Displaying publications 1421 - 1440 of 6722 in total

Abstract:
Sort:
  1. Nordin ML, Abdul Kadir A, Zakaria ZA, Abdullah R, Abdullah MNH
    BMC Complement Altern Med, 2018 Mar 12;18(1):87.
    PMID: 29530022 DOI: 10.1186/s12906-018-2153-5
    BACKGROUND: Ardisia crispa Thunb. D.C is used mostly in some parts of the Asian region by traditional practitioners to treat certain diseases associated with oxidative stress and inflammation including cancer and rheumatism. In Malaysia, it is popularly known as 'Mata Ayam' and local traditional practitioners believed that the root of the plant is therapeutically beneficial.

    METHODS: The cytotoxic effect of hydromethanolic extract of A. crispa and its solvents partitions (ethyl acetate and aqueous extracts) against breast cancer cells were evaluated by using MTT assay. The cells were treated with concentration of extracts ranging from 15.63 μg/mL- 1000 μg/mL for 72 h. The quantification of phenolic and flavonoid contents of the extracts were carried out to determine the relationship between of phytochemical compounds responsible for cytotoxic and antioxidative activities. The antioxidant capacity was measured by DPPH and ABTS free radical scavenging assay and expressed as milligram (mg) Trolox equivalent antioxidant capacity per 1 g (g) of tested extract.

    RESULTS: The hydromethanolic and ethyl acetate extracts showed moderate cytotoxic effect against MCF-7 with IC50 values of 57.35 ± 19.33 μg/mL, and 54.98 ± 14.10 μg/mL, respectively but aqueous extract was inactive against MCF-7. For MDA-MB-231, hydromethanolic, ethyl acetate and aqueous extracts exhibited weak cytotoxic effects against MDA-MB-231 with IC50 values more than 100 μg/mL. The plant revealed high total phenolic content, total flavonoid and antioxidant capacity.

    CONCLUSION: The response of different type of breast cancer cell lines towards A. crispa extract and its partitions varied. Accordingly, hydromethanolic and ethyl acetate extracts appear to be more cytotoxic to oestrogen receptor (ER) positive breast cancer than oestrogen receptor (ER) negative breast cancer. However, aqueous extract appears to have poor activity to both types of breast cancer. Besides that, hydromethanolic and ethyl acetate extracts exhibit higher TPC, TFC and antioxidant capacity compared to aqueous extract. Synergistic effect of anticancer and antioxidant bioactives compounds of A. crispa plausibly contributed to the cytotoxic effects of the extract.

