METHOD: Lifespan was determined by counting the number of surviving nematodes daily under a dissecting microscope after treatment with hydrogen peroxide and the tocotrienol-rich fraction. The evaluated oxidative markers included lipofuscin, which was measured using a fluorescent microscope, and protein carbonyl and 8-hydroxy-2'-deoxyguanosine, which were measured using commercially available kits.
RESULTS: Hydrogen peroxide-induced oxidative stress significantly decreased the mean lifespan of C. elegans, which was restored to that of the control by the tocotrienol-rich fraction when administered before or both before and after the hydrogen peroxide. The accumulation of the age marker lipofuscin, which increased with hydrogen peroxide exposure, was decreased with upon treatment with the tocotrienol-rich fraction (p<0.05). The level of 8-hydroxy-2'-deoxyguanosine significantly increased in the hydrogen peroxide-induced group relative to the control. Treatment with the tocotrienol-rich fraction before or after hydrogen peroxide induction also increased the level of 8-hydroxy-2'-deoxyguanosine relative to the control. However, neither hydrogen peroxide nor the tocotrienol-rich fraction treatment affected the protein carbonyl content of the nematodes.
CONCLUSION: The tocotrienol-rich fraction restored the lifespan of oxidative stress-induced C. elegans and reduced the accumulation of lipofuscin but did not affect protein damage. In addition, DNA oxidation was increased.
METHODS: The MTT assay was utilized to analyze the effects of the test compounds on NRK-52E rat kidney epithelial cells. The detection of apoptosis and ability to scavenge free radicals was assessed via acridine orange-ethidium bromide (AO-EB) dual fluorescence staining, and 2,2-diphenyl-1-picrylhydrazyfree assay (DPPH), respectively. The ability of anti-inflammatory effect of the test compounds and western blot analysis against TGF-β, TNF-α, and IL-6 further assessed to determine the combinatorial efficacy.
RESULTS: Atorvastatin and quercetin treatment significantly lowered the expression of TGF-β, TNF-α, and IL-6 indicating the protective role in Streptozotocin-induced nephrotoxicity. The kidney cells treated with a combination of atorvastatin and quercetin showed green fluorescing nuclei in the AO-EB staining assay, indicating that the combination treatment restored cell viability. Quercetin, both alone and in combination with atorvastatin, demonstrated strong DPPH free radical scavenging activity and further encountered an anti-oxidant and anti-inflammatory effect on the combination of these drugs.
CONCLUSION: Nevertheless, there is currently no existing literature that reports on the role of QCT as a combination renoprotective drug with statins in the context of diabetic nephropathy. Hence, these findings suggest that atorvastatin and quercetin may have clinical potential in treating diabetic nephropathy.
METHODS: Different parts of the plants were subjected to sequential extraction method. Cytotoxicity of the extracts was determined by dimethylthiazol-2-yl)- 2,5diphenyl tetrazolium bromide (MTT) assay on 2 human cancer (colon and breast) and normal (endothelial and colon fibroblast) cells. Anti-angiogenic potential was tested using ex vivo rat aortic ring assay. DPPH (1,1-diphenyl-2-picrylhydrazyl) assay was conducted to screen the antioxidant capabilities of the extracts. Finally, total phenolic and flavonoid contents were estimated in the extracts using colorimetric assays.
