1), but not Fas, DR4, or DR5, and the adapters TRADD and TNF receptor-associated factor 2, but not Fas-associated death domain, prevented C20E-mediated apoptosis. B-cell lymphoma-2 homology 3-interacting domain death agonist (Bid) cleavage by JNK/p38 MAPK linked the extrinsic and mitochondrial pathways of apoptosis. In further studies, an antibody against the extracellular domain of TNFR1 prevented apoptosis by TNF-α but not C20E. These findings suggest that C20E acts intracellularly at TNFR1 to activate ASK1-MKK4/7-JNK/p38 MAPK signaling and to promote Bid-dependent mitochondrial disruption and apoptosis. Inin vivostudies, tumors isolated from C20E-treated nu/nu mice carrying MDA-MB-231 xenografts showed increased TUNEL staining and decreased Ki67 staining, reflecting increased apoptosis and decreased proliferation, respectively. ω-3-Epoxy fatty acids like C20E could be incorporated into treatments for triple-negative breast cancers.-Dyari, H. R. E., Rawling, T., Chen, Y., Sudarmana, W., Bourget, K., Dwyer, J. M., Allison, S. E., Murray, M. A novel synthetic analogue of ω-3 17,18-epoxyeicosatetraenoic acid activates TNF receptor-1/ASK1/JNK signaling to promote apoptosis in human breast cancer cells.
    Matched MeSH terms: Humans
  12. Yeo EH, Goh WL, Chow SC
    Toxicol. Mech. Methods, 2018 Mar;28(3):157-166.
    PMID: 28849708 DOI: 10.1080/15376516.2017.1373882
    The leucine aminopeptidase inhibitor, benzyloxycarbonyl-leucine-chloromethylketone (z-L-CMK), was found to be toxic and readily induce cell death in Jurkat T cells. Dose-response studies show that lower concentration of z-L-CMK induced apoptosis in Jurkat T cells whereas higher concentration causes necrosis. In z-L-CMK-induced apoptosis, both the initiator caspases (-8 and -9) and effector caspases (-3 and -6) were processed to their respective subunits. However, the caspases remained intact in z-L-CMK-induced necrosis. The caspase inhibitor, z-VAD-FMK inhibited z-L-CMK-mediated apoptosis and caspase processing but has no effect on z-L-CMK-induced necrosis in Jurkat T cells. The high mobility group protein B1 (HMGB1) protein was found to be released into the culture medium by the necrotic cells and not the apoptotic cells. These results indicate that the necrotic cell death mediated by z-L-CMK at high concentrations is via classical necrosis rather than secondary necrosis. We also demonstrated that cell death mediated by z-L-CMK was associated with oxidative stress via the depletion of intracellular glutathione (GSH) and increase in reactive oxygen species (ROS), which was blocked by N-acetyl cysteine. Taken together, the results demonstrated that z-L-CMK is toxic to Jurkat T cells and induces apoptosis at low concentrations, while at higher concentrations the cells die of necrosis. The toxic side effects in Jurkat T cells mediated by z-L-CMK are associated with oxidative stress via the depletion of GSH and accumulation of ROS.
    Matched MeSH terms: Humans
  13. Soe HJ, Khan AM, Manikam R, Samudi Raju C, Vanhoutte P, Sekaran SD
    J Gen Virol, 2017 Dec;98(12):2993-3007.
    PMID: 29182510 DOI: 10.1099/jgv.0.000981
