METHODS: Sixty-four patients-21 exertional angina; 17 unstable angina/non-ST elevation myocardial infarction (NSTEMI); 26 ST elevation myocardial infarction (STEMI)-provided 188 diseased segments on conventional angiography. All underwent MDCTA within a week of angiography. ROI was mapped out from maximum intensity projections of diseased segments in planar view.
RESULTS: One hundred seventy-four segments were evaluated. Patients who presented with ACS (STEMI and unstable angina/non-ST elevation myocardial infarction) had lower mean VDR compared to patients with exertional angina (0.58 vs. 0.66 vs. 0.81; P < 0.001). Culprit lesions in ACS patients also had the lowest mean VDR when compared to nonculprit lesions and lesions in patients without ACS (0.51 vs. 0.68 vs. 0.81; P < 0.001).
CONCLUSIONS: VDR is a new, convenient, and standardized approach in identifying "culprit" lesions by MDCTA.
Case presentation: A 33-year-old female presented with recurrent hypoglycemia. Endogenous hyperinsulinemia was confirmed by a prolonged fast, however serial imaging was negative. Incidental finding of an ovarian mass gave rise to the suspicion of an insulin-producing ovarian tumor. Subsequent multimodality pancreatic imaging remained negative, requiring more invasive investigations. The tumor was localized by specialized arteriography using calcium stimulation to support the diagnosis of an insulinoma. However, repeated negative imaging led to further delays in definitive management, with worsening hypoglycemia. The surgery was finally performed three years after the initial presentation with successful removal of the tumor using intra-operative ultrasound.
Clinical discussion: It is important to emphasize that preoperative radiological imaging is useful to localize pancreatic lesions. However, most insulinomas could only be detected intraoperatively. The absence of suggestive radiological evidence should not deter surgeons from proceeding with definitive surgical intervention.
Conclusion: The case highlights the importance of a multidisciplinary approach in the management of a complicated case.
Methods: The algorithm for an IDR of 2.22 gI·s-1 was developed based on the relationship between VCE and contrast volume in 141 patients; test bolus parameters and characteristics in 75 patients; and, tube voltage in a phantom study. The algorithm was retrospectively tested in 45 patients who underwent retrospectively ECG-gated CCTA with a 100 kVp protocol. Image quality, TID and radiation dose exposure were compared with those produced using the 120 kVp and routine contrast protocols.
Results: Age, sex, body surface area (BSA) and peak contrast enhancement (PCE) were significant predictors for VCE (P<0.05). A strong linear correlation was observed between VCE and contrast volume (r=0.97, P<0.05). The 100-to-120 kVp contrast enhancement conversion factor (Ec) was calculated at 0.81. Optimal VCE (250 to 450 HU) and diagnostic image quality were obtained with significant reductions in TID (32.1%) and radiation dose (38.5%) when using 100 kVp and personalized contrast volume calculation algorithm compared with 120 kVp and routine contrast protocols (P<0.05).
Conclusions: The proposed algorithm could significantly reduce TID and radiation exposure while maintaining optimal VCE and image quality in CCTA with 100 kVp protocol.