Displaying publications 141 - 160 of 478 in total

Abstract:
Sort:
  1. Jamilan MA, Abdullah J, Alang Ahmad SA, Md Noh MF
    J Food Sci Technol, 2019 Aug;56(8):3846-3853.
    PMID: 31413410 DOI: 10.1007/s13197-019-03855-x
    In this work, voltammetric study based on cetyltrimethylammonium bromide (CTAB) as an ion-pairing agent for the determination of iodine level in iodized table salt has been explored. CTAB was used as an intermediate compound between iodide (I-) and the electrode due to its ability to dissociate to produce cetyltrimethylammonium ions ([CTA]+). The [CTA]+ with a long hydrophobic alkyl chain can be directly adsorbed onto the surface of the working electrode, and this in turns coated the electrode with cationic charge and enhance the electrode ability to bind to iodide (I-) and other molecular iodine ions. A mixture of iodide and CTAB ([CTA]+I-) was prepared and potential of 1.0 V for 60.0 s was applied to pre-concentrate the solution on the working electrode causing the [CTA]+I- to oxidize to iodine (I2). The produced I2 immediately react with chloride ion (Cl-) from the electrolyte of hydrochloric acid (HCl) to produce I2Cl- and form ion-pair with CTA+ as [CTA]+I2Cl-. The linear calibration curve of the developed method towards iodide was in the concentration range of 0.5-4.0 mg/L with sensitivity of - 1.383 µA mg/L-1 cm-2 (R2 = 0.9950), limit of detection (LOD) of 0.3 mg/L and limit of quantification (LOQ) of 1.0 mg/L, respectively. The proposed method indicates good agreement with the standard method for iodine determination with recovery range from 95.0 to 104.3%. The developed method provided potential application as a portable on-site iodine detector.
    Matched MeSH terms: Electrodes
  2. Al'Abri AM, Abdul Halim SN, Abu Bakar NK, Saharin SM, Sherino B, Rashidi Nodeh H, et al.
    J Environ Sci Health B, 2019;54(12):930-941.
    PMID: 31407615 DOI: 10.1080/03601234.2019.1652072
    This article demonstrates the first application of a copper-based porous coordination polymer (BTCA-P-Cu-CP) as a carbon paste electrode (CPE) modifier for the detection of malathion. The electrochemical behavior of BTCA-P-Cu-CP/CPE was explored using cyclic voltammetry (CV) while chrono-amperometry methods were applied for the analytical evaluation of the sensor performance. Under optimized conditions, the developed sensor exhibited high reproducibility, stability, and wide dynamic range (0.6-24 nM) with the limits of detection and sensitivity equal to 0.17 nM and 5.7 µAnMcm-1, respectively, based on inhibition signal measurement. Furthermore, the presence of common coexisting interfering species showed a minor change in signals (<4.4%). The developed sensor has been applied in the determination of malathion in spiked vegetable extracts. It exhibited promising results in term of fast and sensitive determination of malathion in real samples at trace level with recoveries of 91.0 to 104.4%. (RSDs < 5%, n = 3). A comparison of the two studied techniques showed that the HPLC technique is unable to detect malathion when the concentration is lower than 1.8 µM while 0.006 µM is detected with appropriate RSDs 0.2-5.2% (n = 3) by amperometric method. Due to the high sensitivity and selectivity, this new electrochemical sensor will be useful for monitoring trace malathion in real samples.
    Matched MeSH terms: Electrodes
  3. Md Fuad Bahari, Abdul Rahman Omar1, Darius Gnanaraj Solomon, Nor Hayati Saad, Isa Halim
    Scientific Research Journal, 2006;3(2):31-44.
    MyJurnal
    Occupational health is considered as a crucial element in almost every Small
    and Medium Industries (SMIs) and it is believed to be one of vital challenges
    that can influence productivity and competitiveness. It has been known that
    the metal stamping industry involved a lot of materials handling tasks such as
    carrying stamped parts from machine to packaging section, transferring moulds
    from tools store to machines, sorting the finished products and others.