RESULTS: The results indicated that out of 6 plants tested, 4 plants (Nicotiana glauca, Tephrosia apollinea, Combretum hartmannianum and Tamarix nilotica) exhibited remarkable anti-angiogenic activity by inhibiting the sprouting of microvessels more than 60%. However, the most potent antiangiogenic effect was recorded by ethanol extract of T. apollinea (94.62%). In addition, the plants exhibited significant antiproliferative effects against human breast (MCF-7) and colon (HCT 116) cancer cells while being non-cytotoxic to the tested normal cells. The IC50 values determined for C. hartmannianum, N. gluaca and T. apollinea against MCF-7 cells were 8.48, 10.78 and 29.36 μg/ml, respectively. Whereas, the IC50 values estimated for N. gluaca, T. apollinea and C. hartmannianum against HCT 116 cells were 5.4, 20.2 and 27.2 μg/ml, respectively. These results were more or less equal to the standard reference drugs, tamoxifen (IC50 = 6.67 μg/ml) and 5-fluorouracil (IC50 = 3.9 μg/ml) tested against MCF-7 and HCT 116, respectively. Extracts of C. hartmannianum bark and N. glauca leaves demonstrated potent antioxidant effect with IC50s range from 9.4-22.4 and 13.4-30 μg/ml, respectively. Extracts of N. glauca leaves and T apollinea aerial parts demonstrated high amount of flavonoids range from 57.6-88.1 and 10.7-78 mg quercetin equivalent/g, respectively.
CONCLUSIONS: These results are in good agreement with the ethnobotanical uses of the plants (N. glauca, T. apollinea, C. hartmannianum and T. nilotica) to cure the oxidative stress and paraneoplastic symptoms caused by the cancer. These findings endorse further investigations on these plants to determine the active principles and their mode of action.
MATERIALS AND METHODS: Twenty-five rats were randomly divided into five different groups of five animals in each group; (1) Control. (2) Received H2O2 (0.5%) with drinking water. (3), and (4) received H2O2 and C. citratus (100 mg·kg(-1) b wt), vitamin C (250 mg·kg(-1) b wt) respectively. (5), was given C. citratus alone. The treatments were administered for 30 days. Blood samples were collected and serum was used for biochemical assay including liver enzymes activities, total protein, total bilirubin and malonaldehyde, glutathione in serum and liver homogenates. Liver was excised and routinely processed for histological examinations.
RESULTS: C. citratus attenuated liver damage due to H2O2 administration as indicated by the significant reduction (p<0.05), in the elevated levels of ALT, AST, ALP, LDH, TB, and MDA in serum and liver homogenates; increase in TP and GSH levels in serum and liver homogenates; and improvement of liver histo-pathological changes. These effects of the extract were similar to that of vitamin C which used as antioxidant reference.
CONCLUSION: C. citratus could effectively ameliorate H2O2-induced oxidative stress and prevent liver injury in male rats.
MATERIALS AND METHODS: MTG and SRM was analyzed for their reducing power ability, ABTS radical inhibition and 1,1-diphenyl-2-picryl hydrazylfree radicals scavenging activities. Furthermore, the antiproliferation efficacy was evaluated using MTT assay on K 562 and HCT116 cancer cell lines versus NIH/3T3 and CCD18-Co normal cell lines respectively.
RESULTS: SRM and MTG demonstrate moderate antioxidant value with ABTS assay (Trolox equivalent antioxidant capacity (TEAC): 2.25±0.02 mmol trolox / mmol and 1.96±0.04 mmol trolox / mmol respectively) and DPPH (IC50=3.75±0.04 mg/mL and IC50=2.28±0.02 mg/mL respectively). Both MTG and SRM demonstrate equal potency (IC50=25.20±1.53 and IC50= 22.19±1.06 respectively) towards K 562 cell lines, comparable to control, betulinic acid (BA) (IC5024.40±1.26). Both compounds showed concentration-dependent cytototoxicity effects and exert profound antiproliferative efficacy at concentration > 100 μM towards HCT 116 and K 562 cancer cell lines, comparable to those of BA and 5-FU (5-Fluorouracil). Furthermore, both MTG and SRM exhibit high selectivity towards HCT 116 cell lines with selective indexes of 3.14 and 2.93 respectively compared to 5-FU (SI=0.60).
CONCLUSIONS: These findings revealed that the medicinal and nutitional values of mitragynine obtained from ketum leaves that growth in tropical forest of Southeast Asia and its analogues does not limited to analgesic properties but could be promising antioxidant and anticancer or chemopreventive compounds.