Displaying publications 141 - 160 of 298 in total

Abstract:
Sort:
  1. Musa M, Ali A
    Future Oncol, 2020 Oct;16(29):2329-2344.
    PMID: 32687721 DOI: 10.2217/fon-2020-0384
    Accumulation of cancer-associated fibroblasts (CAFs) in the tumor microenvironment is associated with poor prognosis and recurrence of colorectal cancer (CRC). Despite their prominent roles in colorectal carcinogenesis, there is a lack of robust and specific markers to classify the heterogeneous and highly complex CAF populations. This has resulted in confusing and misleading definitions of CAFs in cancer niche. Advancements in molecular biology approaches have open doors to reliable CAF marker detection methods in various solid tumors. These discoveries would contribute to more efficient screening, monitoring and targeted therapy of CRC thus potentially will reduce cancer morbidity and mortality rates. This review highlights current scenarios, dilemma, translational potentials of CAF biomarker and future therapeutic applications involving CAF marker identification in CRC.
    Matched MeSH terms: Cancer-Associated Fibroblasts/metabolism*; Cancer-Associated Fibroblasts/pathology
  2. Chong Teoh T, J Al-Harbi S, Abdulrahman AY, Rothan HA
    Molecules, 2021 Jul 16;26(14).
    PMID: 34299596 DOI: 10.3390/molecules26144321
    Zika virus (ZIKV) represents a re-emerging threat to global health due to its association with congenital birth defects. ZIKV NS2B-NS3 protease is crucial for virus replication by cleaving viral polyprotein at various junctions to release viral proteins and cause cytotoxic effects in ZIKV-infected cells. This study characterized the inhibitory effects of doxycycline against ZIKV NS2B-NS3 protease and viral replication in human skin cells. The in silico data showed that doxycycline binds to the active site of ZIKV protease at a low docking energy (-7.8 Kcal/mol) via four hydrogen bonds with the protease residues TYR1130, SER1135, GLY1151, and ASP83. Doxycycline efficiently inhibited viral NS2B-NS3 protease at average human temperature (37 °C) and human temperature with a high fever during virus infection (40 °C). Interestingly, doxycycline showed a higher inhibitory effect at 40 °C (IC50 = 5.3 µM) compared to 37 °C (9.9 µM). The virus replication was considerably reduced by increasing the concentration of doxycycline. An approximately 50% reduction in virus replication was observed at 20 µM of doxycycline. Treatment with 20 µM of doxycycline reduced the cytopathic effects (CPE), and the 40 µM of doxycycline almost eliminated the CPE of human skin cells. This study showed that doxycycline binds to the ZIKV protease and inhibits its catalytic activity at a low micro-molecular concentration range. Treatment of human skin fibroblast with doxycycline eliminated ZIKV infection and protected the cells against the cytopathic effects of the infection.
    Matched MeSH terms: Fibroblasts/metabolism*; Fibroblasts/virology
  3. Saifullah B, El Zowalaty ME, Arulselvan P, Fakurazi S, Webster TJ, Geilich BM, et al.
    Int J Nanomedicine, 2016;11:3225-37.
    PMID: 27486322 DOI: 10.2147/IJN.S102406
    The chemotherapy for tuberculosis (TB) is complicated by its long-term treatment, its frequent drug dosing, and the adverse effects of anti-TB drugs. In this study, we have developed two nanocomposites (A and B) by intercalating the anti-TB drug isoniazid (INH) into Zn/Al-layered double hydroxides. The average size of the nanocomposites was found to bê164 nm. The efficacy of the Zn/Al-layered double hydroxides intercalated INH against Mycobacterium tuberculosis was increased by approximately three times more than free INH. The nanocomposites were also found to be active against Gram-positive and -negative bacteria. Compared to the free INH, the nanodelivery formulation was determined to be three times more biocompatible with human normal lung fibroblast MRC-5 cells and 3T3 fibroblast cells at a very high concentration of 50 µg/mL for up to 72 hours. The in vitro release of INH from the Zn/Al-layered double hydroxides was found to be sustained in human body-simulated buffer solutions of pH 4.8 and 7.4. This research is a step forward in making the TB chemotherapy patient friendly.
    Matched MeSH terms: Fibroblasts/cytology; Fibroblasts/drug effects
  4. Rezvanian M, Ahmad N, Mohd Amin MC, Ng SF
    Int J Biol Macromol, 2017 Apr;97:131-140.
    PMID: 28064048 DOI: 10.1016/j.ijbiomac.2016.12.079
    Natural polymer-based hydrogel films have great potential for biomedical applications and are good candidates for wound dressings. In this study, we aimed to develop simvastatin-loaded crosslinked alginate-pectin hydrogel films by ionic crosslinking to improve the mechanical characteristics, wound fluid uptake and drug release behavior. Alginate-pectin hydrocolloid films were chemically crosslinked by immersing in different concentrations of CaCl2 (0.5-3% w/v) for 2-20min. The degree of crosslinking was influenced by both contact time and CaCl2 concentration. The optimized conditions for crosslinking were 0.5% and 1% (CaCl2) for 2min. The optimized hydrogel films were then characterized for their physical, mechanical, morphological, thermal, in vitro drug release, and cytocompatibility profiles. Crosslinking improved the mechanical profile and wound fluid uptake capacity of dressings. The hydrogel films were able to maintain their physical integrity during use, and the best results were obtained with the film in which the extent of crosslinking was low (0.5%). Thermal analysis confirmed that the crosslinking process enhanced the thermal stability of hydrogel films. Sustained, slow release of simvastatin was obtained from the crosslinked films and in vitro cytotoxicity assay demonstrated that the hydrogel films were non-toxic.
    Matched MeSH terms: Fibroblasts/cytology; Fibroblasts/drug effects
  5. Moniri M, Boroumand Moghaddam A, Azizi S, Abdul Rahim R, Zuhainis SW, Navaderi M, et al.
    Int J Nanomedicine, 2018;13:5097-5112.
    PMID: 30254435 DOI: 10.2147/IJN.S164573
    Background: In recent years, bacterial nanocellulose (BNC) based nanocomposites have been developed to promote healing property and antibacterial activity of BNC wound dressing. Molecular study can help to better understanding about interaction of genes and pathways involved in healing progression.

