Displaying publications 121 - 140 of 142 in total

Abstract:
Sort:
  1. Oslan SNH, Halim M, Ramle NA, Saad MZ, Tan JS, Kapri MR, et al.
    Cryobiology, 2017 12;79:1-8.
    PMID: 29037980 DOI: 10.1016/j.cryobiol.2017.10.004
    The efficacy of attenuated strain of gdhA derivative Pasteurella multocida B:2 mutant as a live vaccine to control haemorrhagic septicaemia (HS) disease in cattle and buffaloes has been demonstrated. In order to use P. multocida B:2 mutant as a commercial product, it is essential to optimise its formulation for high viability and stability of the live cells. The effectiveness of freeze-drying process using different protective agent formulations for improving cells viability was explored. Sugar and nitrogen compounds were used as protective agents in freeze-drying and the capability of these compounds in maintaining the viability of mutant P. multocida B:2 during subsequent storage was investigated. A complete loss in viability of freeze-dried mutant P. multocida B:2 was monthly observed until 6-12 months of storage at -30 °C, 4 °C and 27 °C when nitrogen compound or no protective agent was added. Trehalose and sucrose showed significantly high survival rate of 93-95% immediately after freeze-drying and the viability was retained during the subsequent storage at -30 °C and 4 °C. A smooth cell surface without any cell-wall damage was observed for the cells formulated with trehalose under scanning electron micrograph. This study presented a freeze-drying process generating a dried live attenuated vaccine formulation with high stability for commercial applications.
    Matched MeSH terms: Sucrose/metabolism*
  2. Chan WK, Tan AT, Vethakkan SR, Tah PC, Vijayananthan A, Goh KL
    Asia Pac J Clin Nutr, 2015;24(2):289-98.
    PMID: 26078246 DOI: 10.6133/apjcn.2015.24.2.15
    To study the dietary intake and level of physical activity (PA) of patients with diabetes mellitus and the association with non-alcoholic fatty liver disease (NAFLD).
    Matched MeSH terms: Dietary Sucrose/administration & dosage
  3. Ooi SX, Lee PL, Law HY, Say YH
    Asia Pac J Clin Nutr, 2010;19(4):491-8.
    PMID: 21147709
    Recently, the bitter receptor gene (TAS2R38) was identified to be responsible for phenylthiocarbamide (PTC) bitter sensitivity. Its two predominant haplotypes at three Single Nucleotide Polymorphisms (SNPs) are found to be definitive for the PTC status, which the ProAlaVal and AlaValIle haplotypes are associated with tasters and non-tasters, respectively. TAS2R38 haplotypes have been reported to influence food preferences (like cruciferous vegetables and fat foods) and cardiovascular disease risk factors. We examined, in 215 Malaysian subjects (100 males, 115 females), the association of the P49A SNP of TAS2R38 with anthropometric measurements and aversion to a list of 36 vegetables, 4 soy products, green tea and 37 sweet/fat foods. The subjects were successfully genotyped as 110 PA, 81 PP and 24 AA (with the A49 allelic frequency of 0.37), by Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP). Ethnicity (Malay, Chinese or Indian), but not gender, was associated with the P49A TAS2R38 genotypes (p<0.001). However, no significant differences in terms of Body Mass Index, Total Body Fat, waist circumference and Waist-Hip Ratio were found between the genotypes (p<0.05). Only aversions to green tea, mayonnaise and whipped cream, but not soy products, vegetables, and other sweet/fat foods, were associated with the P49A genotypes (p<0.05). Therefore, the P49A SNP of the bitter receptor gene TAS2R38 could not serve as a predictor of anthropometric measurements and aversion to vegetables or sweet/fat foods in the sampled Malaysian subjects, and this suggests the existence of other possible factors influencing food selection among Malaysians.
    Matched MeSH terms: Dietary Sucrose*
  4. Kumar J, Hapidin H, Get Bee YT, Ismail Z
    Alcohol, 2016 Feb;50:9-17.
    PMID: 26626323 DOI: 10.1016/j.alcohol.2015.10.001
