Displaying publications 1501 - 1520 of 3987 in total

Abstract:
Sort:
  1. Affandi MMRMM, Tripathy M, Majeed ABA
    Curr Drug Deliv, 2018;15(1):77-86.
    PMID: 28322162 DOI: 10.2174/1567201814666170320144259
    BACKGROUND: Categorized as a Biopharmaceutics Classification System (BCS) Class II drugs, statin exhibit low aqueous solubility and bioavailability thus presenting an obstacle and great challenge to formulation researchers. This paper describes a de novo approach to enhance the aqueous solubility of one of the most commonly prescribed statins i.e., simvastatin (SMV) by forming a complex (SMV-ARG) with cosolute arginine (ARG).

    METHODS: The complex has been characterized for its apparent solubility and in vitro dissolution. The solid state characterization has been carried out using Fourier Transform Infra-Red (FTIR) Spectroscopy, Elemental Analysis, X-Ray Powder Diffraction (XRD), Differential Scanning Calorimetry (DSC) analysis, Thermal Gravimetric Analysis (TGA) and Scanning Electron Microscopy (SEM).

    RESULTS: Simvastatin-Arginine (SMV-ARG) complex exhibited massive solubility enhancement by 12,000 fold and significant improvement in both acidic and alkaline dissolution media. A conversion of coherent crystalline to non-coherent pattern, and certain extent of amorphization in SMV-ARG complex, fully justifies the enhanced solubility, and hence the dissolution profile.

    CONCLUSION: The present study provides a significant evidence that ARG molecules are capable to form a complex with small molecules and increase their aqueous solubility which prove to be beneficial in drug formulation and development.

    Matched MeSH terms: Water/chemistry
  2. Chang CC, Saad B, Surif M, Ahmad MN, Md Shakaff AY
    Sensors (Basel), 2008 Jun 01;8(6):3665-3677.
    PMID: 27879900
    A disposable screen-printed e-tongue based on sensor array and pattern recognition that is suitable for the assessment of water quality in fish tanks is described. The characteristics of sensors fabricated using two kinds of sensing materials, namely (i) lipids (referred to as Type 1), and (ii) alternative electroactive materials comprising liquid ion-exchangers and macrocyclic compounds (Type 2) were evaluated for their performance stability, sensitivity and reproducibility. The Type 2 e-tongue was found to have better sensing performance in terms of sensitivity and reproducibility and was thus used for application studies. By using a pattern recognition tool i.e. principal component analysis (PCA), the e-tongue was able to discriminate the changes in the water quality in tilapia and catfish tanks monitored over eight days. E-tongues coupled with partial least squares (PLS) was used for the quantitative analysis of nitrate and ammonium ions in catfish tank water and good agreement were found with the ion-chromatography method (relative error, ±1.04- 4.10 %).
    Matched MeSH terms: Water; Water Quality
  3. Hiew BYZ, Lee LY, Lai KC, Gan S, Thangalazhy-Gopakumar S, Pan GT, et al.
    Environ Res, 2019 01;168:241-253.
    PMID: 30321737 DOI: 10.1016/j.envres.2018.09.030
    Pharmaceutical residues are emerging pollutants in the aquatic environment and their removal by conventional wastewater treatment methods has proven to be ineffective. This research aimed to develop a three-dimensional reduced graphene oxide aerogel (rGOA) for the removal of diclofenac in aqueous solution. The preparation of rGOA involved facile self-assembly of graphene oxide under a reductive environment of L-ascorbic acid. Characterisation of rGOA was performed by Fourier transform infrared, scanning electron microscope, transmission electron microscopy, nitrogen adsorption-desorption, Raman spectroscopy and X-ray diffraction. The developed rGOA had a measured density of 20.39 ± 5.28 mg/cm3, specific surface area of 132.19 m2/g, cumulative pore volume of 0.5388 cm3/g and point of zero charge of 6.3. A study on the simultaneous interactions of independent factors by response surface methodology suggested dosage and initial concentration as the dominant parameters influencing the adsorption of diclofenac. The highest diclofenac adsorption capacity (596.71 mg/g) was achieved at the optimum conditions of 0.25 g/L dosage, 325 mg/L initial concentration, 200 rpm shaking speed and 30 °C temperature. The adsorption equilibrium data were best fitted to the Freundlich model with correlation coefficient (R2) varying from 0.9500 to 0.9802. The adsorption kinetic data were best correlated to the pseudo-first-order model with R2 ranging from 0.8467 to 0.9621. Thermodynamic analysis showed that the process was spontaneous (∆G = - 7.19 to - 0.48 kJ/mol) and exothermic (∆H = - 12.82 to - 2.17 kJ/mol). This research concluded that rGOA is a very promising adsorbent for the remediation of water polluted by diclofenac.
