Displaying publications 121 - 140 of 179 in total

Abstract:
Sort:
  1. Othman N, Raja Sulaiman RN, Rahman HA, Noah NFM, Jusoh N, Idroas M
    Environ Technol, 2019 Apr;40(11):1476-1484.
    PMID: 29300678 DOI: 10.1080/09593330.2018.1424258
    Currently, an extractive green palm oil-based emulsion liquid membrane (ELM) has been used for simultaneous extraction and enrichment of Reactive Red 3BS from simulated synthetic dye wastewater. The ELM consists of two main phases, which are organic liquid membrane (LM) and stripping solution. During the extraction process, the ELM was dispersed into the simulated synthetic dye wastewater containing the Reactive Red 3BS complexes. The organic LM contains tridodecylamine (TDA), Sorbitan Monooleate (Span 80) and palm oil as a carrier, surfactant and diluent, respectively. The sodium bicarbonate (NaHCO3) was used as stripping solution for the enrichment process. Several important parameters that affected the simultaneous extraction and enrichment of Reactive Red 3BS, such as carrier and stripping agent concentrations, extraction time and treat ratio, were investigated. The results showed that almost 90% of Reactive Red 3BS ions were successfully extracted with 10 times enrichment in the stripping phase at the optimum conditions of 0.2 M TDA, 0.1 M NaHCO3, 5 min of extraction time and 1:5 of treat ratio. Hence, it can be concluded that palm oil possesses a high potential as green diluent in future technology, especially in ELM process for the removal and recovery of Reactive Red 3BS from synthetic dye wastewater.
    Matched MeSH terms: Membranes, Artificial*
  2. Pandey RP, Kallem P, Rasheed PA, Mahmoud KA, Banat F, Lau WJ, et al.
    Chemosphere, 2022 Feb;289:133144.
    PMID: 34863730 DOI: 10.1016/j.chemosphere.2021.133144
    An enhanced water flux and anti-fouling nanocomposite ultrafiltration membrane based on quaternary ammoniumpropylated polysilsesquioxane (QAPS)/cellulose acetate (QAPS@CA) was fabricated by in situ sol-gel processing via phase inversion followed by quaternization with methyl iodide (CH3I). Membrane characterizations were performed based on the contact angle, FTIR, SEM, and TGA properties. Membrane separation performance was assessed in terms of pure water flux, rejection, and fouling resistance. The 7%QAPS@CA nanocomposite membrane showed an increased wettability (46.6° water contact angle), water uptake (113%) and a high pure water permeability of ∼370 L m-2 h-1 bar-1. Furthermore, the 7%QAPS@CA nanocomposite membrane exhibited excellent bactericidal properties (∼97.5% growth inhibition) against Escherichia coli (E. coli) compared to the bare CA membrane (0% growth inhibition). The 7%QAPS@CA nanocomposite membrane can be recommended for water treatment and biomedical applications.
    Matched MeSH terms: Membranes, Artificial*
  3. Pang WY, Ahmad AL, Zaulkiflee ND
    J Environ Manage, 2019 Nov 01;249:109358.
    PMID: 31450197 DOI: 10.1016/j.jenvman.2019.109358
    The aim of this study is to evaluate the performance and antifouling properties of polyethersulfone (PES) membrane incorporated with dual nanofiller, zinc oxide (ZnO) and multi-walled carbon nanotube (MWCNT). The synergistic effect of the these nanofillers in PES membrane is studied by blending different ratio of ZnO/MWCNT nanofiller into the PES membrane. The fabricated membranes were characterized in terms of cross-section and surface morphology, surface hydrophilicity, pore size and porosity. The filtration performance of the membranes was tested using 50 mg/L humic acid (HA) solution as model solution. SEM image and gravimetric evaluation reported that the incorporation of both MWCNT and ZnO into the PES membrane improved porosity significantly up to 46.02%. Lower water contact angle of PES membrane incorporated with equal ratio of MWCNT and ZnO (PES 3) revealed that it has neat PES membrane properties and more hydrophilic membrane surface than single filler. PES 3 outperform other membranes with excellent HA permeate flux of 40.00 L/m2.h and rejection of 88.51%. Due to hydrophilic membrane surface, PES 3 membrane demonstrate efficient antifouling properties with lower relative flux reduction (RFR) and higher flux recovery ratio (FRR). PES 3 also showed notable antibacterial properties with less bacterial attached to the membrane compared to neat PES membrane (PES 0).