    Objectives: The aim of this study was to prepare bacterial nanocellulose/silver (BNC/Ag) nanocomposite films as ecofriendly wound dressing in order to assess their physical, cytotoxicity and antimicrobial properties. The in vitro molecular study was performed to evaluate expression of genes involved in healing of wounds after treatment with BNC/Ag biofilms.

    Study design materials and methods: Silver nanoparticles were formed by using Citrullus colocynthis extract within new isolated bacterial nanocellulose (BNC) RM1. The nanocomposites were characterized using X-ray diffraction, Fourier transform infrared, and field emission scanning electron microscopy. Besides, swelling property and Ag release profile of the nanocomposites were studied. The ability of nanocomposites to promote wound healing of human dermal fibroblast cells in vitro was studied. Bioinformatics databases were used to identify genes with important healing effect. Key genes which interfered with healing were studied by quantitative real time PCR.

    Results: Spherical silver nanoparticles with particle size ranging from 20 to 50 nm were synthesized and impregnated within the structure of BNC. The resulting nanocomposites showed significant antibacterial activities with inhibition zones ranging from 7±0.25 to 16.24±0.09 mm against skin pathogenic bacteria. Moreover, it was compatible with human fibroblast cells (HDF) and could promote in vitro wound healing after 48h. Based on bioinformatics databases, the genes of TGF-β1, MMP2, MMP9, CTNNB1, Wnt4, hsa-miR-29b-3p and hsa-miR-29c-3p played important role in wound healing. The nanocomposites had an effect in expression of the genes in healing. Thus, the BNC/Ag nanocomposite can be used to heal wound in a short period and simple manner.

    Conclusion: This eco-friendly nanocomposite with excellent antibacterial activities and healing property confirming its utility as potential wound dressings.