    Plasma leakage is the main pathophysiological feature in severe dengue, resulting from altered vascular barrier function associated with an inappropriate immune response triggered upon infection. The present study investigated functional changes using an electric cell-substrate impedance sensing system in four (brain, dermal, pulmonary and retinal) human microvascular endothelial cell (MEC) lines infected with purified dengue virus, followed by assessment of cytokine profiles and the expression of inter-endothelial junctional proteins. Modelling of changes in electrical impedance suggests that vascular leakage in dengue-infected MECs is mostly due to the modulation of cell-to-cell interactions, while this loss of vascular barrier function observed in the infected MECs varied between cell lines and DENV serotypes. High levels of inflammatory cytokines (IL-6 and TNF-α), chemokines (CXCL1, CXCL5, CXCL11, CX3CL1, CCL2 and CCL20) and adhesion molecules (VCAM-1) were differentially produced in the four infected MECs. Further, the tight junctional protein, ZO-1, was down-regulated in both the DENV-1-infected brain and pulmonary MECs, while claudin-1, PECAM-1 and VE-cadherin were differentially expressed in these two MECs after infection. Non-purified virus stock was also studied to investigate the impact of virus stock purity on dengue-specific immune responses, and the results suggest that virus stock propagated through cell culture may include factors that mask or alter the DENV-specific immune responses of the MECs. The findings of the present study show that high DENV load differentially modulates human microvascular endothelial barrier function and disrupts the function of inter-endothelial junctional proteins during early infection with organ-specific cytokine production.
    Matched MeSH terms: Humans
  14. Mohamad Rosdi MN, Mohd Arif S, Abu Bakar MH, Razali SA, Mohamed Zulkifli R, Ya'akob H
    Apoptosis, 2018 01;23(1):27-40.
    PMID: 29204721 DOI: 10.1007/s10495-017-1434-7
    Annona muricata Linn or usually identified as soursop is a potential anticancer plant that has been widely reported to contain valuable chemopreventive agents known as annonaceous acetogenins. The antiproliferative and anticancer activities of this tropical and subtropical plant have been demonstrated in cell culture and animal studies. A. muricata L. exerts inhibition against numerous types of cancer cells, involving multiple mechanism of actions such as apoptosis, a programmed cell death that are mainly regulated by Bcl-2 family of proteins. Nonetheless, the binding mode and the molecular interactions of the plant's bioactive constituents have not yet been unveiled for most of these mechanisms. In the current study, we aim to elucidate the binding interaction of ten bioactive phytochemicals of A. muricata L. to three Bcl-2 family of antiapoptotic proteins viz. Bcl-2, Bcl-w and Mcl-1 using an in silico molecular docking analysis software, Autodock 4.2. The stability of the complex with highest affinity was evaluated using MD simulation. We compared the docking analysis of these substances with pre-clinical Bcl-2 inhibitor namely obatoclax. The study identified the potential chemopreventive agent among the bioactive compounds. We also characterized the important interacting residues of protein targets which involve in the binding interaction. Results displayed that anonaine, a benzylisoquinoline alkaloid, showed a high affinity towards the Bcl-2, thus indicating that this compound is a potent inhibitor of the Bcl-2 antiapoptotic family of proteins.
    Matched MeSH terms: Humans
  15. Connolly SJ, Eikelboom JW, Bosch J, Dagenais G, Dyal L, Lanas F, et al.
    Lancet, 2018 01 20;391(10117):205-218.
    PMID: 29132879 DOI: 10.1016/S0140-6736(17)32458-3
    BACKGROUND: Coronary artery disease is a major cause of morbidity and mortality worldwide, and is a consequence of acute thrombotic events involving activation of platelets and coagulation proteins. Factor Xa inhibitors and aspirin each reduce thrombotic events but have not yet been tested in combination or against each other in patients with stable coronary artery disease.