    Withdrawal from long-term ethanol consumption results in overexcitation of glutamatergic neurotransmission in the amygdala, which induces an anxiety-like syndrome. Most alcoholics that suffer from such symptoms frequently depend on habitual drinking as self-medication to alleviate their symptoms. Metabotropic glutamate receptor subtype 5 (mGlu5) and protein kinase C (PKC) epsilon have been reported to mediate acute and chronic effects of ethanol. This study explores the changes in mGlu5 and PKC epsilon in the amygdala following acute administration of ethanol during ethanol withdrawal (EW) induced anxiety. Male Wistar rats were fed a modified liquid diet containing low-fat cow milk, sucrose, and maltodextrin, with a gradual introduction of 2.4%, 4.8% and 7.2% ethanol for 20 days. Six hours into EW, the rats were intraperitoneally injected with normal saline and ethanol (2.5 g/kg, 20% v/v), and exposed to open-field and elevated plus maze tests. Then, amygdala tissue was dissected from the rat brain for Western blot and gene expression studies. EW-induced anxiety was accompanied by a significant increase in mGlu5, total PKC epsilon, and phosphorylated PKC epsilon protein levels, and also of mRNA of mGlu5 (GRM5) in the amygdala. Acute administration of ethanol significantly attenuated EW-induced anxiety as well as an EW-induced increase in GRM5. The acute challenge of ethanol to EW rats had little effect on the phosphorylated and total protein levels of PKC epsilon in the amygdala. Our results demonstrate that amygdala PKC epsilon may not be directly involved in the development of anxiety following EW.
    Matched MeSH terms: Sucrose
  5. Khoramnia A, Abdullah N, Liew SL, Sieo CC, Ramasamy K, Ho YW
    Anim Sci J, 2011 Feb;82(1):127-35.
    PMID: 21269371 DOI: 10.1111/j.1740-0929.2010.00804.x
    A rotatable central composite design (CCD) was used to study the effect of cryoprotectants (skim milk, sucrose and lactose) on the survival rate of a probiotic Lactobacillus strain, L. reuteri C10, for poultry, during freeze-drying and storage. Using response surface methodology, a quadratic polynomial equation was obtained for response value by multiple regression analyses: Y = 8.59546-0.01038 X(1)-0.09382 X(2)-0.07771 X(3)-0.054861 X(1)(2)-0.04603 X(3)(2)-0.10938 X(1)X(2). Based on the model predicted, sucrose exerted the strongest effect on the survival rate. At various combinations of cryoprotectants, the viability loss of the cells after freeze-drying was reduced from 1.65 log colony forming units (CFU)/mL to 0.26-0.66 log CFU/mL. The estimated optimum combination for enhancing the survival rate of L. reuteri C10 was 19.5% skim milk, 1% sucrose and 9% lactose. Verification experiments confirmed the validity of the predicted model. The storage life of freeze-dried L. reuteri C10 was markedly improved when cryoprotectants were used. At optimum combination of the cryoprotectants, the survival rates of freeze-dried L. reuteri C10 stored at 4°C and 30°C for 6 months were 96.4% and 73.8%, respectively. Total viability loss of cells which were not protected by cryoprotectants occurred after 12 and 8 weeks of storage at 4°C and 30°C, respectively.
    Matched MeSH terms: Sucrose
  6. Joon Tam Y, Mohd Lila MA, Bahaman AR
    Trop Biomed, 2004 Dec;21(2):121-34.
    PMID: 16493404
    Pseudorabies (Aujeszky's disease) is an economically significant disease of swine known to cause central nervous disorders, respiratory disease, reproductive failure and mortality in infected pigs. In attempts to eradicate the disease from becoming endemic, early detection is important to prevent further economic losses and to allow for detection and removal of infected pigs in domestic herds. Thus, a rapid and sensitive technique is necessary for the detection of the virus. For rapid and simple examination, an immuno - chromatographic lateral - flow assay system based on immunologic recognition of specific pseudorabies virus antigen was developed by utilising, as signal generator, colloidal gold conjugated to secondary antibody to detect primary or sample antibody in the sera of pseudorabies infected animals. The pseudorabies virus used as a capture antigen in the test strip was first cultivated in VERO cell culture and then purified by sucrose gradient separation to produce the viral protein concentration of 3.8 mg/ml. The standard