    Appropriate materials handling equipments are not often provided in SMIs
    because of the limitation of capital and lack of ergonomics awareness. The
    workers have to handle the materials and goods manually. These practices
    may lead to occupational injuries particularly back pain and musculoskeletal
    injuries. The objectives of the research are to assess and analyze the muscles
    activity of workers in metal stamping industry. Three male workers who
    performed metal stamping process using manual technique were participated
    in the research. Ergonomic assessment associated with Surface
    Electromyography (SEMG) was used to capture and interpret the data related
    to muscles activity at before and after the ergonomic intervention. For the
    purpose of muscle activity assessment, SEMG electrodes were attached to eight
    critical muscles: deltoid muscle-medial part (left), deltoid muscle-medial part
    (right), trapezius muscle (left), trapezius muscle (right), erector spinae muscle
    (left), erector spinae muscle (right), gastrocnemius muscle (left) and
    Matched MeSH terms: Electrodes
  4. Sagadevan S, Marlinda AR, Johan MR, Umar A, Fouad H, Alothman OY, et al.
    J Colloid Interface Sci, 2020 Jan 15;558:68-77.
    PMID: 31585223 DOI: 10.1016/j.jcis.2019.09.081
    We demonstrate the preparation of nanostructures cobalt oxide/reduced graphene oxide (Co3O4/rGO) nanocomposites by a simple one-step cost-effective hydrothermal technique for possible electrode materials in supercapacitor application. The X-ray diffraction patterns were employed to confirm the nanocomposite crystal system of Co3O4/rGO by demonstrating the existence of normal cubic spinel structure of Co3O4 in the matrix of Co3O4/rGO nanocomposite. FTIR and FT-Raman studies manifested the structural behaviour and quality of prepared Co3O4/rGO nanocomposite. The optical properties of the nanocomposite Co3O4/rGO have been investigated by UV absorption spectra. The SEM/TEM images showed that the Co3O4 nanoparticles in the Co3O4/rGO nanocomposites were covered over the surface of the rGO sheets. The electrical properties were analyzed in terms of real and imaginary permittivity, dielectric loss and AC conductivity. The electrocatalytic activities of synthesized Co3O4/rGO nanocomposites were determined by cyclic voltammetry and charge-discharge cycle to evaluate the supercapacitive performance. The specific capacitance of 754 Fg-1 was recorded for Co3O4/rGO nanocomposite based electrode in three electrode cell system. The electrode material exhibited an acceptable capability and excellent long-term cyclic stability by maintaining 96% after 1000 continuous cycles. These results showed that the prepared sample could be an ideal candidate for high-energy application as electrode materials. The synthesized Co3O4/rGO nanocomposite is a versatile material and can be used in various application such as fuel cells, electrochemical sensors, gas sensors, solar cells, and photocatalysis.
    Matched MeSH terms: Electrodes
  5. Steiner JD, Cheng H, Walsh J, Zhang Y, Zydlewski B, Mu L, et al.
    ACS Appl Mater Interfaces, 2019 Oct 16;11(41):37885-37891.
    PMID: 31589393 DOI: 10.1021/acsami.9b14729
    Elemental doping represents a prominent strategy to improve interfacial chemistry in battery materials. Manipulating the dopant spatial distribution and understanding the dynamic evolution of the dopants at the atomic scale can inform better design of the doping chemistry for batteries. In this work, we create a targeted hierarchical distribution of Ti4+, a popular doping element for oxide cathode materials, in LiNi0.8Mn0.1Co0.1O2 primary particles. We apply multiscale synchrotron/electron spectroscopy and imaging techniques as well as theoretical calculations to investigate the dynamic evolution of the doping chemical environment. The Ti4+ dopant is fully incorporated into the TMO6 octahedral coordination and is targeted to be enriched at the surface. Ti4+ in the TMO6 octahedral coordination increases the TM-O bond length and reduces the covalency between (Ni, Mn, Co) and O. The excellent reversibility of Ti4+ chemical environment gives rise to superior oxygen reversibility at the cathode-electrolyte interphase and in the bulk particles, leading to improved stability in capacity, energy, and voltage. Our work directly probes the chemical environment of doping elements and helps rationalize the doping strategy for high-voltage layered cathodes.
    Matched MeSH terms: Electrodes
  6. Naje AS, Ajeel MA, Ali IM, Al-Zubaidi HAM, Alaba PA
    Water Sci Technol, 2019 Aug;80(3):458-465.