  2. Zainuddin NH, Chee HY, Ahmad MZ, Mahdi MA, Abu Bakar MH, Yaacob MH
    J Biophotonics, 2018 08;11(8):e201700363.
    PMID: 29570957 DOI: 10.1002/jbio.201700363
    This paper presents the development of tapered optical fiber sensor to detect a specific Leptospira bacteria DNA. The bacteria causes Leptospirosis, a deadly disease but with common early flu-like symptoms. Optical single mode fiber (SMF) of 125 μm diameter is tapered to produce 12 μm waist diameter and 15 cm length. The novel DNA-based optical fiber sensor is functionalized by incubating the tapered region with sodium hydroxide (NaOH), (3-Aminopropyl) triethoxysilane and glutaraldehyde. Probe DNA is immobilized onto the tapered region and subsequently hybridized by its complementary DNA (cDNA). The transmission spectra of the DNA-based optical fiber sensor are measured in the 1500 to 1600 nm wavelength range. It is discovered that the shift of the wavelength in the SMF sensor is linearly proportional with the increase in the cDNA concentrations from 0.1 to 1.0 nM. The sensitivity of the sensor toward DNA is measured to be 1.2862 nm/nM and able to detect as low as 0.1 fM. The sensor indicates high specificity when only minimal shift is detected for non-cDNA testing. The developed sensor is able to distinguish between actual DNA of Leptospira serovars (Canicola and Copenhageni) against Clostridium difficile (control sample) at very low (femtomolar) target concentrations.
  3. Zamir Hashmi SR, Khan MI, Khahro SH, Zaid O, Shahid Siddique M, Md Yusoff NI
    Materials (Basel), 2022 Nov 14;15(22).
    PMID: 36431509 DOI: 10.3390/ma15228024
    Carbon footprint reduction, recompense depletion of natural resources, as well as waste recycling are nowadays focused research directions to achieve sustainability without compromising the concrete strength parameters. Therefore, the purpose of the present study is to utilize different dosages of marble waste aggregates (MWA) and stone dust (SD) as a replacement for coarse and fine aggregate, respectively. The MWA with 10 to 30% coarse aggregate replacement and SD with 40 to 50% fine aggregate replacement were used to evaluate the physical properties (workability and absorption), durability (acid attack resistance), and strength properties (compressive, flexural, and tensile strength) of concrete. Moreover, statistical modeling was also performed using response surface methodology (RSM) to design the experiment, optimize the MWA and SD dosages, and finally validate the experimental results. Increasing MWA substitutions resulted in higher workability, lower absorption, and lower resistance to acid attack as compared with controlled concrete. However, reduced compressive strength, flexural strength, and tensile strength at 7-day and 28-day cured specimens were observed as compared to the controlled specimen. On the other hand, increasing SD content causes a reduction in workability, higher absorption, and lower resistance to acid attack compared with controlled concrete. Similarly, 7-day and 28-day compressive strength, flexural strength, and tensile strength of SD-substituted concrete showed improvement up to 50% replacement and a slight reduction at 60% replacement. However, the strength of SD substituted concrete is higher than controlled concrete. Quadratic models were suggested based on a higher coefficient of determination (R2) for all responses. Quadratic RSM models yielded R2 equaling 0.90 and 0.94 for compressive strength at 7 days and 28 days, respectively. Similarly, 0.94 and 0.96 for 7-day and 28-day flexural strength and 0.89 for tensile strength. The optimization performed through RSM indicates that 15% MWA and 50% SD yielded higher strength compared to all other mixtures. The predicted optimized data was validated experimentally with an error of less than 5%.
  4. Krisdiyanto, Bin Raja Ghazilla RA, Azuddin M, Bin Ahmad Hairuddin MKF, Muflikhun MA, Risdiana N, et al.
    Medicine (Baltimore), 2022 Dec 09;101(49):e31812.
    PMID: 36626504 DOI: 10.1097/MD.0000000000031812