pseudorabies antigens reacted well with the hyperimmune serum (HIS). The antibody detection system is basically composed of colloidal gold - labelled antibodies fixed on a conjugate pad, and the complementary pseudorabies antigen immobilised onto a nitrocellulose membrane forming capture zone. If the target antibody is present in a specimen, the colloidal gold-labelled antibody will form a complex with the antibody sample. Subsequently, the formed complex will migrate to the capture zone and is then bound to the solid phase via antigen - antibody interaction. As a result, a signal marker is generated by the accumulation of colloidal gold for detection confirmation. The results obtained demonstrated that the optimum combination of pseudorabies antigen needed as the capture reagent and gold conjugate as secondary antibody recognition marker was at a concentration of 0.38mg/ml and at 1:10 dilution factor respectively. The sensitivity of the solid - based test strip towards pseudorabies antibodies was high with a detection limit of 1 to 10,000 - dilution factor. The specificity of the assay was 100% with no cross - reaction being observed with other sera or antibodies. Accurate reading time needed for confirmation of the assay can be completed in 5 min with a whole blood sample of 25 microl. The colloidal gold - labelled antibody is stable at room temperature for 6 months or more (data not shown). Findings from this study indicated that the solid - based test strip assay system provided high sensitivity and specificity for the detection of pseudorabies at low levels of antibody concentration. The assay was rapid, simple, cheap, and does not require any sophisticated equipment. Thus, the solid based test strip will be a useful serological screening technique or for rapid diagnosis of an infectious disease in target populations of animals characterised by heterogeneous antibody responses.
    Matched MeSH terms: Sucrose
  7. Mahmud, I.A., Mirghani, M.E.S., Alkhatib, M.F.R., Yusof, F., Shahabuddin, M., Rashidi, O., et al.
    MyJurnal
    Phoenix dactylifera L (Date palm) is one of the oldest known fruit crops in the world, and
    the consumption of date fruits is no longer restricted to the Middle Eastern countries. Date
    palm kernels are waste products of date fruit industry which are normally being discarded.
    Based on their dietary fiber content; date palm kernels (DPK) have been proposed to be used
    as fiber-based food supplement, caffeine free coffee alternative and animal feed ingredient.
    Hence, utilization of such waste is highly desirable for the date industry. To accommodate these
    benefits, and subsequent to some uses associated with DPK, this study sought to investigate the
    biochemical and nutritional values of the Barhi date palm kernels (BDPK) grown in Iraq. The
    results show that BDPK is an excellent source of dietary fiber (66.24 g/100g). Glutamic acid
    was found to be the predominant amino acid, (0.674 g/100g), followed by Arginine and aspartic
    acid (0.437 g/100g and 0.320 g/100g, respectively). Potassium was the most occurring mineral
    in BDPK (2.39 g/kg), and the main sugars were sucrose and fructose (0.548 g/100g and 0.249
    g/100g, respectively). Gas-liquid chromatography revealed that the main unsaturated fatty acid
    (USFA) was oleic acid (40.927 mg/100g), while the main saturated fatty acid (SFA) were lauric
    acid (20.270 mg/100g) and myristic acid (12.288 mg/100g). Furthermore, the BDPK depicted
    considerable concentrations of vitamins, in which vitamin B5 (40.4 mg/100g) showed the
    highest value. The results obtained indicate a strong potential for BDPK to be used in human
    nutrition, cosmetics, and pharmaceutical applications and may provide an important economic
    advantage through increasing the utilization of BDKP while also additive value will be added
    to the residue.
    Matched MeSH terms: Sucrose
  8. Ahmad SY, Friel JK, MacKay DS
    PMID: 31697573 DOI: 10.1139/apnm-2019-0359
    BACKGROUND: This study aims to determine the effect of pure forms of sucralose and aspartame, in doses reflective of common consumption, on glucose metabolism.