    Matched MeSH terms: Water Pollutants, Chemical/chemistry*
  4. Sulthana R, Taqui SN, Zameer F, Syed UT, Syed AA
    Int J Phytoremediation, 2018 Sep 19;20(11):1075-1086.
    PMID: 30156921 DOI: 10.1080/15226514.2017.1365331
    Dye pollutants from research laboratories are one of the major sources for environmental contamination. In the present study, a nutraceutical industrial fennel seed spent (NIFSS) was explored as potential adsorbent for removal of ethidium bromide (EtBr) from aqueous solution. The adsorbent was characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Through batch experiments, the operating variables like initial dye concentration, adsorbent dosage, temperature, contact time, and pH were optimized. Equilibrium data were analyzed using three number of two-parameter and six number of three-parameter isotherm models. The adsorption kinetics was studied using pseudo-first order and pseudo-second order. The diffusion effects were studied by film diffusion, Webber-Morris, and Dumwald-Wagner diffusion models. The thermodynamic parameters; change in enthalpy (ΔHº), entropy (ΔSº), and Gibbs free energy (ΔGº) of adsorption system were also determined and evaluated.
    Matched MeSH terms: Water Pollutants, Chemical/chemistry*
  5. Siti Fadhilah Abd. Rahim, Normala Masrom, Muhamad Cyrill Kamal, Noor Azmi Shaharuddin, Khairul Basyar Baharudin, Norliza Abu Bakar
    MyJurnal
    Water contamination by herbicides and chelating agents is increasing mainly due to the
    increasing agricultural activities. Water contamination by these compounds has become a
    concern due to their adverse effects to the environment and humans. Seven sampling sites of
    water sources in Selangor and Johor were chosen for the study. Contamination level of
    Mecoprop (MCCP), Nitrilotriacetic acid (NTA) and Ethylenediaminetetraacetic acid (EDTA) in
    these water body areas was determined by using Gas Chromatography-Electron Capture
    Detector (GC-ECD). Our results indicated that water samples of Sungai Melot in Selangor
    showed the highest presence of EDTA. MCCP was detected at a high level at Sungai Sarang
    Buaya, Johor while NTA showed similar level of concentration at three different sites, Ladang
    10, Ladang Sayur and Mardi, Selangor.
    Matched MeSH terms: Water; Water Pollution
  6. Ong SQ, Ahmad H, Tan EH
    Environ Entomol, 2018 12 07;47(6):1582-1585.
    PMID: 30165432 DOI: 10.1093/ee/nvy127
    Megaselia scalaris (Loew) (Diptera: Phoridae) provides great evidential value in estimating the postmortem interval (PMI) compared with other dipterans due to its common occurrence on human corpses both indoors and in concealed environments. Studies have focused on the effect of temperature, larval diet, and photoperiod on the development of the species; however, knowledge of M. scalaris development at different moisture levels is insufficient. This study aimed to investigate the effects of substrate moisture on the larval development time, pupal recovery, pupal weight, adult emergence, and adult head width of M. scalaris. The larvae were reared in five replicates on substrates with six moisture levels ranging from 50 to 90%. Larvae and puparia were sampled daily, and the collection time, number, and weight were recorded, measured, and then compared using multivariate analysis of variance with a post hoc least significant difference test. Larvae developed most quickly (3.75 ± 0.04 d) at 50% substrate moisture; the larvae were able to survive in extremely wet substrates (90% moisture), but the development time was significantly longer (6.48 ± 0.19 d). Moisture greatly influenced the pupation rate and adult emergence but showed a weak effect on the pupae weight and adult head width. Due to the significance of moisture on the development of M. scalaris, PMI estimation using M. scalaris with cadavers of different moisture content must be carefully conducted to avoid inaccuracy.