    Matched MeSH terms: Membranes, Artificial
  4. Peh K, Khan T, Ch'ng H
    J Pharm Pharm Sci, 2000 Sep-Dec;3(3):303-11.
    PMID: 11177648
    To investigate the suitability of chitosan films prepared using two different solvents, acetic acid (Chitosan-AA) and lactic acid (Chitosan-LA), for wound dressing, in comparison with a commercial preparation, Omiderm.
    Matched MeSH terms: Membranes, Artificial
  5. Pendashteh AR, Fakhru'l-Razi A, Chaibakhsh N, Abdullah LC, Madaeni SS, Abidin ZZ
    J Hazard Mater, 2011 Aug 30;192(2):568-75.
    PMID: 21676540 DOI: 10.1016/j.jhazmat.2011.05.052
    A membrane sequencing batch reactor (MSBR) treating hypersaline oily wastewater was modeled by artificial neural network (ANN). The MSBR operated at different total dissolved solids (TDSs) (35,000; 50,000; 100,000; 150,000; 200,000; 250,000mg/L), various organic loading rates (OLRs) (0.281, 0.563, 1.124, 2.248, and 3.372kg COD/(m(3)day)) and cyclic time (12, 24, and 48h). A feed-forward neural network trained by batch back propagation algorithm was employed to model the MSBR. A set of 193 operational data from the wastewater treatment with the MSBR was used to train the network. The training, validating and testing procedures for the effluent COD, total organic carbon (TOC) and oil and grease (O&G) concentrations were successful and a good correlation was observed between the measured and predicted values. The results showed that at OLR of 2.44kg COD/(m(3)day), TDS of 78,000mg/L and reaction time (RT) of 40h, the average removal rate of COD was 98%. In these conditions, the average effluent COD concentration was less than 100mg/L and met the discharge limits.
    Matched MeSH terms: Membranes, Artificial*
  6. Pramanik BK, Kajol A, Suja F, Md Zain S
    Environ Technol, 2017 Mar;38(5):579-587.
    PMID: 27315513 DOI: 10.1080/09593330.2016.1202330
    Biological aerated filter (BAF), sand filtration (SF), alum and Moringa oleifera coagulation were investigated as a pre-treatment for reducing the organic and biofouling potential component of an ultrafiltration (UF) membrane in the treatment of lake water. The carbohydrate content was mainly responsible for reversible fouling of the UF membrane compared to protein or dissolved organic carbon (DOC) content. All pre-treatment could effectively reduce these contents and led to improve the UF filterability. Both BAF and SF markedly led to improvement in flux than coagulation processes, and alum gave greater flux than M. oleifera. This was attributed to the effective removal and/or breakdown of high molecular weight (MW) organics by biofilters. BAF led to greater improvement in flux than SF, due to greater breakdown of high MW organics, and this was also confirmed by the attenuated total reflection-Fourier transform infrared spectroscopy analysis. Coagulation processes were ineffective in removing biofouling potential components, whereas both biofilters were very effective as shown by the reduction of low MW organics, biodegradable dissolved organic carbon and assimilable organic carbon contents. This study demonstrated the potential of biological pre-treatments for reducing organic and biofouling potential component and thus improving flux for the UF of lake water treatment.
    Matched MeSH terms: Membranes, Artificial
  7. Pramanik BK, Pramanik SK, Sarker DC, Suja F
    Environ Technol, 2017 Jun;38(11):1383-1389.