    METHODS: Healthy participants consumed pure forms of a non-nutritive sweetener (NNS) mixed with water that were standardized to doses of 14% (0.425 g) of the acceptable daily intake (ADI) for aspartame and 20% (0.136 g) of the ADI for sucralose every day for two weeks. Blood samples were collected and analysed for glucose, insulin, active glucagon-like peptide-1 (GLP-1), and leptin.

    RESULTS: Seventeen participants (10 females and 7 males; age 24 ± 6.8 years; BMI 22.9 ± 2.5 kg/m2) participated in the study. The total area under the curve (AUC) values of glucose, insulin, active GLP-1 and leptin were similar for the aspartame and sucralose treatment groups compared to the baseline values in healthy participants. There was no change in insulin sensitivity after NNS treatment compared to the baseline values.

    CONCLUSIONS: These findings suggest that daily repeated consumption of pure sucralose or aspartame for 2 weeks had no effect on glucose metabolism among normoglycaemic adults. However, these results need to be tested in studies with longer durations. Novelty: • Daily consumption of pure aspartame or sucralose for 2 weeks had no effect on glucose metabolism. • Daily consumption of pure aspartame or sucralose for 2 weeks had no effect on insulin sensitivity among healthy adults.

    Matched MeSH terms: Sucrose
  9. Zainal-Abidin MH, Hayyan M, Ngoh GC, Wong WF
    ACS Omega, 2020 Jan 28;5(3):1656-1668.
    PMID: 32010840 DOI: 10.1021/acsomega.9b03709
    The application of graphene in the field of drug delivery has attracted massive interest among researchers. However, the high toxicity of graphene has been a drawback for its use in drug delivery. Therefore, to enhance the biocompatibility of graphene, a new route was developed using ternary natural deep eutectic solvents (DESs) as functionalizing agents, which have the capability to incorporate various functional groups and surface modifications. Physicochemical characterization analyses, including field emission scanning electron microscope, fourier-transform infrared spectroscopy, Raman spectroscopy, Brunauer-Emmett-Teller, X-ray diffraction, and energy dispersive X-ray, were used to verify the surface modifications introduced by the functionalization process. Doxorubicin was loaded onto the DES-functionalized graphene. The results exhibited significantly improved drug entrapment efficiency (EE) and drug loading capacity (DLC) compared with pristine graphene and oxidized graphene. Compared with unfunctionalized graphene, functionalization with DES choline chloride (ChCl):sucrose:water (4:1:4) resulted in the highest drug loading capacity (EE of 51.84% and DLC of 25.92%) followed by DES ChCl:glycerol:water (1:2:1) (EE of 51.04% and DLC of 25.52%). Following doxorubicin loading, graphene damaged human breast cancer cell line (MCF-7) through the generation of intracellular reactive oxygen species (>95%) and cell cycle disruption by increase in the cell population at S phase and G2/M phase. Thus, DESs represent promising green functionalizing agents for nanodrug carriers. To the best of our knowledge, this is the first time that DES-functionalized graphene has been used as a nanocarrier for doxorubicin, illustrating the potential application of DESs as functionalizing agents in drug delivery systems.
    Matched MeSH terms: Sucrose
  10. Se KW, Ghoshal SK, Wahab RA, Ibrahim RKR, Lani MN
    Food Res Int, 2018 03;105:453-460.
    PMID: 29433236 DOI: 10.1016/j.foodres.2017.11.012
    In this study, we propose an easy approach by combining the Fourier transform infrared and attenuated total reflectance (FTIR-ATR) spectroscopy together with chemometrics analysis for rapid detection and accurate quantification of five adulterants such as fructose, glucose, sucrose, corn syrup and cane sugar in stingless bees (Heterotrigona itama) honey harvested in Malaysia. Adulterants were classified using principal component analysis and soft independent modeling class analogy, where the first derivative of the spectra in the wavenumber range of 1180-750cm-1 was utilized. The protocol could satisfactorily discriminate the stingless bees honey samples that were adulterated with the concentrations of corn syrup above 8% (w/w) and cane sugar over 2% (w/w). Feasibility of integrating FTIR-ATR with chemometrics for precise quantification of the five adulterants was affirmed using partial least square regression (PLSR) analysis. The study found that optimal PLSR analysis achieved standard error of calibrations and standard error of predictions within an acceptable range of 0.686-1.087% and 0.581-1.489%, respectively, indicating good predictive capability. Hence, the method developed here for detecting and quantifying adulteration in H. itama honey samples is accurate and rapid, requiring only 7-8min to complete as compared to 3h for the standard method, AOAC method 998.12.
    Matched MeSH terms: Sucrose
  11. Mukhtar H, Suliman SM, Shabbir A, Mumtaz MW, Rashid U, Rahimuddin SA
    Protein Pept Lett, 2018;25(2):195-201.
    PMID: 29359654 DOI: 10.2174/0929866525666180122112805
    BACKGROUND: Lipid-producing microorganisms, said to be oleaginous have been recognized since several years. We had investigated the effects of medium components and culturing situations on cell growth and lipid accumulation of oleaginous yeasts which were analytically examined so as to enhance lipid yield for biodiesel production.