    Matched MeSH terms: Water/physiology*
  7. Mamat, M., Abdullah, M.A.A., Jaafar, A.M., Soh, S.K.C., Lee, C.E.
    ASM Science Journal, 2018;11(101):105-113.
    MyJurnal
    As textile production flourishes nowadays, the amount of dyed wastewater entering the
    water body has also increased. Dyes could have serious negative impacts to the environment
    and also the human health, hence, they need to be removed from the water body. In this
    study, layered double hydroxide (LDH) of manganese/aluminium (MnAl) was synthesised
    to be used as a potential adsorbent to remove methyl orange (MO) dye due to its unique
    lamellar structure which provides LDH with high anion adsorption and exchange ability.
    MnAl was synthesized by using co-precipitation method and characterized by powder X-ray
    diffraction (PXRD), Fourier-Transform Infrared Spectroscopy (FTIR), Inductively coupled
    plasma atomic emission spectroscopy (ICP-AES) and Carbon, Hydrogen, Nitrogen, Sulphur
    (CHNS) elemental analysers, and Accelerated Surface Area and Porosity Analyzer (ASAP).
    Adsorption studies were conducted at different contact times and dosages of MnAl to evaluate
    the performance of MnAl in removing MO from water. Kinetic and isotherm models were
    tested using pseudo-first order, pseudo-second order, Langmuir isotherm and Freundlich
    isotherm. MnAl LDH was found to be perfectly fitted into pseudo-second order and Langmuir
    isotherm.
    Matched MeSH terms: Water; Waste Water
  8. Arahman N, Mulyati S, Fahrina A, Muchtar S, Yusuf M, Takagi R, et al.
    Molecules, 2019 Nov 13;24(22).
    PMID: 31766222 DOI: 10.3390/molecules24224099
    The removal of impurities from water or wastewater by the membrane filtration process has become more reliable due to good hydraulic performance and high permeate quality. The filterability of the membrane can be improved by having a material with a specific pore structure and good hydrophilic properties. This work aims at preparing a polyvinylidene fluoride (PVDF) membrane incorporated with phospholipid in the form of a 2-methacryloyloxyethyl phosphorylcholine, polymeric additive in the form of polyvinylpyrrolidone, and its combination with inorganic nanosilica from a renewable source derived from bagasse. The resulting membrane morphologies were analyzed by using scanning electron microscopy. Furthermore, atomic force microscopy was performed to analyze the membrane surface roughness. The chemical compositions of the resulting membranes were identified using Fourier transform infrared. A lab-scale cross-flow filtration system module was used to evaluate the membrane's hydraulic and separation performance by the filtration of humic acid (HA) solution as the model contaminant. Results showed that the additives improved the membrane surface hydrophilicity. All modified membranes also showed up to five times higher water permeability than the pristine PVDF, thanks to the improved structure. Additionally, all membrane samples showed HA rejections of 75-90%.
    Matched MeSH terms: Water/chemistry*
  9. Fadhullah W, Yaccob NS, Syakir MI, Muhammad SA, Yue FJ, Li SL
    Sci Total Environ, 2020 Jan 15;700:134517.