    METHODS: In this multicentre, double-blind, randomised, placebo-controlled, outpatient trial, patients with stable coronary artery disease or peripheral artery disease were recruited at 602 hospitals, clinics, or community centres in 33 countries. This paper reports on patients with coronary artery disease. Eligible patients with coronary artery disease had to have had a myocardial infarction in the past 20 years, multi-vessel coronary artery disease, history of stable or unstable angina, previous multi-vessel percutaneous coronary intervention, or previous multi-vessel coronary artery bypass graft surgery. After a 30-day run in period, patients were randomly assigned (1:1:1) to receive rivaroxaban (2·5 mg orally twice a day) plus aspirin (100 mg once a day), rivaroxaban alone (5 mg orally twice a day), or aspirin alone (100 mg orally once a day). Randomisation was computer generated. Each treatment group was double dummy, and the patients, investigators, and central study staff were masked to treatment allocation. The primary outcome of the COMPASS trial was the occurrence of myocardial infarction, stroke, or cardiovascular death. This trial is registered with ClinicalTrials.gov, number NCT01776424, and is closed to new participants.

    FINDINGS: Between March 12, 2013, and May 10, 2016, 27 395 patients were enrolled to the COMPASS trial, of whom 24 824 patients had stable coronary artery disease from 558 centres. The combination of rivaroxaban plus aspirin reduced the primary outcome more than aspirin alone (347 [4%] of 8313 vs 460 [6%] of 8261; hazard ratio [HR] 0·74, 95% CI 0·65-0·86, p<0·0001). By comparison, treatment with rivaroxaban alone did not significantly improve the primary outcome when compared with treatment with aspirin alone (411 [5%] of 8250 vs 460 [6%] of 8261; HR 0·89, 95% CI 0·78-1·02, p=0·094). Combined rivaroxaban plus aspirin treatment resulted in more major bleeds than treatment with aspirin alone (263 [3%] of 8313 vs 158 [2%] of 8261; HR 1·66, 95% CI 1·37-2·03, p<0·0001), and similarly, more bleeds were seen in the rivaroxaban alone group than in the aspirin alone group (236 [3%] of 8250 vs 158 [2%] of 8261; HR 1·51, 95% CI 1·23-1·84, p<0·0001). The most common site of major bleeding was gastrointestinal, occurring in 130 [2%] patients who received combined rivaroxaban plus aspirin, in 84 [1%] patients who received rivaroxaban alone, and in 61 [1%] patients who received aspirin alone. Rivaroxaban plus aspirin reduced mortality when compared with aspirin alone (262 [3%] of 8313 vs 339 [4%] of 8261; HR 0·77, 95% CI 0·65-0·90, p=0·0012).

    INTERPRETATION: In patients with stable coronary artery disease, addition of rivaroxaban to aspirin lowered major vascular events, but increased major bleeding. There was no significant increase in intracranial bleeding or other critical organ bleeding. There was also a significant net benefit in favour of rivaroxaban plus aspirin and deaths were reduced by 23%. Thus, addition of rivaroxaban to aspirin has the potential to substantially reduce morbidity and mortality from coronary artery disease worldwide.

    FUNDING: Bayer AG.
    Matched MeSH terms: Humans
  16. Azizan N, Mohd Said S, Zainal Abidin Z, Jantan I
    Molecules, 2017 Dec 05;22(12).
    PMID: 29206142 DOI: 10.3390/molecules22122135
    In this study, the essential oils of Orthosiphon stamineus Benth and Ficus deltoidea Jack were evaluated for their antibacterial activity against invasive oral pathogens, namely Enterococcus faecalis, Streptococcus mutans, Streptococcus mitis, Streptococcus salivarius, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis and Fusobacterium nucleatum. Chemical composition of the oils was analyzed using gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). The antibacterial activity of the oils and their major constituents were investigated using the broth microdilution method (minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC)). Susceptibility test, anti-adhesion, anti-biofilm, checkerboard and time-kill assays were also carried out. Physiological changes of the bacterial cells after exposure to the oils were observed under the field emission scanning electron microscope (FESEM). O. stamineus and F. deltoidea oils mainly consisted of sesquiterpenoids (44.6% and 60.9%, respectively), and β-caryophyllene was the most abundant compound in both oils (26.3% and 36.3%, respectively). Other compounds present in O. stamineus were α-humulene (5.1%) and eugenol (8.1%), while α-humulene (5.5%) and germacrene D (7.7%) were dominant in F. deltoidea. The oils of both plants showed moderate to strong inhibition against all tested bacteria with MIC and MBC values ranging 0.63-2.5 mg/mL. However, none showed any inhibition on monospecies biofilms. The time-kill assay showed that combination of both oils with amoxicillin at concentrations of 1× and 2× MIC values demonstrated additive antibacterial effect. The FESEM study showed that both oils produced significant alterations on the cells of Gram-negative bacteria as they became pleomorphic and lysed. In conclusion, the study indicated that the oils of O. stamineus and F. deltoidea possessed moderate to strong antibacterial properties against the seven strains pathogenic oral bacteria and may have caused disturbances of membrane structure or cell wall of the bacteria.
    Matched MeSH terms: Humans
  17. Braun DA, Rao J, Mollet G, Schapiro D, Daugeron MC, Tan W, et al.
    Nat Genet, 2017 Oct;49(10):1529-1538.
    PMID: 28805828 DOI: 10.1038/ng.3933
    Galloway-Mowat syndrome (GAMOS) is an autosomal-recessive disease characterized by the combination of early-onset nephrotic syndrome (SRNS) and microcephaly with brain anomalies. Here we identified recessive mutations in OSGEP, TP53RK, TPRKB, and LAGE3, genes encoding the four subunits of the KEOPS complex, in 37 individuals from 32 families with GAMOS. CRISPR-Cas9 knockout in zebrafish and mice recapitulated the human phenotype of primary microcephaly and resulted in early lethality. Knockdown of OSGEP, TP53RK, or TPRKB inhibited cell proliferation, which human mutations did not rescue. Furthermore, knockdown of these genes impaired protein translation, caused endoplasmic reticulum stress, activated DNA-damage-response signaling, and ultimately induced apoptosis. Knockdown of OSGEP or TP53RK induced defects in the actin cytoskeleton and decreased the migration rate of human podocytes, an established intermediate phenotype of SRNS. We thus identified four new monogenic causes of GAMOS, describe a link between KEOPS function and human disease, and delineate potential pathogenic mechanisms.
    Matched MeSH terms: Humans
  18. Bokhari RA, Lau SF, Mohamed S
    Menopause, 2018 02;25(2):202-210.
    PMID: 28926512 DOI: 10.1097/GME.0000000000000980
    OBJECTIVE: Orthosiphon stamineus (OS) or Misai Kucing (Java tea) is a popular herbal supplement from Southeast Asia for various metabolic, age-related diseases. This study investigated the potential use of OS leaf extracts to ameliorate osteoporosis in ovariectomized rats.