    OBJECTIVE: The main objective of this study was to explore oleaginous yeast, Yarrowia lipolytica isolated from soil and optimization of culture conditions and medium components to obtained better quality microbial oil for biodiesel production.

    METHODS: Fifty yeast strains were isolated from soil from different regions of Lahore and eleven of them were selected for oil production. The isolated yeast colonies were screened to further check their lipid producing capabilities by the qualitative analysis. Five yeast strains were designated as oleaginous because they produced more than 16% of oil based on their biomass. To estimate the total lipid content of yeast cells, the extraction of lipids was done by performing the procedure proposed by Bligh and Dyer. The transesterification of yeast oils was performed by using different methods. There were three different strategies customized to transesterifying microbial oil using base catalyzed transesterification, acid catalyzed transesterification and enzyme-based transesterification. After completion of transesterification, sample was used for fatty acid methyl esters (FAMEs) were analyzed by gas-chromatograph with ionization detector type MS.

    RESULTS: The isolate IIB-10 identified as Yarrowia lipolytica produced maximum amount of lipids i.e. 22.8%. More amount of biomass was obtained when cane molasses was utilized as carbon source where it produced 29.4 g/L of biomass while sucrose and lactose were not utilized by IIB-10 and no biomass was obtained. Similarly, meat extracts showed best results when it was used as nitrogen source because it resulted in 35.8 g/L biomass of Yarrowia lipolytica IIB-10. The culturing conditions like size of inoculum, effect of pH and time of incubation were also studied. The 10% of inoculum size produced 25.4 g/L biomass at 120 h incubation time, while the pH 7 was the optimum pH at which 24.8 g/L biomass was produced by Yarrowia lipolytica IIB-10. GC-MS analysis showed that biodiesel produced by transesterification contained similar fatty acids as found in vegetable oil for this reason it is widely accepted feedstock for biodiesel production.

    CONCLUSION: The analysis of fatty acids methyl esters showed the similar composition of microbial oil as in vegetable oils and high amount of methyl esters were obtained after transesterification. Therefore, potentially oleaginous yeast could be used to generate a large amount of lipids for biodiesel production that will be the better substitute of petroleum-based diesel and will also control the environmental pollution.

    Matched MeSH terms: Sucrose
  12. Rayani M, Hatam G, Unyah NZ, Ashrafmansori A, Abdullah WO, Hamat RA
    Iran J Parasitol, 2017 Oct-Dec;12(4):522-533.
    PMID: 29317877
    Background: This study is the first phylogenetic genotype analysis of Giardia lamblia in Iran. The main objective was to determine genotyping and identify the sub-assemblages of Giardia lamblia isolates involved in the transmission of giardiasis in Fars Province, south of Iran, in 2012.

    Methods: Forty G. lamblia isolates were collected from the patient's fecal samples with gastrointestinal discomfort referred to the health centers and hospitals in Shiraz, Fars Province, south of Iran. Purification of G. lamblia cysts from fecal samples and DNA extraction were performed using monolayer of sucrose density gradient and Phenol-Chloroform-Isoamylalcohol (PCI) respectively. Semi-nested PCR and sequence analysis were then performed using the primers (GDHeF, GDHiF, and GDHiR) which amplified a 432-bp fragment of Giardia glutamate dehydrogenase (gdh) gene. Phylogenetic analysis was carried out using a neighbor-joining tree composed of the nucleotide sequences of G. lamblia isolates obtained in this study and the known sequences isolates published in GenBank.