    PMID: 27587007 DOI: 10.1080/09593330.2016.1228701
    The effects of ozonation, anion exchange resin (AER) and UV/H2O2 were investigated as a pre-treatment to control organic fouling (OF) of ultrafiltration membrane in the treatment of drinking water. It was found that high molecular weight (MW) organics such as protein and polysaccharide substances were majorly responsible for reversible fouling which contributed to 90% of total fouling. The decline rate increased with successive filtration cycles due to deposition of protein content over time. All pre-treatment could reduce the foulants of a Ultrafiltration membrane which contributed to the improvement in flux, and there was a greater improvement of flux by UV/H2O2 (61%) than ozonation (43%) which in turn was greater than AER (23%) treatment. This was likely due to the effective removal/breakdown of high MW organic content. AER gave greater removal of biofouling potential components (such as biodegradable dissolved organic carbon and assimilable organic carbon contents) compared to UV/H2O2 and ozonation treatment. Overall, this study demonstrated the potential of pre-treatments for reducing OF of ultrafiltration for the treatment of drinking water.
    Matched MeSH terms: Membranes, Artificial
  8. Qadir D, Nasir R, Mukhtar HB, Keong LK
    Water Environ Res, 2020 Sep;92(9):1306-1324.
    PMID: 32170974 DOI: 10.1002/wer.1326
    The asymmetric polyethersulfone (PES-15 wt.%) mixed-matrix membranes were prepared by incorporation of carbon molecular sieve (CMS) with varying concentrations (1, 3, and 5 wt.%). Physicochemical characterization of synthesized membranes was carried out using field emission scanning electron microscope, atomic force microscopy, contact angle, thermogravimetric analysis, zeta potential analyzer, porosity, and mean pore sizes. Performance analysis of synthesized mixed-matrix membranes was carried out by varying the operating parameters such as pressure (2-10 bar), feed concentration (100-1,000 mg/L), and cations type (Na+ , Ca2+ , Mg2+ , and Sn2+ ). Effect of operating parameters and CMS concentration was investigated on pure water flux (PWF), permeate flux, and rejection of membranes. It was found that mixed-matrix membrane containing 15 wt.% PES with 1 wt.% CMS displayed the superior physicochemical characteristics in terms of hydrophilicity (37.9°), surface charge (-13.8 mV), mean pore diameter (6.04 nm), and thermal properties (Tg  = 218.5°C), and overall performance. E5C1 membrane showed 1.5 times higher PWF (75.5 L m-2  hr-1 ) and incremented in rejection for all salts than the nascent membrane. PRACTITIONER POINTS: Carbon molecular sieve-embedded mixed-matrix membranes were synthesized by phase inversion method. The resultant membranes experienced improved hydrophilicity, roughness, surface charge, porosity, and mean pore diameter with 1 wt.% CMS loading. The pure water flux was improved from 55.77 to 75.05 L m-2  hr-1 when 1 wt.% CMS was added in pure PES. The observed rejection of a mixed-matrix membrane with 1 wt.% CMS was the maximum for all salts.
    Matched MeSH terms: Membranes, Artificial*
  9. Qadir D, Idris A, Nasir R, Abdul Mannan H, Sharif R, Mukhtar H
    Chemosphere, 2023 Jan;311(Pt 1):136987.
    PMID: 36306961 DOI: 10.1016/j.chemosphere.2022.136987
    This study explains the modeling of synthesized membranes using the Donnan Steric Pore model (DSPM) based on the Extended Nernst Planck Equation (ENP). Conventionally, structural parameters required to predict the performance of the membranes were determined through tedious experimentation, which in this study are found using a new MATLAB technique. A MATLAB program is used to determine the unknown structural parameters such as effective charge density (Xd), effective pore radius (rp), and effective membrane thickness to porosity ratio (Δx/Ak) by using the single solute rejection and permeation data. It was found that the model predicted the rejection of studied membranes accurately, with the E5C1 membrane exceeding the others (E5, E5C5) for rejection of single and divalent salt's aqueous solutions. The rejection of 100 ppm aqueous solution of NaCl for E5C1 was around 60%, whereas, for an aqueous solution of 100 ppm, CaCl2 rejection reached up to 80% at 10 bar feed pressure. The trend of salt rejection for all three membranes was found to be in the following order: E5C1 > E5C5 > E5, confirming that their structural parameters-controlled ion transport in these membranes. The structural parameters, such as effective pore radius, effective membrane thickness to porosity ratio, and effective charge density for the best performing membrane, i.e., E5C1, were determined to be 0.5 nm, 16 μm, and -6.04 mol/m3,respectively. Finally, it can be asserted that this method can be used to predict the real performance of membranes by significantly reducing the number of experiments previously required for the predictive modeling of nanofiltration-type membranes.