    METHODS: Fifty-six female Sprague-Dawley rats were randomly allocated into eight groups (n = 7): SHAM (healthy sham control); OVX (ovarietomized) nontreated rats (negative control); OVX + Remifemin (100 mg/kg body weight), and 2% green tea extract (positive controls); OVX + OS 50% ethanolic and aqueous extracts, both at either 150 or 300 mg/kg. After 16 weeks, the rats' bones and blood were evaluated for osteoporosis indicators (protein and mRNA expressions), micro-computed tomography for bone histomorphometry, and three-point bending test for tibia mechanical strength.

    RESULTS: The extracts dose-dependently and significantly (P 

    Matched MeSH terms: Humans
  19. Shao YM, Ma X, Paira P, Tan A, Herr DR, Lim KL, et al.
    PLoS One, 2018;13(1):e0188212.
    PMID: 29304113 DOI: 10.1371/journal.pone.0188212
    Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive loss of dopaminergic neurons in the substantia nigra of the human brain, leading to depletion of dopamine production. Dopamine replacement therapy remains the mainstay for attenuation of PD symptoms. Nonetheless, the potential benefit of current pharmacotherapies is mostly limited by adverse side effects, such as drug-induced dyskinesia, motor fluctuations and psychosis. Non-dopaminergic receptors, such as human A2A adenosine receptors, have emerged as important therapeutic targets in potentiating therapeutic effects and reducing the unwanted side effects. In this study, new chemical entities targeting both human A2A adenosine receptor and dopamine D2 receptor were designed and evaluated. Two computational methods, namely support vector machine (SVM) models and Tanimoto similarity-based clustering analysis, were integrated for the identification of compounds containing indole-piperazine-pyrimidine (IPP) scaffold. Subsequent synthesis and testing resulted in compounds 5 and 6, which acted as human A2A adenosine receptor binders in the radioligand competition assay (Ki = 8.7-11.2 μM) as well as human dopamine D2 receptor binders in the artificial cell membrane assay (EC50 = 22.5-40.2 μM). Moreover, compound 5 showed improvement in movement and mitigation of the loss of dopaminergic neurons in Drosophila models of PD. Furthermore, in vitro toxicity studies on compounds 5 and 6 did not reveal any mutagenicity (up to 100 μM), hepatotoxicity (up to 30 μM) or cardiotoxicity (up to 30 μM).
    Matched MeSH terms: Humans
  20. Arifin SA, Paternoster S, Carlessi R, Casari I, Ekberg JH, Maffucci T, et al.
    Biochim Biophys Acta Mol Cell Biol Lipids, 2018 09;1863(9):1132-1141.
    PMID: 29883799 DOI: 10.1016/j.bbalip.2018.06.007
    The gastrointestinal tract is increasingly viewed as critical in controlling glucose metabolism, because of its role in secreting multiple glucoregulatory hormones, such as glucagon like peptide-1 (GLP-1). Here we investigate the molecular pathways behind the GLP-1- and insulin-secreting capabilities of a novel GPR119 agonist, Oleoyl-lysophosphatidylinositol (Oleoyl-LPI). Oleoyl-LPI is the only LPI species able to potently stimulate the release of GLP-1 in vitro, from murine and human L-cells, and ex-vivo from murine colonic primary cell preparations. Here we show that Oleoyl-LPI mediates GLP-1 secretion through GPR119 as this activity is ablated in cells lacking GPR119 and in colonic primary cell preparation from GPR119-/- mice. Similarly, Oleoyl-LPI-mediated insulin secretion is impaired in islets isolated from GPR119-/- mice. On the other hand, GLP-1 secretion is not impaired in cells lacking GPR55 in vitro or in colonic primary cell preparation from GPR55-/- mice. We therefore conclude that GPR119 is the Oleoyl-LPI receptor, upstream of ERK1/2 and cAMP/PKA/CREB pathways, where primarily ERK1/2 is required for GLP-1 secretion, while CREB activation appears dispensable.
    Matched MeSH terms: Humans
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links