    Results: G. lamblia sub-assemblage AII was the most prevalent genotype with 80% of the cases and 20% of the cases belong to sub-assemblage BIII and BIV based on the DNA sequence of the gdh. G. lamblia isolates at Fars Province were widely distributed within assemblage A cluster (sub-assemblage AII) and the remaining isolates were dispersed throughout the assemblage B cluster (sub-assemblage BIII and BIV).

    Conclusion: PCR Sequencing and phylogenetic analysis was a proper molecular method for genotyping and discriminating of the of G. lamblia sub-assemblages in fecal samples, using the glutamate dehydrogenase gene that suggests a human contamination origin of giardiasis.
    Matched MeSH terms: Sucrose
  13. Ahmad R, Sahidin I, Taher M, Low C, Noor NM, Sillapachaiyaporn C, et al.
    Sci Rep, 2018 03 09;8(1):4202.
    PMID: 29523802 DOI: 10.1038/s41598-018-22485-5
    Polygonumins A, a new compound, was isolated from the stem of Polygonum minus. Based on NMR results, the compound's structure is identical to that of vanicoside A, comprising four phenylpropanoid ester units and a sucrose unit. The structure differences were located at C-3″″'. The cytotoxic activity of polygonumins A was evaluated on several cancer cell lines by a cell viability assay using tetrazolium dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). The compound showed the highest antiproliferative (p 
    Matched MeSH terms: Sucrose
  14. Cheng HS, Ton SH, Phang SCW, Tan JBL, Abdul Kadir K
    J Adv Res, 2017 Nov;8(6):743-752.
    PMID: 29062573 DOI: 10.1016/j.jare.2017.10.002
    The present study aimed to examine the effects of the types of high-calorie diets (high-fat and high-fat-high-sucrose diets) and two different developmental stages (post-weaning and young adult) on the induction of metabolic syndrome. Male, post-weaning and adult (3- and 8-week old, respectively) Sprague Dawley rats were given control, high-fat (60% kcal), and high-fat-high-sucrose (60% kcal fat + 30% sucrose water) diets for eight weeks (n = 6 to 7 per group). Physical, biochemical, and transcriptional changes as well as liver histology were noted. Post-weaning rats had higher weight gain, abdominal fat mass, fasting glucose, high density lipoprotein cholesterol, faster hypertension onset, but lower circulating advanced glycation end products compared to adult rats. This is accompanied by upregulation of peroxisome proliferator-activated receptor (PPAR) α and γ in the liver and receptor for advanced glycation end products (RAGE) in the visceral adipose tissue. Post-weaning rats on high-fat diet manifested all phenotypes of metabolic syndrome and increased hepatic steatosis, which are linked to increased hepatic and adipocyte PPARγ expression. Adult rats on high-fat-high-sucrose diet merely became obese and hypertensive within the same treatment duration. Thus, it is more effective and less time-consuming to induce metabolic syndrome in male post-weaning rats with high-fat diet compared to young adult rats. As male rats were selectively included into the study, the results may not be generalisable to all post-weaning rats and further investigation on female rats is required.
    Matched MeSH terms: Sucrose
  15. Grindstaff KK, Fielding LA, Brodl MR
    Plant Physiol, 1996 Feb;110(2):571-581.
    PMID: 12226205
    The heat-shock responses of barley (Hordeum vulgare L. cv Hi- malaya) aleurone layers incubated with or without gibberellic acid (GA3) were compared. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that heat shock blocked the synthesis and secretion of secretory proteins from GA3-treated layers but not untreated layers. This suppression of secretory protein synthesis has been correlated with changes in endoplasmic reticulum (ER) membranes (F.C. Belanger, M. R. Brodl, T.-h.D. Ho [1986] Proc Natl Acad Sci USA 83: 1354-1358; L. Sticher, A.K. Biswas, D.S. Bush, R.L. Jones [1990] Plant Physiol 92: 506-513). Our secretion data suggested that the ER membranes of aleurone layers incubated without GA3 may be more heat shock tolerant. To investigate this, the lipid profiles of membrane extracts in aleurone layers labeled with [14C]glycerol were examined. Heat shock markedly increased [14C]glycerol incorporation into phosphatidylcholine (PC), and gas chromatography revealed an increase in the amount of saturated fatty acids associated with thin layer chromatography-purified PC in GA3-treated layers. In contrast, aleurone layers incubated without GA3 at normal temperature contained PC-associated fatty acids with a greater degree of saturation than GA3-treated layers. Heat shock modestly increased the degree of fatty acid saturation in untreated aleurone layers. This same trend was noted in fatty acids isolated from ER membranes purified by continuous sucrose density centrifugation. We propose that increased fatty acid saturation may help sustain ER membrane function in heat-shocked aleurone layers incubated in the absence of GA3.