    Matched MeSH terms: Fibroblasts/drug effects; Fibroblasts/metabolism
  6. Tan HH, Thomas NF, Inayat-Hussain SH, Chan KM
    PLoS One, 2020;15(5):e0223344.
    PMID: 32365104 DOI: 10.1371/journal.pone.0223344
    Stilbenes are a group of chemicals characterized with the presence of 1,2-diphenylethylene. Previously, our group has demonstrated that synthesized (E)-N-(2-(3, 5-dimethoxystyryl) phenyl) furan-2-carboxamide (BK3C231) possesses potential chemopreventive activity specifically inducing NAD(P)H:quinone oxidoreductase 1 (NQO1) protein expression and activity. In this study, the cytoprotective effects of BK3C231 on cellular DNA and mitochondria were investigated in normal human colon fibroblast, CCD-18Co cells. The cells were pretreated with BK3C231 prior to exposure to the carcinogen 4-nitroquinoline 1-oxide (4NQO). BK3C231 was able to inhibit 4NQO-induced cytotoxicity. Cells treated with 4NQO alone caused high level of DNA and mitochondrial damages. However, pretreatment with BK3C231 protected against these damages by reducing DNA strand breaks and micronucleus formation as well as decreasing losses of mitochondrial membrane potential (ΔΨm) and cardiolipin. Interestingly, our study has demonstrated that nitrosative stress instead of oxidative stress was involved in 4NQO-induced DNA and mitochondrial damages. Inhibition of 4NQO-induced nitrosative stress by BK3C231 was observed through a decrease in nitric oxide (NO) level and an increase in glutathione (GSH) level. These new findings elucidate the cytoprotective potential of BK3C231 in human colon fibroblast CCD-18Co cell model which warrants further investigation into its chemopreventive role.
    Matched MeSH terms: Fibroblasts/cytology; Fibroblasts/drug effects
  7. Mamidi MK, Pal R, Mori NA, Arumugam G, Thrichelvam ST, Noor PJ, et al.
    J Cell Biochem, 2011 May;112(5):1353-63.
    PMID: 21337383 DOI: 10.1002/jcb.23052
    Among the different parameters governing the successful derivation and expansion of human embryonic stem cells (hESC), feeder layers play the most important role. Human feeders in form of human mesenchymal stromal cells (hMSCs) and human foreskin fibroblasts (HFFs) lay the foundation for eradication of animal-derived hESC culture system. In this study we explored the potential of human foreskin derived mesenchymal like stromal cells (HF-MSCs) to support self renewal and pluripotency of hESC. The MSCs isolated from human foreskin were found to be resistant to standard concentrations and duration of mitomycin-C treatment. Growth pattern, gene profiling (Oct-4, Nanog, Sox-2, Rex-1), cytoskeletal protein expression (vimentin, nestin) and tri-lineage differentiation potential into adipocytes, chondrocytes and osteocytes confirmed their mesenchymal stromal cell status. Further, the HF-MSCs were positive for CD105, CD166, CD73, CD44, CD90, SSEA-4, and negative for CD34, CD45, HLA-DR cell-surface markers and were found to exhibit BM-MSC-like characteristics. hESC lines co-cultured with HF-MSC feeders showed expression of expected pluripotent transcription factors Oct-4, Nanog, Sox-2, GDF-3, Rex-1, STELLAR, ABCG2, Dppa5, hTERT; surface markers SSEA-4, TRA-1-81 and maintained their cytogenetic stability during long term passaging. These novel feeders also improved the formation of embryoid bodies (EBs) from hESC which produced cell types representing three germ layers. This culture system has the potential to aid the development of clinical-grade hESCs for regenerative medicine and drug screening. Further, we envisage foreskin can serve as a valuable source of alternative MSCs for specific therapeutic applications.
    Matched MeSH terms: Fibroblasts/cytology; Fibroblasts/metabolism
  8. Dorniani D, Hussein MZ, Kura AU, Fakurazi S, Shaari AH, Ahmad Z
    Drug Des Devel Ther, 2013;7:1015-26.
    PMID: 24106420 DOI: 10.2147/DDDT.S43035
    BACKGROUND: Iron oxide nanoparticles are of considerable interest because of their use in magnetic recording tape, ferrofluid, magnetic resonance imaging, drug delivery, and treatment of cancer. The specific morphology of nanoparticles confers an ability to load, carry, and release different types of drugs.