    Matched MeSH terms: Membranes, Artificial*
  10. Rahmawati R, Bilad MR, Laziz AM, Nordin NAHM, Jusoh N, Putra ZA, et al.
    J Environ Manage, 2019 Nov 01;249:109359.
    PMID: 31404857 DOI: 10.1016/j.jenvman.2019.109359
    Membrane based technologies are highly reliable for water and wastewater treatment, including for removal of total oil and grease from produced water. However, performances of the pressure driven processes are highly restricted by membrane fouling and the application of traditional air bubbling system is limited by their low shear stress due to poor contacts with the membrane surface. This study develops and assesses a novel finned spacer, placed in between vertical panel, for membrane fouling control in submerged plate-and-frame module system for real produced water filtration. Results show that permeability of the panel is enhanced by 87% from 201 to 381 L/(m2 h bar). The spacer system can be operated in switching mode to accommodate two-sided panel aeration. This leads to panel permeability increment by 22% higher than the conventional vertical system. The mechanisms of finned spacer in encouraging the flow trajectory was proven by visual observation and flow simulation. The fins alter the air bubbles flow trajectory toward the membrane surface to effectively scour-off the foulant. Overall results demonstrate the efficacy of the developed spacer in projecting the air bubble trajectory toward the membrane surface and thus significantly enhances membrane panel productivity.
    Matched MeSH terms: Membranes, Artificial
  11. Rajaratanam DD, Ariffin H, Hassan MA, Nik Abd Rahman NMA, Nishida H
    PLoS One, 2018;13(6):e0199742.
    PMID: 29944726 DOI: 10.1371/journal.pone.0199742
    In order to clarify the in vitro cytotoxicity effect of superheated steam (SHS) treated poly((R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate) (PHBHHx) for biomaterial applications, SHS-treated PHBHHx oligoester samples: P(HB-co-6%-HHx) and P(HB-co-11%-HHx) with low and high percentages of unsaturated chain ends were evaluated for their cytotoxicity effects toward the growth of mouse fibroblast cell line NIH 3T3. From the results obtained after 24 and 48 h of the growth test, the SHS-treated PHBHHx oligoesters were found to be nontoxic to the growth of mouse fibroblast NIH 3T3 cell line with cell viability percentages of more than 95%. In order to serve as a potential resorbable medical suture, PHBHHx oligoesters were blended with poly(L-lactic acid) (PLLA) with a weight ratio of PHBHHx oligoester/PLLA = 20:80 (wt/wt) to improve mechanical properties of PHBHHx oligoesters. The PHBHHx oligoesters/PLLA blend films were evaluated for their thermal, mechanical, and surface wetting properties. Thermal properties of the blend films suggested a good compatibility between PHBHHx oligoesters and PLLA components. Mechanical properties of the blend films were determined to be close enough to a desirable strength range of medical sutures. Moreover, contact angle range of 65 < θ < 70° for the blend samples could provide desirable cell adhesion when used as biomaterials. Therefore, the blend of SHS-treated PHBHHx oligoesters and PLLA would be an ideal choice to be used as biomedical materials.
    Matched MeSH terms: Membranes, Artificial*
  12. Ramli MR, Sulaiman NM, Mohd MA, Rabuni MF
    Water Sci Technol, 2015;72(9):1611-20.