    A syringe is used to inject fluid or medicine into the patient's soft tissue. The main components of the syringe were the needle, barrel, and plunger. The use of syringes in the medical world is relatively high, and especially since the COVID-19 pandemic, the use of hypodermic syringes increased sharply due to vaccination. The syringe used must be effective and of good quality, so the International Organization for Standardization (ISO) has published test procedures and minimum specifications for hypodermic syringes. The performance of the syringe can be observed from the dead space, force piston operation, water and air leakage, and fitting position of the plunger in the barrel. This review shows that most researchers use the weighing method to measure the dead space, although some use other methods. The researchers found that most of the products met the minimum specifications of the ISO, and that the dimensions and shape of the syringe affected the dead space. Researchers have not examined other performance measures recommended by the ISO. Researchers have focused more on force injection than force piston operation, leakage after injection or back spray than air and water leakage, and reduction the friction of the plunger without considering the fitting position of the plunger in the barrel.
  5. Mujahid M, Latif S, Ahmed M, Shehzadi W, Imran M, Ahmad M, et al.
    Front Chem, 2022;10:1084350.
    PMID: 36569961 DOI: 10.3389/fchem.2022.1084350
    The use of pesticides is unavoidable in agricultural practices. This class of chemicals is highly toxic for the environment as well as for humans. The present work was carried out to assess the presence of some pesticides (diafenthiuron, lufenuron, azoxystrobin, difenoconazole, and chlorothalonil) residues in five of the very commonly used vegetables (eggplant, capsicum, apple gourd, cauliflower, and sponge gourd). Matrix solid phase dispersion (MSPD) technique was used to extract the pesticides and subsequently their quantification was performed through high performance liquid chromatography (HPLC) coupled to ultraviolet-visible (UV-Vis) detector. The elution was accomplished at wavelength of 254 nm by injecting 20 µL of standards or samples into chromatographic system. The mobile phase consisted of acetonitrile and water (80:20 v/v), where the flow rate was adjusted at 1.0 ml/min. The linearity was good (R 2 ≥ 0.994) over a concentration range from 20 to 100 μg/ml for the investigated pesticides. The low detection limits showed a quite appreciable potential of the method to detect (1.12-1.61 μg/L) and quantify (3.73-5.36 μg/ml) the pesticides under study. The accuracy was demonstrated in terms of percent recovery which ranged between 88.5% and 116.9% for all the pesticides under investigation. These results justify the suitability of the technique for the intended purpose. The concentration of difenoconazole in apple gourd (20.97 mg/kg), cauliflower (10.28 mg/kg), and sponge gourd (40.32 mg/kg) whereas diafenthiuron in cauliflower (0.66 mg/kg) exceeded the maximum residue level (MRLs) as defined by Food and Agriculture Organization of the United Nations and the World Health Organization (FAO/WHO). Target hazard quotient (THQ) values of difenoconazole and diafenthiuron (except for adults) were more than one which indicates the significant effect on human health on consumption of apple gourd, cauliflower, and sponge gourd.
  6. Ahamad Said MN, Hasbullah NA, Rosdi MRH, Musa MS, Rusli A, Ariffin A, et al.
    ACS Omega, 2022 Dec 27;7(51):47490-47503.
    PMID: 36591191 DOI: 10.1021/acsomega.2c04483
    Graphene oxide (GO)-incorporated poly(methyl methacrylate) (PMMA) nanocomposites (PMMA-GO) have demonstrated a wide range of outstanding mechanical, electrical, and physical characteristics. It is of interest to review the synthesis of PMMA-GO nanocomposites and their applications as multifunctional structural materials. The attention of this review is to focus on the radical polymerization techniques, mainly bulk and emulsion polymerization, to prepare PMMA-GO polymeric nanocomposite materials. This review also discusses the effect of solvent polarity on the polymerization process and the types of surfactants (anionic, cationic, nonionic) and initiator used in the polymerization. PMMA-GO nanocomposite synthesis using radical polymerization-based techniques is an active topic of study with several prospects for considerable future improvement and a variety of possible emerging applications. The concentration and dispersity of GO used in the polymerization play critical roles to ensure the functionality and performance of the PMMA-GO nanocomposites.
  7. Bashir MA, Khan A, Shah SI, Ullah M, Khuda F, Abbas M, et al.
    Drug Des Devel Ther, 2023;17:261-272.
    PMID: 36726738 DOI: 10.2147/DDDT.S377686
    BACKGROUND: Self-emulsifying drug-delivery systems (SEDDSs) are designed to improve the oral bioavailability of poorly water-soluble drugs. This study aimed at formulating and characterization of SEDDS-based tablets for simvastatin using castor and olive oils as solvents and Tween 60 as surfactant.