    PMID: 31629263 DOI: 10.1016/j.scitotenv.2019.134517
    Nitrate is one of the primary nutrients associated with sedimentation and fuels eutrophication in reservoir systems. In this study, water samples from Bukit Merah Reservoir (BMR) were analysed using a combination of water chemistry, water stable isotopes (δ2H-H2O and δ18O-H2O) and nitrate stable isotopes (δ15N-NO3- and δ18O-NO3-). The objective was to evaluate nitrate sources and processes in BMR, the oldest man-made reservoir in Malaysia. The δ15N-NO3- values in the river and reservoir water samples were in the range +0.4 to +14.9‰ while the values of δ18O-NO3- were between -0.01 and +39.4‰, respectively. The dual plots of δ15N-NO3- and δ18O-NO3- reflected mixing sources from atmospheric deposition (AD) input, ammonium in fertilizer/rain, soil nitrogen, and manure and sewage (MS) as the sources of nitrate in the surface water of BMR. Nitrate stable isotopes suggested that BMR undergoes processes such as nitrification and mixing. Denitrification and assimilation were not prevalent in the system. The Bayesian mixing model highlighted the dominance of MS sources in the system while AD contributed more proportion in the reservoir during both seasons than in the river. The use of δ13C, δ15N, and C:N ratios enabled the identification of terrestrial sources of the organic matter in the sediment, enhancing the understanding of sedimentation associated with nutrients previously reported in BMR. Overall, the nitrate sources and processes should be considered in decision-making in the management of the reservoir for irrigation, Arowana fish culture and domestic water supply.
    Matched MeSH terms: Water; Water Supply
  10. Hassan AM, Wan Ibrahim WA, Bakar MB, Sanagi MM, Sutirman ZA, Nodeh HR, et al.
    J Environ Manage, 2020 Jan 01;253:109658.
    PMID: 31666209 DOI: 10.1016/j.jenvman.2019.109658
    A new effective adsorbent, 3-aminopropyltrimethoxysilane functionalized magnetic sporopollenin (MSp@SiO2NH2) based silica-coated graphene oxide (GO), (GO@SiO2-MSp@SiO2NH2) was successfully synthesized and applied for the first time in the removal of hazardous Pb(II) ions from aqueous solution. The properties of the composite were characterized using Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX) and vibrating-sample magnetometery (VSM). Evaluation of GO@SiO2-MSp@SiO2NH2 adsorption performance at optimum conditions revealed that the adsorbent has a maximum adsorption capacity of 323.5 mg/g for Pb(II) using 50-200 mg/L initial Pb(II) ions concentrations. Initial and final concentrations of Pb(II) ions in aqueous solution were analyzed using graphite furnace atomic absorption spectroscopy (GF-ASS). The adsorption behavior of Pb(II) ions onto GO@SiO2-MSp@SiO2NH2 was studied using Langmuir, Freundlich and Temkin isotherms models. The values of coefficient of determination showed that the adsorption best fitted the Langmuir model (R2 = 0.9994). Kinetic studies suggested that the adsorption of Pb(II) ion followed a pseudo-second-order rate model (R2 = 1.00) and thermodynamic studies revealed that the adsorption process is endothermic and spontaneous. The effect of co-existing ions on Pb(II) ion adsorption were also studied and found to have considerable effects only at higher matrix concentration. The adsorbent can be reused up to ten times and retain its good adsorption capacity. In addition, GO@SiO2-MSp@SiO2NH2 showed great potential for Pb(II)removal from industrial wastewater samples.
    Matched MeSH terms: Water Pollutants, Chemical*
  11. Karbalaei S, Golieskardi A, Watt DU, Boiret M, Hanachi P, Walker TR, et al.
    Mar Pollut Bull, 2020 Jan;150:110687.
    PMID: 31699500 DOI: 10.1016/j.marpolbul.2019.110687
    Presence of microplastics (MPs) in a broad range of wild and cultured marine organisms is well-documented, but transfer mechanisms by which cultured organisms are contaminated with MPs is poorly understood. MP loads in three Malaysian commercial brands of fish meal were investigated. Chemical composition of extracted MP-like particles was confirmed using micro-Raman spectroscopy. Inorganic composition of MPs and pigment particles were assessed through energy-dispersive X-ray spectroscopy (EDX). Out of 336 extracted particles, 64.3% were plastic polymers, 25% pigment particles, 4.2% non-plastic items, and 6.5% were unidentified. Fragments were the dominant form of MPs (78.2%) followed by filaments (13.4%) and films (8.4%). This study demonstrates that cultured organisms could be exposed to high levels of MPs via MP contaminated fish/shellfish used in fish meal production. Fish meal replacement with other sources of protein including meat meals and plant-based meals may mitigate MP exposure to cultured or farmed organisms.