    PMID: 26524453 DOI: 10.2166/wst.2015.367
    The effectiveness of combined nanofiltration and disinfection processes was studied by comparing the pre-disinfection and post-disinfection when in combination with nanofiltration. Four types of sulfonamide (sulfanilamide, sulfadiazine, sulfamethoxazole, and sulfadimethoxine) were chosen as substrates, with sodium hypochlorite as a disinfectant. A laboratory-scale nanofiltration system was used to conduct the following sets of experiment: (1) a pre-chlorination system, where the free active chlorine (FAC) was added to the membrane influent; and (2), a post-chlorination system, where the FAC was added to the membrane effluent. Overall, the pre-disinfection nanofiltration system showed higher sulfonamide removal efficiency compared to the post-chlorination nanofiltration system (>99.5% versus >89.5%). In the case of limited FAC ([FAC]0: [sulfonamide]0≤1), the removal efficiency for the post-chlorination nanofiltration system was higher, due to the prior nanofiltration process that could remove 12.5% to 80% of sulfonamide. The flux of the treated feed system was considerably higher than in the untreated feed system; however, the membrane was observed to be slightly damaged due to residual chlorine attack.
    Matched MeSH terms: Membranes, Artificial
  13. Razak AR, Ujang Z, Ozaki H
    Water Sci Technol, 2007;56(8):161-8.
    PMID: 17978444
    Endocrine disrupting chemicals (EDCs) are the focus of current environmental issues, as they can cause adverse health effects to animals and human, subsequent to endocrine function. The objective of this study was to remove a specific compound of EDCs (i.e. pentachlorophenol, C(6)OCL(5)Na, molecular weight of 288 g/mol) using low pressure reverse osmosis membrane (LPROM). A cross flow module of LPROM was used to observe the effects of operating parameters, i.e. pH, operating pressure and temperature. The design of the experiment was based on MINITAB(TM) software, and the analysis of results was conducted by factorial analysis. It was found that the rejection of pentachlorophenol was higher than 80% at a recovery rate of 60 to 70%. The rejection was subjected to increase with the increase of pH. The flux was observed to be increased with the increase of operating pressure and temperature. This study also investigated the interaction effects between operating parameters involved.
    Matched MeSH terms: Membranes, Artificial*
  14. Rezayi M, Karazhian R, Abdollahi Y, Narimani L, Sany SB, Ahmadzadeh S, et al.
    Sci Rep, 2014;4:4664.
    PMID: 24722576 DOI: 10.1038/srep04664
    The introduction of low detection limit ion selective electrodes (ISEs) may well pave the way for the determination of trace targets of cationic compounds. This research focuses on the detection of titanium (III) cation using a new PVC-membrane sensor based on synthesized tris(2pyridyl) methylamine (tpm) ionophore. The application and validation of the proposed sensor was done using potentiometric titration, inductively coupled plasma atomic emission spectrometry (ICP-AES), and atomic absorption spectrometry (AAS). The membrane sensor exhibited a Nernstian response to the titanium (III) cation over a concentration range of 1.0 × 10(-6)-1.0 × 10(-2) M and pH range from 1-2.5. The Nernstian slope, the lower of detection (LOD), and the response time (t95%) of the proposed sensor were 29.17 ± 0.24 mV/dec, 7.9 × 10-7 M, and 20 s, respectively. The direct determination of 4-39 μg/ml of titanium (III) standard solution showed an average recovery of 94.60 and a mean relative standard deviation of 1.8 at 100.0 μg/ml. Finally, the utilization of the electrodes as end-point indicators for potentiometric titration with EDTA solutions for titanium (III) sensor was successfully carried out.
    Matched MeSH terms: Membranes, Artificial
  15. Rosman N, Salleh WNW, Mohamed MA, Jaafar J, Ismail AF, Harun Z
    J Colloid Interface Sci, 2018 Dec 15;532:236-260.