    PMID: 31596257 DOI: 10.2166/wst.2019.289
    In this work, landfill leachate treatment by electrocoagulation process with a novel rotating anode reactor was studied. The influence of rotating anode speed on the removal efficiency of chemical oxygen demand (COD), total dissolved solids (TDS), and total suspended solids (TSS) of raw landfill leachate was investigated. The influence of operating parameters like leachate pH, leachate temperature, current, and inter-distance between the cathode rings and anode impellers on the electrocoagulation performance were also investigated. The results revealed the optimum rotating speed is 150 rpm and increasing the rotating speed above this value led to reducing process performance. The leachate electrocoagulation treatment process favors the neutral medium and the treatment performance increases with increasing current intensity. Furthermore, the electrocoagulation treatment performance improves with increasing leachate temperature. However, the performance reduces with increasing inter-electrode distance.
    Matched MeSH terms: Electrodes
  7. Vinoth S, Ong WJ, Pandikumar A
    J Colloid Interface Sci, 2021 Jun;591:85-95.
    PMID: 33592528 DOI: 10.1016/j.jcis.2021.01.104
    Cobalt incorporated sulfur-doped graphitic carbon nitride with bismuth oxychloride (Co/S-gC3N4/BiOCl) heterojunction is prepared by an ultrasonically assisted hydrothermal treatment. The heterojunction materials have employed in photoelectrochemical (PEC) water splitting. The PEC activity and stability of the materials are promoted by constructing an interface between the visible light active semiconductor photocatalyst and cocatalysts. The photocurrent density of Co-9% S-gC3N4/BiOCl has attained 393.0 μA cm-2 at 1.23 V vs. RHE, which is 7-fold larger than BiOCl and ~3-fold higher than 9% S-gC3N4/BiOCl. The enhanced PEC activity can be attributed to the improved electron-hole charge separation and the boosted charge transfer is confirmed by photoluminescence (PL) and electrochemical impedance spectroscopy (EIS) analysis. The fabricated Co/S-gC3N4/BiOCl nanohybrid material has exhibited high stability of up to 10,800 s (3 h) at 1.23 V vs. RHE during PEC water splitting reaction and the obtained photo-conversion efficiency is 3.7-fold greater than S-gC3N4/BiOCl and 17-fold higher than BiOCl. The FESEM and HRTEM images have revealed the formation of heterojunction interface between S-gC3N4 and BiOCl and the elemental mapping has confirmed the presence of cobalt over S-gC3N4/BiOCl. The heterojunction interface has facilitated the photo-excited charge separation and transport across the electrode/electrolyte interface and also the flat-band potential, which is confirmed by Mott-Schottky analysis.
    Matched MeSH terms: Electrodes
  8. Gilbert Ringgit, Shafiquzzaman Siddiquee, Suryani Saallah, Mohammad Tamrin Mohamad Lal
    MyJurnal
    In this work, an electrochemical method for detection of trace amount of aluminium (Al3+), a heavy metal ion, based on a bare gold electrode (AuE) was developed. Current responses of the AuE under various type of electrolytes, redox indicators, pH, scan rate and accumulation time were investigated using cyclic voltammetry (CV) method to obtain the optimum conditions for Al3+ detection. The sensing properties of the AuE towards the target ion with different concentrations were investigated using differential pulse voltammetry (DPV) method. From the CV results, the optimal conditions for the detection of Al3+ were Tris-HCl buffer (0.1 M, pH 2) supported by 5 mM Prussian blue with scan rate and accumulation time respectively of 100 mVs−1 and 15 s. Under the optimum conditions, the DPV method was detected with different concentrations of aluminium ion ranging from 0.2 to 1.0 ppm resulted in a good linear regression r² = 0.9806. This result suggests that the optimisation of the basic parameters in electrochemical detection using AuE is crucial before further modification of the Au-electrode to improve the sensitivity and selectivity especially for the low concentration of ion detection. The developed method has a great potential for rapid detection of heavy metal ion (Al3+) in drinking water samples.
    Matched MeSH terms: Electrodes
  9. Hassan H, Jin B, Dai S
    Environ Technol, 2021 Apr 01.