    Matched MeSH terms: Water Pollutants, Chemical/analysis*
  12. Kimenyu P, Oyaro N, Chacha J, Tsanuo M
    Population in urban centers in Kenya is increasing rapidly due to rural urban migration in search of better paying jobs. This migration has resulted in unauthorized settlements in the various urban centers. The income per capital of these people is less than a dollar a day. The amount of money is inadequate for survival and this has resulted into cultivating on open grounds for food crops. Unfortunately, these slums have come up along rivers, which carry, wastewater from household and industries. This wastewater is rich in heavy metals and the inhabitants of these areas use this contaminated water for irrigating their crops. The food crops from such areas have very high levels of heavy metals. The present study has screened Zea mays, Commelina bengalensis and Amaranthus hybridus for their ability to bioaccumulate these metals from contaminated soils using atomic absorption spectrophotometer (AAS). The results obtained showed that the C. bengalensis has high potential for removal of Cu, Pb and Cd metals as compared to the Zea mays and Amaranthus hybridus even though, results showed that C. bengalensis has a low potential for the removal of Zn as compared to Zea mays and Amaranthus hybridus.
    Matched MeSH terms: Water Pollution; Waste Water
  13. Sangyoka S, Poomipuk N, Reungsang A
    Sains Malaysiana, 2012;41:1211-1216.
    The Cassava starch manufacturing wastewater (CSW) was used as a substrate to produce polyhydroxybutyrate (PHB) by Cupriavidus sp. KKU38. The acidogenic fermentation process of CSW was first conducted to obtain volatile fatty acids (VFAs), which are more efficient in PHB production than raw CSW. The effect on substrate concentration and nutrients, i.e. nitrogen and phosphorus concentrations, by means of chemical oxygen demand: nitrogen: phosphorus ratio (COD:N:P ratio) variation was investigated. The results indicated that PHB production from fermented CSW by Cupriavidus sp. KKU38 was optimized at the soluble COD:N:P ratio of 100:0.5:11. This ratio gave the maximum PHB content and yield of 85.53% and 0.31 g PHB/g COD consumed, respectively. By using the proposed PHB production process, the potential to produce 0.19 kg of PHB from 1.0 kg of soluble chemical oxygen demand (sCOD) contained in CSW was exhibited. The relatively high COD removal efficiency of 73.82% at the optimal condition could be achieved, which demonstrated the concept of water quality improvements alongside the production of the value-added by-product, PHB.
    Matched MeSH terms: Water; Waste Water
  14. Mahmud MAF, Abdul Mutalip MH, Lodz NA, Muhammad EN, Yoep N, Hashim MH, et al.
    BMJ Open, 2019 05 15;9(5):e026101.
    PMID: 31097485 DOI: 10.1136/bmjopen-2018-026101
    INTRODUCTION: Dengue is among the most important mosquito-borne diseases, with more than half of the world's population at risk of infection in dengue endemic countries. Environmental management, which includes any activities that involve environmental modification, environmental manipulation and changes to human behaviour have been used to mitigate the risk of dengue transmission. In this protocol, we will integrate the data from various sources to assess the overall effect of environmental management on the incidence of dengue and other entomological indices.

    METHODS AND ANALYSES: We will conduct a systematic review of intervention that assess the effect of environmental management on the incidence of dengue and/or entomological indices. We will include any studies that include intervention through environmental management for dengue control, involving environmental modification, environmental manipulation and changes to human behaviour. A comprehensive search will be performed in electronic databases PUBMED, CENTRAL, SCOPUS, Web of Science and relevant research websites such as PROPSERO, WHO ICTRP and ClinicalTrials.gov to identify studies that meet our inclusion criteria. A systematic approach to searching, screening, reviewing and data extraction will be applied based on Preferred Reporting Items for Systematic reviews and Meta-Analysis. Titles, abstract, keywords for eligibility will be examined independently by researchers. The quality of the included studies will be assessed using quality assessment tool for studies with diverse design and Cochrane risk of bias tool. The characteristics of the selected articles will be described based on the study design, types of intervention and outcomes of the study in various countries. These include the types of environmental management intervention methods and the effectiveness of the intervention in reducing dengue cases or incidence and impact on entomological indices.