    METHODS: The liquids were adsorbed on microcrystalline cellulose, and all developed formulations were compressed using 10.5 mm shallow concave round punches.

    RESULTS: The resulting tablets were evaluated for different quality-control parameters at pre- and postcompression levels. Simvastatin showed better solubility in a mixture of oils and Tween 60 (10:1). All the developed formulations showed lower self-emulsification time (˂200 seconds) and higher cloud point (˃60°C). They were free of physical defects and had drug content within the acceptable range (98.5%-101%). The crushing strength of all formulations was in the range of 58-96 N, and the results of the friability test were within the range of USP (≤1). Disintegration time was within the official limits (NMT 15 min), and complete drug release was achieved within 30 min.

    CONCLUSION: Using commonly available excipients and machinery, SEDDS-based tablets with better dissolution profile and bioavailability can be prepared by direct compression. These S-SEDDSs could be a better alternative to conventional tablets of simvastatin.

  8. Ahmad I, Cheema TN, Raja MAZ, Awan SE, Alias NB, Iqbal S, et al.
    Sci Rep, 2021 Feb 24;11(1):4452.
    PMID: 33627741 DOI: 10.1038/s41598-021-83990-8
    The objective of the current investigation is to examine the influence of variable viscosity and transverse magnetic field on mixed convection fluid model through stretching sheet based on copper and silver nanoparticles by exploiting the strength of numerical computing via Lobatto IIIA solver. The nonlinear partial differential equations are changed into ordinary differential equations by means of similarity transformations procedure. A renewed finite difference based Lobatto IIIA method is incorporated to solve the fluidic system numerically. Vogel's model is considered to observe the influence of variable viscosity and applied oblique magnetic field with mixed convection along with temperature dependent viscosity. Graphical and numerical illustrations are presented to visualize the behavior of different sundry parameters of interest on velocity and temperature. Outcomes reflect that volumetric fraction of nanoparticles causes to increase the thermal conductivity of the fluid and the temperature enhances due to blade type copper nanoparticles. The convergence analysis on the accuracy to solve the problem is investigated viably though the residual errors with different tolerances to prove the worth of the solver. The temperature of the fluid accelerates due the blade type nanoparticles of copper and skin friction coefficient is reduced due to enhancement of Grashof Number.
  9. Mehmood W, Fareed M, Mohd-Rashid R, Ashraf MU, Aman-Ullah A
    Front Psychol, 2022;13:1045972.
    PMID: 36733870 DOI: 10.3389/fpsyg.2022.1045972
    The aim of this study is to provide a holistic review of the fight against COVID-19 in developing countries, particularly Malaysia. Specifically, the study aims to determine how facilities management delivery in public hospitals can be improved to ensure readiness in handling COVID-19 cases. We conducted a review of the literature and reliable media updates on COVID-19 and services management. A critical synthesis of COVID-19 information was conducted to scrutinise the technical aspects and highlight how facilities management can be improved to ensure hospital readiness in managing COVID-19 cases. The data and information used in the present study were collected up to the time of writing this paper, which leaves a room for further studies. Nonetheless, this study's recommendations are useful for understanding the present and future pandemics. This study is a first attempt to summarise the data on facilities management in relation to the COVID-19 pandemic in the Malaysian context. The study's findings are suitable for the developing countries in managing healthcare management practices in the fight against COVID-19. This study aims to highlight current issues in order to provide a more objective assessment of facilities management to ensure hospital readiness in handling COVID-19 cases.
  10. Yu Z, Khan SAR, Zia-Ul-Haq HM, Ma T, Sajid MJ
    Waste Manag Res, 2023 Feb;41(2):337-349.
    PMID: 36471529 DOI: 10.1177/0734242X221126434
    This research aims to analyse and understand recycling phenomena and competition between large-scale and small-scale enterprises under different public attention. It mainly emphasizes service-providing behaviours to the consumers in the recycling industry, where recyclers are struggling to enhance their profits. The government strives to protect the environment by promoting an efficient recycling industry. As fast-growing waste products, the recyclers should achieve the advantage of number and be equipped with service capability for the consumers. Thus, this study employs an evolutionary game model to analyse the competition for waste products acquisitions between large and small recyclers. Due to a significant association between the service and acquisition waste product price for the consumers and recycling quantity, there is a strong mutual influence between the acquisition price of waste products and the price strategy-taken rate of large and small recyclers. Results also reveal that the market acquisition price and processing cost play a crucial role in recyclers' decision-making on setting prices for acquiring waste products from consumers. Furthermore, it is also found that waste products acquisition price and recyclers' processing cost are the key factors that affect large and small recyclers' recycling quantity.
  11. Kim YJ, Aslam MS, Deng R, Leghari QA, Lkhagvasuren D, Nadir MN, et al.
    J Res Pharm Pract, 2022;11(2):73-79.
    PMID: 36798101 DOI: 10.4103/jrpp.jrpp_29_22
    OBJECTIVE: After the commencement of the Internet and the popularity of various electronic devices, cyberloafing has become prevalent in the workplace regardless of professional type, demographic characteristics, and country. Individuals use the Internet for work-irrelevant purposes during work hours, which is believed to have a controversial role in work productivity. However, rare studies have paid attention to the prevalence of cyberloafing behavior among Pakistan pharmacists. Considering pharmacists' essential role in the health sector, this study investigates the prevalence of cyberloafing activities among workplace pharmacists in Pakistan.