    METHODS AND RESULTS: We synthesized superparamagnetic nanoparticles containing pure iron oxide with a cubic inverse spinal structure. Fourier transform infrared spectra confirmed that these Fe3O4 nanoparticles could be successfully coated with active drug, and thermogravimetric and differential thermogravimetric analyses showed that the thermal stability of iron oxide nanoparticles coated with chitosan and 6-mercaptopurine (FCMP) was markedly enhanced. The synthesized Fe3O4 nanoparticles and the FCMP nanocomposite were generally spherical, with an average diameter of 9 nm and 19 nm, respectively. The release of 6-mercaptopurine from the FCMP nanocomposite was found to be sustained and governed by pseudo-second order kinetics. In order to improve drug loading and release behavior, we prepared a novel nanocomposite (FCMP-D), ie, Fe3O4 nanoparticles containing the same amounts of chitosan and 6-mercaptopurine but using a different solvent for the drug. The results for FCMP-D did not demonstrate "burst release" and the maximum percentage release of 6-mercaptopurine from the FCMP-D nanocomposite reached about 97.7% and 55.4% within approximately 2,500 and 6,300 minutes when exposed to pH 4.8 and pH 7.4 solutions, respectively. By MTT assay, the FCMP nanocomposite was shown not to be toxic to a normal mouse fibroblast cell line.

    CONCLUSION: Iron oxide coated with chitosan containing 6-mercaptopurine prepared using a coprecipitation method has the potential to be used as a controlled-release formulation. These nanoparticles may serve as an alternative drug delivery system for the treatment of cancer, with the added advantage of sparing healthy surrounding cells and tissue.

    Matched MeSH terms: Fibroblasts/drug effects; Fibroblasts/metabolism
  9. Wahgiman NA, Salim N, Abdul Rahman MB, Ashari SE
    Int J Nanomedicine, 2019;14:7323-7338.
    PMID: 31686809 DOI: 10.2147/IJN.S212635
    BACKGROUND: Gemcitabine (GEM) is a chemotherapeutic agent, which is known to battle cancer but challenging due to its hydrophilic nature. Nanoemulsion is water-in-oil (W/O) nanoemulsion shows potential as a carrier system in delivering gemcitabine to the cancer cell.

    METHODS: The behaviour of GEM in MCT/surfactants/NaCl systems was studied in the ternary system at different ratios of Tween 80 and Span 80. The system with surfactant ratio 3:7 of Tween 80 and Span 80 was chosen for further study on the preparation of nanoemulsion formulation due to the highest isotropic region. Based on the selected ternary phase diagram, a composition of F1 was chosen and used for optimization by using the D-optimal mixture design. The interaction variables between medium chain triglyceride (MCT), surfactant mixture Tween 80: Span 80 (ratio 3:7), 0.9 % sodium chloride solution and gemcitabine were evaluated towards particle size as a response.

    RESULTS: The results showed that NaCl solution and GEM gave more effects on particle size, polydispersity index and zeta potential of 141.57±0.05 nm, 0.168 and -37.10 mV, respectively. The optimized nanoemulsion showed good stability (no phase separation) against centrifugation test and storage at three different temperatures. The in vitro release of gemcitabine at different pH buffer solution was evaluated. The results showed the release of GEM in buffer pH 6.5 (45.19%) was higher than GEM in buffer pH 7.4 (13.62%). The cytotoxicity study showed that the optimized nanoemulsion containing GEM induced cytotoxicity towards A549 cell and at the same time reduced cytotoxicity towards MRC5 when compared to the control (GEM solution).