    ETHICS AND DISSEMINATION: We will register this systematic review with the National Medical Research Register, Ministry of Health Malaysia. This protocol also had been registered with the PROSPERO. No ethical approval is necessary, as there will be no collection of primary data. The results will be disseminated though a peer-reviewed publication and conference presentation.

    TRIAL REGISTRATION NUMBER: CRD42018092189.

    Matched MeSH terms: Water Supply/standards
  15. Sorayya M, Aishah S, Mohd. Sapiyan B
    Sains Malaysiana, 2012;41:939-947.
    Five years of data from 2001 until 2006 of warm unstratified shallow, oligotrophic to mesothropic tropical Putrajaya Lake, Malaysia were used to study pattern discovery and forecasting of the diatom abundance using supervised and unsupervised artificial neural networks. Recurrent artificial neural network (RANN) was used for the supervised artificial neural network and Kohonen Self Organizing Feature Maps (SOM) was used for unsupervised artificial neural network. RANN was applied for forecasting of diatom abundance. The RANN performance was measured in terms of root mean square error (RMSE) and the value reported was 29.12 cell/mL. Classification and clustering by SOM and sensitivity analysis from the RANN were used to reveal the relationship among water temperature, pH, nitrate nitrogen (NO3-N) concentration, chemical oxygen demand (COD) concentration and diatom abundance. The results indicated that the combination of supervised and unsupervised artificial neural network is important not only for forecasting algae abundance but also in reasoning and understanding ecological relationships. This in return will assist in better management of lake water quality.
    Matched MeSH terms: Water; Water Quality
  16. Nasiman Sapari, Hisyam Jusoh, Raja Zainariah Raja Azie
    Sains Malaysiana, 2011;40:1179-1186.
    Groundwater in fractured metasedimentary rock in Malaysia is a potential source of water for drinking and industrial uses. Industries including agricultural processing, mineral water bottling, manufacturing and golf courses pumped the water from the underlying fractured rocks. Fifty eight tubewells belong to private companies operating in various places in West Coast of Peninsular Malaysia were evaluated for their yield and quality of water. Rotary percussion methods were used for the drilling to a maximum depth of 200 m. The productivity of the wells and the characteristics of the aquifer were evaluated by pumping test using both the constant discharge rate and steps drawdown methods. The average yield of the wells at allowable drawdown of 40 m was found to be 416 m3 per day. Results from water quality analysis indicated that the water was fresh with an average total dissolved solids (TDS) concentration of 101 to 150 mg/L. The hardness of the water varies from as low as 13 mg/L to a maximum of 353 mg/L. On the average, the water was moderately hard with the average hardness value of 80 mg/L. The water facies of the groundwater was found to be of calcium-sodium-bicarbonate water.
    Matched MeSH terms: Water Quality; Water Wells
  17. Suratman S, Hussein A, Latif M, Weston K
    Sains Malaysiana, 2014;43:1127-1131.
    Setiu Wetland is located in the southern part of South China Sea, Malaysia. This wetland has diverse ecosystems that represent a vast array of biological diversity and abundance in utilizable natural resources. However, there are large scales of aquaculture activities within and nearby the wetland which could threaten the ecosystems of this area. Thus, the main goal of the study was to assess the impact of these activities through the measurement of physico-chemical water quality parameters and then compare this to a previous study carried out in the same study area. The parameters (salinity, temperature, pH, dissolved oxygen, biological oxygen demand and total suspended solids) were monitored monthly at the surface water from July to October 2008. The results showed that the impact of aquaculture activities on the water quality in the area with dissolved oxygen and total suspended solids concentrations were considerably lower than those observed previously. With respect to the Malaysian Marine Water Quality Criteria and Standard, most of the level of parameters measured remained Class 1, suggesting the physico-chemical environment were in line with sustainable conservation of the marine protected areas and marine parks of this wetland area.