    METHODS: This cross-sectional survey was conducted among 242 registered pharmacists in Pakistan between October 2021 and February 2022 with a structured self-administered online questionnaire. The final sample consisted of 200 valid responses after screening. Data were processed through exploratory factor analysis and confirmatory factor analyses. Pearson Chi-square analysis was also used to test the correlation between factors.

    FINDINGS: Descriptive analysis shows that pharmacists spend more time on sharing-related activities and least on gambling/gaming-related activities in the workplace. All the items' Cronbach's alpha values range from 0.923 to 0.927. The analysis indicates that (60%) pharmacists have intermediate Internet skills. The results also suggest that age, Internet usage, and work area have a strong relationship with cyberloafing behaviors which also, in turn, are linked with their perceived Internet skills. This study has important practical implications for pharmacy management in Pakistan.

    CONCLUSION: Cyberloafing behavior is prevalent among Pakistan pharmacists. Our findings could inspire how managers and all other relevant stakeholders could improve the pharmacy system in Pakistan.

  12. Malik Z, Muhammad N, Kaleem M, Nayyar M, Qazi AS, Butt DQ, et al.
    ACS Appl Bio Mater, 2023 Feb 20;6(2):425-435.
    PMID: 36700919 DOI: 10.1021/acsabm.2c00644
    This study aims to synthesize and characterize lignin-decorated zinc oxide nanoparticles before incorporating them into resin-modified glass ionomer cement (RMGIC) to improve their anticariogenic potential and mechanical properties (shear bond strength and microhardness). Probe sonication was used to synthesize lignin-decorated zinc oxide nanoparticles which were then characterized via scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. Following characterization, these were incorporated in RMGIC (Gold label, Fuji II LC). Three major groups, experimental group A (EGA), experimental group B (EGB), and control group (CG), were outlined. EGA and EGB were divided into numbered subgroups based on the ascending concentrations of nanoparticles (5, 10, and 15%) of lignin-coated zinc oxide and zinc-oxide, respectively. CG served as a control and comprised cured RMGIC samples without any incorporation. Anticariogenic analysis was conducted on experimental RMGIC samples via disk-diffusion (n = 3) and direct contact test (n = 3) against Streptococcus mutans (ATCC 25175). Optical density values for days 1, 3, and 5 were recorded via a UV-Vis spectrophotometer. A shear bond strength test was performed using 35 premolars. The adhesive remnant index was used to estimate the site of bond failure. For the Vickers microhardness test (n = 3), 100 g of load at 10 s dwell time was set. Atomic absorption spectroscopy was performed over 28 days to determine the release of zinc from the samples. All tests were analyzed statistically. The anticariogenic potential of EGA and EGB was significantly greater (p ≤ 0.05) than that of the control. The shear bond strength test reported the highest value for EGA15 with all groups exhibiting failure at the bracket/RMGIC interface. The microhardness of EGA15 yielded the highest value (p ≤ 0.05). Release kinetics displayed a steady release with EGB15 exhibiting the highest value. The EGA and EGB samples displayed good anticariogenic potential, which was sustained for 28 days without any deleterious effect on the shear bond strength and microhardness.
  13. Taher M, Susanti D, Haris MS, Rushdan AA, Widodo RT, Syukri Y, et al.
    Heliyon, 2023 Mar;9(3):e13823.
    PMID: 36873538 DOI: 10.1016/j.heliyon.2023.e13823
    Cancer is a second leading disease-causing death worldwide that will continuously grow as much as 70% in the next 20 years. Chemotherapy is still becoming a choice for cancer treatment despite its severity of side effects and low success rate due to ineffective delivery of the chemodrugs. Since it was introduced in 1960, significant progress has been achieved in the use of liposomes in drug delivery. The study aims to review relevant literatures on role of PEGylated liposome in enhancing cytotoxic activity of several agents. A systematic literature on the use of PEGylated liposomes in anticancer research via Scopus, Google scholar and PubMed databases was conducted for studies published from 2000 to 2022. A total of 15 articles were selected and reviewed from 312 articles identified covering a variety of anticancer treatments by using PEGylated liposomes. PEGylated liposome which is purposed to achieve steric equilibrium is one of enhanced strategies to deliver anticancer drugs. It has been shown that some improvement of delivery and protection form a harsh gastric environment of several anticancer drugs when they are formulated in a PEGylated liposome. One of the successful drugs that has been clinically used is Doxil®, followed by some other drugs in the pipeline Various drugs (compounds) had been used to enhance the efficacy of PEGylated liposomes for targeted cancer cells in vitro and in vivo. In conclusion, PEGylated liposomes enhance drug activities and have great potential to become efficient anticancer delivery to follow Doxil® in the clinical setting.