    PMID: 33749543 DOI: 10.1080/09593330.2021.1907451
    The interactions within microbial, chemical and electronic elements in microbial fuel cell (MFC) system can be crucial for its bio-electrochemical activities and overall performance. Therefore, this study explored polynomial models by response surface methodology (RSM) to better understand interactions among anode pH, cathode pH and inoculum size for optimising MFC system for generation of electricity and degradation of 2,4-dichlorophenol. A statistical central composite design by RSM was used to develop the quadratic model designs. The optimised parameters were determined and evaluated by statistical results and the best MFC systematic outcomes in terms of current generation and chlorophenol degradation. Statistical results revealed that the optimum current density of 106 mA/m2 could be achieved at anode pH 7.5, cathode pH 6.3-6.6 and 21-28% for inoculum size. Anode-cathode pHs interaction was found to positively influence the current generation through extracellular electron transfer mechanism. The phenolic degradation was found to have lower response using these three parameter interactions. Only inoculum size-cathode pH interaction appeared to be significant where the optimum predicted phenolic degradation could be attained at pH 7.6 for cathode pH and 29.6% for inoculum size.
    Matched MeSH terms: Electrodes
  10. Letchumanan I, Md Arshad MK, Gopinath SCB, Rajapaksha RDAA, Balakrishnan SR
    Sci Rep, 2020 Apr 22;10(1):6783.
    PMID: 32321969 DOI: 10.1038/s41598-020-63831-w
    Field of generating a surface thin film is emerging broadly in sensing applications to obtain the quick and fast results by forming the high-performance sensors. Incorporation of thin film technologies in sensor development for the better sensing could be a promising way to attain the current requirements. This work predominantly delineates the fabrication of the dielectric sensor using two different sensing materials (Gold and Aluminium). Conventional photolithography was carried out using silicon as a base material and the photo mask of the dielectric sensor was designed by AutoCAD software. The physical characterization of the fabricated sensor was done by Scanning Electron Microscope, Atomic Force Microscope, High Power Microscope and 3D-nano profiler. The electrical characterization was performed using Keithley 6487 picoammeter with a linear sweep voltage of 0 to 2 V at 0.01 V step voltage. By pH scouting, I-V measurements on the bare sensor were carried out, whereby the gold electrodes conducts a least current than aluminium dielectrodes. Comparative analysis with pH scouting reveals that gold electrode is suitable under varied ionic strengths and background electrolytes, whereas aluminium electrodes were affected by the extreme acid (pH 1) and alkali (pH 12) solutions.
    Matched MeSH terms: Electrodes
  11. B Aziz S, S Marf A, Dannoun EMA, Brza MA, Abdullah RM
    Polymers (Basel), 2020 Sep 24;12(10).
    PMID: 32987807 DOI: 10.3390/polym12102184
    This report presents a facile and efficient methodology for the fabrication of plasticized polyvinyl alcohol (PVA):chitosan (CS) polymer electrolytes using a solution cast technique. Regarding characterizations of electrical properties and structural behavior, the electrochemical impedance spectroscopy (EIS) and X-ray diffraction (XRD) are used, respectively. Crystalline peaks appear in the XRD pattern of the PVA:CS:NH4I while no peaks can be seen in the XRD pattern of plasticized systems. The degree of crystallinity is calculated for all the samples from the deconvoluted area of crystalline and amorphous phases. Considering the EIS measurements, the most conductive plasticized system shows a relatively high conductivity of (1.37 × 10-4) S/cm, which is eligible for applications in energy storage devices. The analysis of the EIS spectra reveals a decrease in bulk resistance which indicates an increase in free ion carriers. The electrical equivalent circuit (EEC) model is used in the analysis of EIS plots. Dielectric properties are modified with the addition of glycerol as a plasticizer. It is proved that the addition of glycerol as a plasticizer lowers ion association. It also shows, at the low-frequency region, a large value of a dielectric constant which is correlated with electrode polarization (EP). The distribution of relaxation times is associated with conducting ions.
    Matched MeSH terms: Electrodes
  12. Arifin MH, Kayode JS, Ismail MKI, Abdullah AM, Embrandiri A, Nazer NSM, et al.
    MethodsX, 2021;8:101182.