    PMID: 30092507 DOI: 10.1016/j.jcis.2018.07.118
    Reports of pharmaceuticals exist in surface water and drinking water around the world, indicate they are ineffectively remove from water and wastewater using conventional treatment technologies. The potential of adverse effect of these pharmaceuticals on public health and aquatic life, also their continuos accumulation have raised the development of water treatment technologies. Hybrid treatment processes like membrane filtration and advance oxidation processes (AOPs) are likely to give rise to efficient simultaneous degradation and separation mechanisms. Conventional membrane filtration techniques can remove the majority of contaminants, but the smallest, undegraded, and stabilized pharmaceutical wastes persist in the treated water. After some 20 years, researchers have recognized the important role of AOPs in the treatment of pharmaceutical wastewater because these technologies are capable of oxidizing recalcitrant, toxic, and non-biodigradable compounds into numerous by-products and finally, inert end-products via the intermediacy of hydroxyl and other radicals. Evidently, membranes are subjected to the fouling phenomenon by the contaminants in wastewater, hence resulting in a reduction of clean water flux and increase in energy demand. In such situations, these membrane hybrid AOPs exert a complementary effect in the elimination of membrane fouling, thus enhancing the performance of the membrane. Therefore, in this review, we describe the basic aspects of the removal and transformation of certain pharmaceuticals via membranes and AOPs. In addition, information and evidences on membrane hybrid AOPs in the field of pharmaceutical wastewater treatment is also presented.
    Matched MeSH terms: Membranes, Artificial*
  16. S E, G A, A F I, P S G, Y LT
    Environ Res, 2021 06;197:111177.
    PMID: 33864792 DOI: 10.1016/j.envres.2021.111177
    Membrane technology, especially nanofiltration (NF) has great attention to provide an imperative solution for water issues. The membrane is considered to be the heart in the separation plant. Understanding the membrane characteristics could allow predicting and optimizing the membrane performance namely flux, rejection and reduced fouling. The membrane development using biomaterials and nanomaterials provides a remarkable opportunity in the water application. This review focuses on the membrane characteristics of biomaterials and nanomaterials based nanofiltration. In this review, recent researches based on biomaterials and nanomaterials loaded membrane for salt rejection have been analyzed. Membrane fouling depends on the membrane characteristics and this review defined fouling as a ubiquitous bottleneck challenge that hampers the NF blooming applications. Fouling mitigation strategies via membrane modification using biomaterial (chitosan, curcumin and vanillin) and various other nanomaterials are critically reviewed. This review also highlights the membrane cleaning and focuses on concentrates disposal methods with zero liquid discharge system for resource recovery. Finally, the conclusion and future prospects of membrane technology are discussed. From this current review, it is apparent that the biomaterial and various other nanomaterials acquire exclusive properties that facilitate membrane advancement with improved capability for water treatment. Regardless of membrane material developments, still exist considerable difficulties in membrane commercialization. Thus, additional studies related to this field are needed to produce membranes with better performance for large‒scale applications.
    Matched MeSH terms: Membranes, Artificial
  17. Saad B, Bee-Leng Y, Saleh MI, Rahman IA, Mansor SM
    J AOAC Int, 2001 8 15;84(4):1151-7.
    PMID: 11501917
    Potentiometric response characteristics were evaluated for quinine selective sensors based on a lipophilic ion-exchanger potassium tetrakis[3,5-bis(trifluoromethylphenyl)]borate (PTFB) immobilized together with plasticizing solvents in polyvinyl chloride membranes. The use of dioctyl phthalate (DOP), 2-nitrophenyl phenyl ether (NPPE), and bis(2-ethylhexyl)adipate (BEHA) plasticizers produced good quality quinine sensors that were sensitive and fast responding, and exhibited near Nernstian responses when used as batch-sensors. These membranes were further tested in a wall-jet flow-through potentiometric flow injection analysis (FIA) detector. Quinine sensors containing BEHA were the most suitable membrane, with no noticeable differences in sensitivity even after 5 h of continuous exposure to solutions. Interference by foreign species such as alkali, alkaline earth metal ions, sugars, and sodium benzoate was minimal in either the batch-mode (log selectivity coefficients
    Matched MeSH terms: Membranes, Artificial
  18. Saarani NN, Jamuna-Thevi K, Shahab N, Hermawan H, Saidin S
    Dent Mater J, 2017 May 31;36(3):260-265.