  14. Ali NA, Ahmad MAN, Yahya MS, Sazelee N, Ismail M
    Nanomaterials (Basel), 2022 Nov 07;12(21).
    PMID: 36364697 DOI: 10.3390/nano12213921
    Despite the application of lithium aluminium hydride (LiAlH4) being hindered by its sluggish desorption kinetics and unfavourable reversibility, LiAlH4 has received special attention as a promising solid-state hydrogen storage material due to its hydrogen storage capacity (10.5 wt.%). In this work, investigated for the first time was the effect of the nanosized cobalt titanate (CoTiO3) which was synthesised via a solid-state method on the desorption behaviour of LiAlH4. Superior desorption behaviour of LiAlH4 was attained with the presence of a CoTiO3 additive. By means of the addition of 5, 10, 15 and 20 wt.% of CoTiO3, the initial desorption temperature of LiAlH4 for the first stage was reduced to around 115−120 °C and the second desorption stage was reduced to around 144−150 °C, much lower than for undoped LiAlH4. The LiAlH4-CoTiO3 sample also presents outstanding desorption kinetics behaviour, desorbing hydrogen 30−35 times faster than undoped LiAlH4. The LiAlH4-CoTiO3 sample could desorb 3.0−3.5 wt.% H2 in 30 min, while the commercial and milled LiAlH4 desorbs <0.1 wt.% H2. The apparent activation energy of the LiAlH4-CoTiO3 sample based on the Kissinger analysis was decreased to 75.2 and 91.8 kJ/mol for the first and second desorption stage, respectively, lower by 28.0 and 24.9 kJ/mol than undoped LiAlH4. The LiAlH4-CoTiO3 sample presents uniform and smaller particle size distribution compared to undoped LiAlH4, which is irregular in shape with some agglomerations. The experimental results suggest that the CoTiO3 additive promoted notable advancements in the desorption performance of LiAlH4 through the in situ-formed AlTi and amorphous Co or Co-containing active species that were generated during the desorption process.
  15. Gul MU, Kamarul Azman MH, Kadir KA, Shah JA, Hussen S
    Comput Intell Neurosci, 2023;2023:8162325.
    PMID: 36909967 DOI: 10.1155/2023/8162325
    Atrial flutter (AFL) is a common arrhythmia with two significant mechanisms, namely, focal (FAFL) and macroreentry (MAFL). Discrimination of the AFL mechanism through noninvasive techniques can improve radiofrequency ablation efficacy. This study aims to differentiate the AFL mechanism using a 12-lead surface electrocardiogram. P-P interval series variability is hypothesized to be different in FAFL and MAFL and may be useful for discrimination. 12-lead ECG signals were collected from 46 patients with known AFL mechanisms. Features for a proposed classifier are extracted through descriptive statistics of the interval series. On the other hand, the class ratio of MAFL and FAFL was 41 : 5, respectively, which was highly imbalanced. To resolve this, different data augmentation techniques (SMOTE, modified-SMOTE, and smoothed-bootstrap) have been applied on the interval series to generate synthetic interval series and minimize imbalance. Modification is introduced in the classic SMOTE technique (modified-SMOTE) to properly produce data samples from the original distribution. The characteristics of modified-SMOTE are found closer to the original dataset than the other two techniques based on the four validation criteria. The performance of the proposed model has been evaluated by three linear classifiers, namely, linear discriminant analysis (LDA), logistic regression (LOG), and support vector machine (SVM). Filter and wrapper methods have been used for selecting relevant features. The best average performance was achieved at 400% augmentation of the FAFL interval series (90.24% sensitivity, 49.50% specificity, and 76.88% accuracy) in the LOG classifier. The variation of consecutive P-wave intervals has been shown as an effective concept that differentiates FAFL from MAFL through the 12-lead surface ECG.
  16. Shahid M, Azfaralariff A, Tufail M, Hussain Khan N, Abdulkareem Najm A, Firasat S, et al.
    PeerJ, 2022;10:e14132.
    PMID: 36518267 DOI: 10.7717/peerj.14132
    BACKGROUND: Primary congenital glaucoma (PCG) is the most common subtype of glaucoma caused by defects in the cytochrome P450 1B1 (CYP1B1) gene. It is developing among infants in more than 80% of cases who exhibit impairments in the anterior chamber angle and the trabecular meshwork. Thus, a comprehensive in silico approach was performed to evaluate the effect of high-risk deleterious missense variations in the CYP1B1 gene.