    PMID: 33365262 DOI: 10.1016/j.mex.2020.101182
    A novel methodological approach was developed to quantified the volume of industrial waste desposal (IWD) site, combined with municipal waste materials (MWM), through the integration of a non-invasive, fast, and less expenssive RES2-D Electrical Resistivity Technique (ERT), using Wenner-Schlumberger electrode array geophysical method with Oasis Montaj software. Underground water bearing structures, and the eco-system are being contaminated through seepage of the plumes emanating from the mixtures of the industrial waste materials (IWM), made of moist cemented soil with municipal solid wastes (MSW) dumped at the site. The distribution of the contiminant hazardous plumes emanating from the waste materials' mixtures within the subsurface structural lithological layers was clearly map and delineated within the near-surface structures, using the triplicate technique to collect samples of the soil with the waste mixtures, and the water analysis for the presence of dissolved ions. The deployed method helped to monitor the seepage of the contaminant leachate plumes to the groundwater aquifer units via the ground surface, through the subsurface stratum lithological layers, and hence, estimation of the waste materials' volume was possibly approximated to be 312,000 m3. In summary, the novel method adopted are as presented below:•The novel method is transferable, reproduce-able, and most importantly, it is unambiguous technique for the quantification of environmental, industrial and municipal waste materials.•It helps to map the distribution of the plumes emanating from the waste materials' mixtures within the subsurface structural lithological layers that was clearly delineated within the near-surface structures underlain the study site.•The procedure helped in the monitoring of leachate contaminants plumes seepages into the surface water bodies and the groundwater aquifer units, via the ground surface, through to the porous subsurface stratum lithological layers.
    Matched MeSH terms: Electrodes
  13. Tangthuam P, Pimoei J, Mohamad AA, Mahlendorf F, Somwangthanaroj A, Kheawhom S
    Heliyon, 2020 Oct;6(10):e05391.
    PMID: 33150216 DOI: 10.1016/j.heliyon.2020.e05391
    The aim of this research is an evaluation of polyelectrolytes. In the application of zinc-iodine batteries (ZIBs), polyelectrolytes have high stability, good cationic exchange properties and high ionic conductivity. Polyelectrolytes are also cost-effective. Important component of ZIBs are cation exchange membranes (CEMs). CEMs prevent the crossover of iodine and polyiodide from zinc (Zn) electrodes. However, available CEMs are costly and have limited ionic conductivity at room temperature. CEMs are low-cost, have high stability and good cationic exchange properties. Herein, polyelectrolyte membranes prepared from carboxymethyl cellulose (CMC) and polyvinyl alcohol (PVA) are examined. It is seen that an increase in the ratio of PVA leads to enhanced ionic conductivity as well as increased iodine and polyiodide crossover. ZIBs using polyelectrolytes having 75:25 wt.% CMC/PVA and 50:50 wt.% CMC/PVA show decent performance and cycling stability. Due to their low-cost and other salient features, CMC/PVA polyelectrolytes prove they have the capacity for use as cation exchange separators in ZIBs.
    Matched MeSH terms: Electrodes
  14. Lin R, Hu E, Liu M, Wang Y, Cheng H, Wu J, et al.
    Nat Commun, 2019 04 09;10(1):1650.
    PMID: 30967531 DOI: 10.1038/s41467-019-09248-0
    Despite the importance of studying the instability of delithiated cathode materials, it remains difficult to underpin the degradation mechanism of lithium-rich cathode materials due to the complication of combined chemical and structural evolutions. Herein, we use state-of-the-art electron microscopy tools, in conjunction with synchrotron X-ray techniques and first-principle calculations to study a 4d-element-containing compound, Li2Ru0.5Mn0.5O3. We find surprisingly, after cycling, ruthenium segregates out as metallic nanoclusters on the reconstructed surface. Our calculations show that the unexpected ruthenium metal segregation is due to its thermodynamic insolubility in the oxygen deprived surface. This insolubility can disrupt the reconstructed surface, which explains the formation of a porous structure in this material. This work reveals the importance of studying the thermodynamic stability of the reconstructed film on the cathode materials and offers a theoretical guidance for choosing manganese substituting elements in lithium-rich as well as stoichiometric layer-layer compounds for stabilizing the cathode surface.
    Matched MeSH terms: Electrodes
  15. Shamsuddin SH, Gibson TD, Tomlinson DC, McPherson MJ, Jayne DG, Millner PA
    Biosens Bioelectron, 2021 Apr 15;178:113013.