    Matched MeSH terms: Fibroblasts/cytology*; Fibroblasts/drug effects
  10. Tengku Ahmad TA, Jaafar F, Jubri Z, Abdul Rahim K, Rajab NF, Makpol S
    PMID: 24655584 DOI: 10.1186/1472-6882-14-108
    The interaction between ionizing radiation and substances in cells will induce the production of free radicals. These free radicals inflict damage to important biomolecules such as chromosomes, proteins and lipids which consequently trigger the expression of genes which are involved in protecting the cells or repair the oxidative damages. Honey has been known for its antioxidant properties and was used in medical and cosmetic products. Currently, research on honey is ongoing and diversifying. The aim of this study was to elucidate the role of Gelam honey as a radioprotector in human diploid fibroblast (HDFs) which were exposed to gamma-rays by determining the expression of genes and proteins involved in cell cycle regulation and cell death.
    Matched MeSH terms: Fibroblasts/drug effects*; Fibroblasts/metabolism; Fibroblasts/radiation effects
  11. Azlina A, Samsudin AR
    Med J Malaysia, 2004 May;59 Suppl B:166-7.
    PMID: 15468870
    In Malaysia, the field of genomics in toxicology is still in infancy. The purpose of this study is to focus on the use of toxicogenomics for determination of gene expressions changes in cultured human fibroblast cells treated with genotoxicology free biomaterial (using Ames test), a locally produced hyroxyapatite. Dose and time response is similar to Ames test with time interval up to 21 days. mRNA is extracted, followed with RT-PCR and polyacrilamide gel electrophoresis. Changes of the gene expressions compared to the non-treated fibroblast mRNA would suggest some gene interactions in the molecule level associated with the exposure of the fibroblast cell line to the biomaterials. Further analysis (cloning & sequencing) shall be carried out to investigate the genes involved as simple changes might not signified toxicity.
    Matched MeSH terms: Fibroblasts
  12. Guo HF, Mohd Ali R, Abd Hamid R, Chang SK, Zainal Z, Khaza'ai H
    Int J Burns Trauma, 2020;10(5):218-224.
    PMID: 33224609
    Burns are injuries on the skin or other tissues. Burns are divided into superficial, partial, and full-thickness, characterized by the depth of the affected tissues. Histological analysis is critical to assess the burn wound healing process. Thus, a systematic evaluation system is imperative for burn research. In the present study, a total of thirty Sprague-Dawley rats were randomly divided into five groups. Deep partial-thickness burn wound was induced on the dorsal part of the rats. Six animals from each group were sacrificed on the 3rd, 7th, 11th, 14th and 21st day post-burn, respectively. Half of the wound tissue was immediately fixed in buffered neutral formalin for hematoxylin & eosin staining. The healing of the epidermis was evaluated with scores ranging from 0 to 7 based on the state of crust on wound surface, the degree of epithelialization as well as the formation of rete ridges. Meanwhile, healing of the dermis was also evaluated with scores ranging from 0 to 7 according to the proportion of adipose cells, inflammatory cells and fibroblasts, the state of collagen deposition as well as the formation of hair follicles. Furthermore, temporal changes of histological score of epidermis and dermis in the skin tissue with deep partial-thickness burn was evaluated. In conclusion, a new comprehensive system for assessing microscopic changes in the healing process of deep partial-thickness burn wound in hematoxylin & eosin staining slides was established, which simplified the scoring process and helped to obtain reproducible and accurate results in the burn study.
    Matched MeSH terms: Fibroblasts
  13. Fauzi MB, Rashidbenam Z, Bin Saim A, Binti Hj Idrus R
    Polymers (Basel), 2020 Nov 25;12(12).
    PMID: 33255581 DOI: 10.3390/polym12122784
    Three-dimensional (3D) in vitro skin models have been widely used for cosmeceutical and pharmaceutical applications aiming to reduce animal use in experiment. This study investigate capability of ovine tendon collagen type I (OTC-I) sponge suitable platform for a 3D in vitro skin model using co-cultured skin cells (CC) containing human epidermal keratinocytes (HEK) and human dermal fibroblasts (HDF) under submerged (SM) and air-liquid interface (ALI) conditions. Briefly, the extracted OTC-I was freeze-dried and crosslinked with genipin (OTC-I_GNP) and carbodiimide (OTC-I_EDC). The gross appearance, physico-chemical characteristics, biocompatibility and growth profile of seeded skin cells were assessed. The light brown and white appearance for the OTC-I_GNP scaffold and other groups were observed, respectively. The OTC-I_GNP scaffold demonstrated the highest swelling ratio (~1885%) and water uptake (94.96 ± 0.14%). The Fourier transformation infrared demonstrated amide A, B and I, II and III which represent collagen type I. The microstructure of all fabricated sponges presented a similar surface roughness with the presence of visible collagen fibers and a heterogenous porous structure. The OTC-I_EDC scaffold was more toxic and showed the lowest cell attachment and proliferation as compared to other groups. The micrographic evaluation revealed that CC potentially formed the epidermal- and dermal-like layers in both SM and ALI that prominently observed with OTC-I_GNP compared to others. In conclusion, these results suggest that OTC_GNP could be used as a 3D in vitro skin model under ALI microenvironment.
    Matched MeSH terms: Fibroblasts
  14. Ravivarman C, Jeyasenthil A, Ajay R, Nilofernisha N, Karthikeyan R, Rajkumar D
    J Pharm Bioallied Sci, 2020 Aug;12(Suppl 1):S73-S77.
    PMID: 33149434 DOI: 10.4103/jpbs.JPBS_21_20
    Background: Eugenol released from zinc oxide eugenol (ZOE)-based sealants may cause irritation to the periapical tissues and has cytotoxic potential. Ozone therapy has numerous clinical applications with humans because of its bactericidal action, detoxifying effect, stimulation of angiogenesis, and wound-healing capacity. Therefore ozone can be incorporated in ZOE sealer to exploit these properties.