    MATERIAL AND METHODS: All the information for CYP1B1 missense variants was retrieved from the dbSNP database. Seven different tools, namely: SIFT, PolyPhen-2, PROVEAN, SNAP2, PANTHER, PhD-SNP, and Predict-SNP, were used for functional annotation, and two packages, which were I-Mutant 2.0 and MUpro, were used to predict the effect of the variants on protein stability. A phylogenetic conservation analysis using deleterious variants was performed by the ConSurf server. The 3D structures of the wild-type and mutants were generated using the I-TASSER tool, and a 50 ns molecular dynamic simulation (MDS) was executed using the GROMACS webserver to determine the stability of mutants compared to the native protein. Co-expression, protein-protein interaction (PPI), gene ontology (GO), and pathway analyses were additionally performed for the CYP1B1 in-depth study.

    RESULTS: All the retrieved data from the dbSNP database was subjected to functional, structural, and phylogenetic analysis. From the conducted analyses, a total of 19 high-risk variants (P52L, G61E, G90R, P118L, E173K, D291G, Y349D, G365W, G365R, R368H, R368C, D374N, N423Y, D430E, P442A, R444Q, F445L, R469W, and C470Y) were screened out that were considered to be deleterious to the CYP1B1 gene. The phylogenetic analysis revealed that the majority of the variants occurred in highly conserved regions. The MD simulation analysis exhibited that all mutants' average root mean square deviation (RMSD) values were higher compared to the wild-type protein, which could potentially cause CYP1B1 protein dysfunction, leading to the severity of the disease. Moreover, it has been discovered that CYP1A1, VCAN, HSD17B1, HSD17B2, and AKR1C3 are highly co-expressed and interact with CYP1B1. Besides, the CYP1B1 protein is primarily involved in the metabolism of xenobiotics, chemical carcinogenesis, the retinal metabolic process, and steroid hormone biosynthesis pathways, demonstrating its multifaceted and important roles.

    DISCUSSION: This is the first comprehensive study that adds essential information to the ongoing efforts to understand the crucial role of genetic signatures in the development of PCG and will be useful for more targeted gene-disease association studies.