    PMID: 33508539 DOI: 10.1016/j.bios.2021.113013
    Polyoctopamine (POct), an amine-functionalised non-conducting polymer, as the transducer layer in an electrochemical biosensor, is presented. This polymer offers versatile covalent coupling either through thiol linker conjugation, carboxyl or aldehyde functional groups without the requirement of pre- or post-surface activation. The colorectal cancer biomarker carcinoembryonic antigen (CEA) was selected as the target analyte, whilst an antibody and a synthetic binding protein, an Affimer, were used as distinct bioreceptors to demonstrate the versatility of polyoctopamine as a transducer polymer layer for oriented immobilisation of the bioreceptors. The electrodeposited polymer layer was characterised using cyclic voltammetry, electrochemical impedance spectroscopy, and on-sensor chemiluminescent blotting. The performance of optimised POct-based biosensors were tested in spiked human serum. Results showed that the electropolymerisation of octopamine on screen printed gold electrode generates a thin polymer film with low resistance. Close proximity of the immobilised bioreceptors to the transducer layer greatly enhanced the sensitivity detection. The sensitivity of the smaller monomeric bioreceptor (Affimer, 12.6 kDa) to detect CEA was comparable to the dimeric antibody (150 kDa) with limit of detection at 11.76 fM which is significantly lower than the basal clinical levels of 25 pM. However, the Affimer-based sensor had a narrower dynamic range compared to the immunosensor (1-100 fM vs. 1 fM - 100 nM, respectively). All electrochemical measurements were done in less than 5 min with small sample volumes (10 μl). Hence, polyoctopamine features a simple fabrication of impedimetric biosensors using amine-functionalisation technique, provides rapid response time with enhanced sensitivity and label-free detection.
    Matched MeSH terms: Electrodes
  16. Lim SS, Fontmorin JM, Pham HT, Milner E, Abdul PM, Scott K, et al.
    Sci Total Environ, 2021 Jul 01;776:145934.
    PMID: 33647656 DOI: 10.1016/j.scitotenv.2021.145934
    Microbial fuel cells (MFCs) that simultaneously remove organic contaminants and recovering metals provide a potential route for industry to adopt clean technologies. In this work, two goals were set: to study the feasibility of zinc removal from industrial effluents using MFCs and to understand the removal process by using reaction rate models. The removal of Zn2+ in MFC was over 96% for synthetic and industrial samples with initial Zn2+ concentrations less than 2.0 mM after 22 h of operation. However, only 83 and 42% of the zinc recovered from synthetic and industrial samples, respectively, was attached on the cathode surface of the MFCs. The results marked the domination of electroprecipitation rather than the electrodeposition process in the industrial samples. Energy dispersive X-ray (EDX) analysis showed that the recovered compound contained not only Zn but also O, evidence that Zn(OH)2 could be formed. The removal of Zn2+ in the MFC followed a mechanism where oxygen was reduced to hydroxide before reacting with Zn2+. Nernst equations and rate law expressions were derived to understand the mechanism and used to estimate the Zn2+ concentration and removal efficiency. The zero-, first- and second-order rate equations successfully fitted the data, predicted the final Zn2+ removal efficiency, and suggested that possible mechanistic reactions occurred in the electrolysis cell (direct reduction), MFC (O2 reduction), and control (chemisorption) modes. The half-life, t1/2, of the Zn2+ removal reaction using synthetic and industrial samples was estimated to be 7.0 and 2.7 h, respectively. The t1/2 values of the controls (without the power input from the MFC bioanode) were much slower and were recorded as 21.5 and 7.3 h for synthetic and industrial samples, respectively. The study suggests that MFCs can act as a sustainable and environmentally friendly technology for heavy metal removal without electrical energy input or the addition of chemicals.
    Matched MeSH terms: Electrodes
  17. Xu S, Xue Y, Guo F, Xu M, Gopinath SCB, Mao X
    3 Biotech, 2020 May;10(5):227.
    PMID: 32373419 DOI: 10.1007/s13205-020-02216-2
    Herein, a rapid and sensitive current-volt measurement was developed for identifying the IS6110 DNA sequence to diagnose Mycobacterium tuberculosis (TB). An aminated capture probe was immobilized on a 1,1'-carbonyldiimidazole-functionalized interdigitated electrode (IDE) silica substrate, and the target sequence was detected by complementation. It was found that all tested concentrations displayed a higher response in current changes than the control, and the limit of detection was 10 fM. The sensitivity ranged from 1 to 10 fM. The control sequences with single-, triple-mismatch and noncomplementary sequences showed great discrimination. This rapid and easy DNA detection method helps to identify M. tuberculosis for early-stage diagnosis of TB.