    Matched MeSH terms: Sucrose
  16. Amarra MS, Khor GL, Chan P
    Asia Pac J Clin Nutr, 2016;25(2):227-40.
    PMID: 27222405 DOI: 10.6133/apjcn.2016.25.2.13
    The term 'added sugars' refers to sugars and syrup added to foods during processing or preparation, and sugars and syrups added at the table. Calls to limit the daily intakes of added sugars and its sources arose from evidence analysed by WHO, the American Heart Association and other organizations. The present review examined the best available evidence regarding levels of added sugar consumption among different age and sex groups in Malaysia and sources of added sugars. Information was extracted from food balance sheets, household expenditure surveys, nutrition surveys and published studies. Varying results emerged, as nationwide information on intake of sugar and foods with added sugar were obtained at different times and used different assessment methods. Data from the 2003 Malaysian Adult Nutrition Survey (MANS) using food frequency questionnaires suggested that on average, Malaysian adults consumed 30 grams of sweetened condensed milk (equivalent to 16 grams sugar) and 21 grams of table sugar per day, which together are below the WHO recommendation of 50 grams sugar for every 2000 kcal/day to reduce risk of chronic disease. Published studies suggested that, for both adults and the elderly, frequently consumed sweetened foods were beverages (tea or coffee) with sweetened condensed milk and added sugar. More accurate data should be obtained by conducting population-wide studies using biomarkers of sugar intake (e.g. 24-hour urinary sucrose and fructose excretion or serum abundance of the stable isotope 13C) to determine intake levels, and multiple 24 hour recalls to identify major food sources of added sugar.
    Matched MeSH terms: Dietary Sucrose
  17. Baker P, Friel S
    Obes Rev, 2014 Jul;15(7):564-77.
    PMID: 24735161 DOI: 10.1111/obr.12174
    This paper elucidates the role of processed foods and beverages in the 'nutrition transition' underway in Asia. Processed foods tend to be high in nutrients associated with obesity and diet-related non-communicable diseases: refined sugar, salt, saturated and trans-fats. This paper identifies the most significant 'product vectors' for these nutrients and describes changes in their consumption in a selection of Asian countries. Sugar, salt and fat consumption from processed foods has plateaued in high-income countries, but has rapidly increased in the lower-middle and upper-middle-income countries. Relative to sugar and salt, fat consumption in the upper-middle- and lower-middle-income countries is converging most rapidly with that of high-income countries. Carbonated soft drinks, baked goods, and oils and fats are the most significant vectors for sugar, salt and fat respectively. At the regional level there appears to be convergence in consumption patterns of processed foods, but country-level divergences including high levels of consumption of oils and fats in Malaysia, and soft drinks in the Philippines and Thailand. This analysis suggests that more action is needed by policy-makers to prevent or mitigate processed food consumption. Comprehensive policy and regulatory approaches are most likely to be effective in achieving these goals.
    Matched MeSH terms: Dietary Sucrose/adverse effects
  18. Ali RB, Atangwho IJ, Kuar N, Ahmad M, Mahmud R, Asmawi MZ
    PMID: 23425283 DOI: 10.1186/1472-6882-13-39
    One vital therapeutic approach for the treatment of type 2 diabetes mellitus is the use of agents that can decrease postprandial hyperglycaemia by inhibiting carbohydrate digesting enzymes. The present study investigated the effects of bioassay-guided extract and fractions of the dried fruit pericarp of Phaleria macrocarpa, a traditional anti-diabetic plant, on α-glucosidase and α-amylase, in a bid to understand their anti-diabetic mechanism, as well as their possible attenuation action on postprandial glucose increase.
    Matched MeSH terms: Sucrose/metabolism
  19. Cheng HS, Yaw HP, Ton SH, Choy SM, Kong JM, Abdul Kadir K
    Nutrition, 2016 Sep;32(9):995-1001.
    PMID: 27130470 DOI: 10.1016/j.nut.2016.02.002
    OBJECTIVE: To investigate the effects of glycyrrhizic acid supplementation on glucose and lipid metabolism in rodents consuming a high-fat, high-sucrose diet.