  17. Shafqat SS, Rizwan M, Batool M, Shafqat SR, Mustafa G, Rasheed T, et al.
    Chemosphere, 2023 Mar;318:137920.
    PMID: 36690256 DOI: 10.1016/j.chemosphere.2023.137920
    Water bodies are being polluted rapidly by disposal of toxic chemicals with their huge entrance into drinking water supply chain. Among these pollutants, heavy metal ions (HMIs) are the most challenging one due to their non-biodegradability, toxicity, and ability to biologically hoard in ecological systems, thus posing a foremost danger to human health. This can be addressed by robust, sensitive, selective, and reliable sensing of metal ions which can be achieved by Metal organic frameworks (MOF) based electrochemical sensors. In the present era, MOFs have caught greater interest in a variety of applications including sensing of hazardous pollutants such as heavy metal ions. So, in this review article, types, synthesis and working mechanism of MOF based sensors is explained to give general overview with updated literature. First time, detailed study is done for sensing of metal ions such as chromium, mercury, zinc, copper, manganese, palladium, lead, iron, cadmium and lanthanide by MOFs based electrochemical sensors. The use of MOFs as electrochemical sensors has attractive success story along with some challenges of the area. Considering these challenges, we attempted to highlight the milestone achieved and shortcomings along with future prospective of the MOFs for employing it in electrochemical sensing devices for HMIs. Finally, challenges and future prospects have been discussed to promote the development of MOFs-based sensors in future.
  18. Khan MK, Abbas F, Godil DI, Sharif A, Ahmed Z, Anser MK
    Environ Sci Pollut Res Int, 2021 Oct;28(39):55579-55591.
    PMID: 34138439 DOI: 10.1007/s11356-021-14686-9
    Without enhancing the quality of the environment, the goals of sustainable development remain unachievable. In order to minimize the damage to the planet, sustainable practices need to be considered. This study is conducted to identify some of the drivers behind the increasing sustainability issues and tried to investigate the impact of natural resources, financial development, and economic growth on the ecological footprint in Malaysia from the year 1980-2019 by utilizing the dynamic simulated autoregressive distribution lag approach. It was identified that financial development, economic growth, and natural resources are the determinants behind the upsurge of the ecological footprint as all three show a positive and significant effect on ecological footprint. However, in the long run, the presence of the Environmental Kuznets Curve hypothesis was also validated in Malaysia. Therefore, it is recommended to increase awareness among the public regarding the adoption of sustainable practices in everyday life and to use green technologies that offer maximum efficiency and minimum damage to the environment in commercial and domestic activities. Finally, based on the research results, a comprehensive policy framework was proposed which could allow the Malaysian economy to attain the objectives of Sustainable Development Goals (SDGs) 7, 8, and 13.
  19. Anser MK, Usman M, Godil DI, Shabbir MS, Sharif A, Tabash MI, et al.
    Environ Sci Pollut Res Int, 2021 Oct;28(37):51105-51118.
    PMID: 33974204 DOI: 10.1007/s11356-021-14243-4
    This study analyzes the relationship between globalization, energy consumption, and economic growth among selected South Asian countries to promote the green economy and environment. This study also finds causal association between energy growth and nexus of CO2 emissions and employed the premises of the EKC framework. The study used annual time series analysis, starting from 1985 to 2019. The data set has been collected from the World Development Indicator (WDI). The result of a fully modified ordinary least square (FMOLS) method describes a significantly worse quality environment in the South Asian region. The individual country as Bangladesh shows a positively significant impact on the CO2 emissions and destroys the level of environment regarding non-renewable energy and globalization index. However, negative and positive growth levels (GDP) and square of GDP confirm the EKC hypothesis in this region. This study has identified the causality between GDP growth and carbon emission and found bidirectional causality between economic growth and energy use.
  20. Ahmad F, Draz MU, Chandio AA, Su L, Ahmad M, Irfan M
    Environ Sci Pollut Res Int, 2021 Oct;28(39):55344-55361.
    PMID: 34137008 DOI: 10.1007/s11356-021-14641-8
    Since the development of the service sector and renewable energy reduce fossil-based energy consumption which mitigates CO2 emissions and this nexus provides a better understanding of the environmental sustainability. Considering the substantially increasing contribution of service sector and tremendous potential for renewable energy in ASEAN5 countries, leaning forward from ASEAN's energy and growth nexus, this study examines the impact of service sector contribution and renewable energy on the environmental quality of ASEAN5 using annual data from 1990 to 2018. The results of the fully modified ordinary least squared, dynamic ordinary least squared, and canonical co-integrating regressions depicted that the service sectors of Thailand, the Philippines, and Singapore augment CO2 emissions; however, the service sectors of Malaysia and Indonesia could reduce CO2 emissions. The increasing share of renewable energy can enhance environmental quality, but its magnitude varies in ASEAN5 economies; non-renewable energy, population, and economic development deteriorate the environment. Our results confirm the existence of environmental Kuznets curve in all the ASEAN5; the Gregory-Hansen test confirmed that results are robust. Finally, the Granger causality designated that economic development and non-renewable energy have a significant causal relationship with CO2 emission of ASEAN5 countries. These findings suggest that the ASEAN5 economies need to optimize their economic structure for promoting sustainable development in the long run.Graphical abstract.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links