    Matched MeSH terms: Electrodes
  18. Ali MSM, Zainal Z, Hussein MZ, Wahid MH, Bahrudin NN, Muzakir MM, et al.
    Int J Biol Macromol, 2021 Jun 01;180:654-666.
    PMID: 33722623 DOI: 10.1016/j.ijbiomac.2021.03.054
    The present work developed porous carboxymethyl cellulose (CMC) carbon film from lignocellulosic based materials as supercapacitor electrode. Porous CMC carbon films of bamboo (B) and oil palm empty fruit bunch (O) were prepared through simple incipient wetness impregnation method followed by calcination process before incorporation with manganese oxide (Mn2O3). The carbonization produced porous CMC carbon whereby CMCB exhibited higher surface area than CMCO. After Mn2O3 incorporation, the crystallite size of CMCB and CMCO were calculated as 50.09 nm and 42.76 nm, respectively whereas Mn2O3/CMCB and Mn2O3/CMCO composite films were revealed to be 26.71 nm and 35.60 nm in size, respectively. Comparatively, the Mn2O3/CMCB composite film exhibited higher electrochemical performance which was 31.98 mF cm-2 as compared to 24.15 mF cm-2 by Mn2O3/CMCO composite film and both CMC carbon films with fairly stable cycling stability after 1000 charge-discharge cycles. Therefore, it can be highlighted that Mn2O3/CMC composite film as prepared from bamboo and oil palm fruit can potentially become the new electrode materials for supercapacitor application.
    Matched MeSH terms: Electrodes
  19. Wang D, Wong SI, Sunarso J, Xu M, Wang W, Ran R, et al.
    ACS Appl Mater Interfaces, 2021 May 05;13(17):20105-20113.
    PMID: 33886260 DOI: 10.1021/acsami.1c02502
    Hydrocarbon-fueled solid oxide fuel cells (SOFCs) that can operate in the intermediate temperature range of 500-700 °C represent an attractive SOFC device for combined heat and power applications in the industrial market. One of the ways to realize such a device relies upon exploiting an in situ steam reforming process in the anode catalyzed by an anti-carbon coking catalyst. Here, we report a new Ni and Ru bimetal-doped perovskite catalyst, Ba(Zr0.1Ce0.7Y0.1Yb0.1)0.9Ni0.05Ru0.05O3-δ (BZCYYbNRu), with enhanced catalytic hydrogen production activity on n-butane (C4H10), which can resist carbon coking over extended operation durations. Ru in the perovskite lattice inhibits Ni precipitation from perovskite, and the high water adsorption capacity of proton conducting perovskite improves the coking resistance of BZCYYbNRu. When BZCYYbNRu is used as a steam reforming catalyst layer on a Ni-YSZ-supported anode, the single fuel cell not only achieves a higher power density of 1113 mW cm-2 at 700 °C under a 10 mL min-1 C4H10 continuous feed stream at a steam to carbon (H2O/C) ratio of 0.5 but also shows a much better operational stability for 100 h at 600 °C compared with those reported in the literature.
    Matched MeSH terms: Electrodes
  20. Okazaki T, Orii T, Tan SY, Watanabe T, Taguchi A, Rahman FA, et al.
    Anal Chem, 2020 07 21;92(14):9714-9721.
    PMID: 32551577 DOI: 10.1021/acs.analchem.0c01062
    We present an electrochemical long period fiber grating (LPFG) sensor for electroactive species with an optically transparent electrode. The sensor was fabricated by coating indium tin oxide onto the surface of LPFG using a polygonal barrel-sputtering method. LPFG was produced by an electric arc-induced technique. The sensing is based on change in the detection of electron density on the electrode surface during potential application and its reduction by electrochemical redox of analytes. Four typical electroactive species of methylene blue, hexaammineruthenium(III), ferrocyanide, and ferrocenedimethanol were used to investigate the sensor performance. The concentrations of analytes were determined by the modulation of the potential as the change in transmittance around the resonance band of LPFG. The sensitivity of the sensor, particularly to methylene blue, was high, and the sensor responded to a wide concentration range of 0.001 mM to 1 mM.
    Matched MeSH terms: Electrodes
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links