    Matched MeSH terms: Water; Water Quality
  18. Joon Ching Juan, Sze Nee Goh, Ta Yeong Wu, Emy Marlina Samsudin, Tan Tong Ling, Sharifah Bee Abd. Hamid
    Sains Malaysiana, 2015;44:1011-1019.
    Disposal of dye wastewater into water streams without treatment endangers human and marine lives. This work focused on the second largest class of textile dyes after azo dyes due to its high resistivity to biodegradation and high toxicity. The photocatalytic degradation of Reactive Blue 4 (RB4), an anthraquinone dye, has been investigated using pure anatase nano titanium (IV) oxide (TiO2). The dye molecules were fully degraded and the addition of hydrogen peroxide (H2O2) enhanced the photodegradation efficiency. It is found that the degradation as the hydroxyl radicals in the bulk solution is sufficient for complete mineralisation. The disappearance of the dye follows pseudo-first-order kinetics. The effect of pH, amount of photocatalyst, UV-light intensity, light source and concentration of hydrogen peroxide was ascertained.
    Matched MeSH terms: Water; Waste Water
  19. Normaliza Ab. Malik, Rohazila Mohd Hanafiah, Wan Mohamad Nasi Wan Othman
    Sains Malaysiana, 2013;42:53-58.
    This study was to evaluate the microbial contamination level in direct water supply at the Polyclinic, Faculty of Dentistry, USIM, Malaysia. Water samples were collected randomly from water supplied via the cup filler outlet of 20 dental units and 20 side water taps at Level 16 and 17 of Polyclinic, Faculty of Dentistry, USIM. All the samples were placed and spread evenly on the surface of prepared agar media (the nutrient agar) using the spread technique. Each sample consists of 0.5 mL water. The microbial count was done using a magnifying glass and the total number of bacteria concentration was reported as colony forming unit in 1 mL of water (cfu/mL). In this study water from an aquarium was used as positive control with 220 cfu/mL, while the distilled water taken from the CSSD was used as negative control with no colony of microorganism. The study demonstrated that there were low contamination before the treatment that was beginning of the session in water supplied via the cup filler outlet and side water tap from the sink with 2 cfu/mL. However, two cup fillers water and one side water taps from Polyclinic level 17 showed a slightly higher bacterial colonies with 4 cfu/mL and 6 cfu/mL of microbes. At the end of the session, result showed that higher bacterial count from Polyclinic level 17 than Polyclinic level 16 with the highest reading of 40 cfu/mL. The findings were considered low and the water was safe for the dental procedures. The quality of water supplied at the Faculty of Dentistry, USIM was within the limits recommended by the American Dental Association, i.e. bacterial loads of not more than 200 cfu/mL for dental procedures.
    Matched MeSH terms: Water; Water Supply
  20. Prommi T, Payakka A
    Sains Malaysiana, 2015;44:707-717.
    Biodiversity of aquatic insect and physicochemical water quality parameters in Mae Tao and Mae Ku watersheds were
    assessed bi-monthly from February 2011 to February 2012. A total of 59 families representing 9 orders were recorded.
    At order level, Trichoptera was found at the highest frequency in total abundance (45.75%) followed by Ephemeroptera
    (18.06%), Hemiptera (13.45%), Odonata (9.62%), Diptera (8.17%), Coleoptera (4.6%), Megaloptera (0.17%),
    Lepidoptera (0.11%) and Plecoptera (0.07%). The family Hydropsychidae was the most prominent and the most abundant
    aquatic insect taxa followed by Chironomidae. Water temperature, dissolved oxygen and ammonia-nitrogen were similar
    at all sampling stations. Significant variations in pH, electrical conductivity, total dissolved solids, sulfate, nitrate-nitrogen
    and alkalinity were found at all sampling stations. Taxa richness and diversity index significantly correlated with dissolved
    oxygen, sulfate, nitrate-nitrogen and ammonia-nitrogen (p<0.05, p<0.01). Physicochemical data and biological data
    showed that mostly the surface water quality in Mae Tao and Mae Ku watersheds were within Type III of The Surface
    Water Standard for Agriculture and Water Quality for Protection of Aquatic Resources in Thailand.
    Matched MeSH terms: Water; Water Quality
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links