    PMID: 28111388 DOI: 10.4012/dmj.2016-177
    A guided bone regeneration (GBR) membrane has been extensively used in the repair and regeneration of damaged periodontal tissues. One of the main challenges of GBR restoration is bacterial colonization on the membrane, constitutes to premature membrane degradation. Therefore, the purpose of this study was to investigate the antibacterial efficacy of triple-layered GBR membrane composed of poly(lactic-co-glycolic acid) (PLGA), nanoapatite (NAp) and lauric acid (LA) with two types of Gram-negative periodontal bacteria, Fusobacterium nucleatum and Porphyromonas gingivalis through a disc diffusion and bacterial count tests. The membranes exhibited a pattern of growth inhibition and killing effect against both bacteria. The increase in LA concentration tended to increase the bactericidal activities which indicated by higher diameter of inhibition zone and higher antibacterial percentage. It is shown that the incorporation of LA into the GBR membrane has retarded the growth and proliferation of Gram-negative periodontal bacteria for the treatment of periodontal disease.
    Matched MeSH terms: Membranes, Artificial
  19. Sairi M, Arrigan DW
    Talanta, 2015 Jan;132:205-14.
    PMID: 25476299 DOI: 10.1016/j.talanta.2014.08.060
    The behaviour of protonated ractopamine (RacH(+)) at an array of micro-interfaces between two immiscible electrolyte solutions (micro-ITIES) was investigated via cyclic voltammetry (CV) and linear sweep stripping voltammetry (LSSV). The micro-ITIES array was formed at silicon membranes containing 30 pores of radius 11.09±0.12 µm and pore centre-to-centre separation of 18.4±2.1 times the pore radius. CV shows that RacH(+) transferred across the water |1,6-dichlorohexane µITIES array at a very positive applied potential, close to the upper limit of the potential window. Nevertheless, CV was used in the estimation of some of the drug's thermodynamic parameters, such as the formal transfer potential and the Gibbs transfer energy. LSSV was implemented by pre-concentration of the drug, into the organic phase, followed by voltammetric detection, based on the back-transfer of RacH(+) from the organic to aqueous phase. Under optimised pre-concentration and detection conditions, a limit of detection of 0.1 µM was achieved. In addition, the impact of substances such as sugar, ascorbic acid, metal ions, amino acid and urea on RacH(+) detection was assessed. The detection of RacH(+) in artificial serum indicated that the presence of serum protein interferes in the detection signal, so that sample deproteinisation is required for feasible bioanalytical applications.
    Matched MeSH terms: Membranes, Artificial
  20. Sajjad Z, Gilani MA, Nizami AS, Bilad MR, Khan AL
    J Environ Manage, 2019 Dec 01;251:109618.
    PMID: 31563603 DOI: 10.1016/j.jenvman.2019.109618
    This paper aims to develop novel hydrophilic ionic liquid membranes using pervaporation for the recovery of biobutanol. Multiple polyvinyl alcohol (PVA) membranes based on three commercial ionic liquids with different loading were prepared for various experimental trials. The ionic liquids selected for the study include tributyl (tetradecyl) phosphonium chloride ([TBTDP][Cl]), tetrabutyl phosphonium bromide ([TBP][Br]) and tributyl methyl phosphonium methylsulphate ([TBMP][MS]). The synthesized membranes were characterized and tested in a custom-built pervaporation set-up. All ionic liquid membranes showed better results with total flux of 1.58 kg/m2h, 1.43 kg/m2h, 1.38 kg/m2h at 30% loading of [TBP][Br], [TBMP][MS] and [TBTDP][Cl] respectively. The comparison of ionic liquid membranes revealed that by incorporating [TBMP]MS to PVA matrix resulted in a maximum separation factor of 147 at 30 wt% loading combined with a relatively higher total flux of 1.43 kg/m2h. Density functional theory (DFT) calculations were also carried out to evaluate the experimental observations along with theoretical studies. The improved permeation properties make these phosphonium based ionic liquid a promising additive in PVA matrix for butanol-water separation under varying temperature conditions.
    Matched MeSH terms: Membranes, Artificial
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links