    METHODS: Twenty-four male, 8-week old Sprague Dawley rats with an initial weight of 160 to 200 g were randomised into three groups (n = 6 for each group): groups A (standard rat chow), B (high-fat, high-sucrose diet), and C (high-fat, high-sucrose diet + 100 mg/kg/d of glycyrrhizic acid via oral administration). The rats were treated accordingly for 4 wk. Glycaemic parameters, lipid profile, stress hormones, and adiponectin levels were measured after the treatment. Relative gene expressions of peroxisome proliferator-activated receptor α and γ, lipoprotein lipase as well as gluconeogenic enzymatic activities in different tissues were also determined.

    RESULTS: Consumption of high-fat, high-sucrose diet triggered hyperglycaemia, insulin resistance, and dyslipidemia, which were effectively attenuated by supplementation with glycyrrhizic acid. Glycyrrhizic acid supplementation also effectively reduced circulating adrenaline, alleviated gluconeogenic enzymes overactivity, and promoted the upregulation of lipoprotein lipase expression in the cardiomyocytes and skeletal muscles. A high calorie diet also triggered hypoadiponectinaemia and suppression of peroxisome proliferator-activated receptor γ expression, which did not improve with glycyrrhizic acid treatment.

    CONCLUSION: Supplementation with glycyrrhizic acid could alleviate high calorie diet-induced glucose and lipid metabolic dysregulations by reducing circulatory stress hormones, normalizing gluconeogenic enzyme activities, and elevating muscular lipid uptake. The beneficial effects of these bioactivities outweighed the adverse effects caused by diet-induced repression of peroxisome proliferator-activated receptor γ expression, resulting in the maintenance of lipid and glucose homeostasis.

    Matched MeSH terms: Sucrose/administration & dosage*
  20. Chang CY, Kanthimathi MS, Tan AT, Nesaretnam K, Teng KT
    Eur J Nutr, 2018 Feb;57(1):179-190.
    PMID: 27632019 DOI: 10.1007/s00394-016-1307-9
    PURPOSE: Limited clinical evidence is available on the effects of amount and types of dietary fats on postprandial insulinemic and gastrointestinal peptide responses in metabolic syndrome subjects. We hypothesized that meals enriched with designated: (1) amount of fats (50 vs 20 g), (2) fats with differing fatty acid composition (saturated, SFA; monounsaturated, MUFA or n-6 polyunsaturated fatty acids, PUFA) would affect insulinemic and gastrointestinal peptide releases in metabolic syndrome subjects.

    METHODS: Using a randomized, crossover and double-blinded design, 15 men and 15 women with metabolic syndrome consumed high-fat meals enriched with SFA, MUFA or n-6 PUFA, or a low-fat/high-sucrose (SUCR) meal. C-peptide, insulin, glucose, gastrointestinal peptides and satiety were measured up to 6 h.

    RESULTS: As expected, SUCR meal induced higher C-peptide (45 %), insulin (45 %) and glucose (49 %) responses compared with high-fat meals regardless of types of fatty acids (P < 0.001). Interestingly, incremental area under the curve (AUC0-120min) for glucagon-like peptide-1 was higher after SUCR meal compared with MUFA (27 %) and n-6 PUFA meals (23 %) (P = 0.01). AUC0-120min for glucose-dependent insulinotropic polypeptide was higher after SFA meal compared with MUFA (23 %) and n-6 PUFA meals (20 %) (P = 0.004). Significant meal x time interaction (P = 0.007) was observed for ghrelin, but not cholecystokinin and satiety.

    CONCLUSIONS: The amount of fat regardless of the types of fatty acids affects insulin and glycemic responses. Both the amount and types of fatty acids acutely affect the gastrointestinal peptide release in metabolic syndrome subjects, but not satiety.

    Matched MeSH terms: Dietary Sucrose/administration & dosage
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links