    Materials and Methods: Eugenol was ozonated using ozonator machine and the samples were divided into two groups: Group I: zinc oxide eugenol (n = 10) and Group II: zinc oxide-ozonated eugenol (OZOE; n = 10). The pH of the fresh sealer samples and the set samples was measured using calibrated pH meter after predetermined time intervals. Cytotoxicity of the set sealer was evaluated on mouse L929 fibroblasts using cellular metabolic assay.

    Results: pH of the samples in Group II was higher when compared to Group I. Group II showed higher cell viability than the Group I.

    Conclusion: OZOE sealers can be used as an alternative to the conventional ZOE sealers.

    Matched MeSH terms: Fibroblasts
  15. Makhmudi A, Wirohadidjojo YW, Gahara E, Noor HZ, Sunardi M, Mahmudah NA, et al.
    Med J Malaysia, 2020 11;75(6):698-704.
    PMID: 33219180
    INTRODUCTION: Several studies have reported the disturbance in the process of wound healing after administration of mitomycin-C, which inhibits granulation tissue formation and collagen synthesis, resulting in chronic wounds. The vitreous gel of cow eyeballs contains a high level of hyaluronic acid, which has a role in inflammation, granulation, re-epithelialization, and remodelling. This study aims to understand the effect of 1% povidone iodine and vitreous gel of cow eyeballs on wound healing after administration of mitomycin-C.

    METHODS: This was an in vivo study with quasi-experimental methods on 32 Wistar mice. Full-thickness wounds were made and then treated with mitomicyn-C. The mice were divided into 4 groups: a control group with NaCl 0.9% vitreous gel of cow eyeball (VGCE), 1% povidone-iodine, and a combination of VGCE and 1% povidone-iodine groups. Macroscopic and microscopic observations of the process of wound healing were performed on days 3, 7, and 14.

    RESULTS: Vitreous gel administration produced significant wound healing rates within the first three days, and histological analysis revealed an increased number of fibroblasts and polymorphonuclear cells. However, the povidone iodine group and the combination group with vitreous gel did not produce significant results.

    CONCLUSION: The single administration of VGCE can accelerate the wound healing process, increase the number of fibroblasts, and reduce inflammation in a chronic wound model.

    Matched MeSH terms: Fibroblasts
  16. Um Min Allah N, Berahim Z, Ahmad A, Kannan TP
    Tissue Eng Regen Med, 2017 Oct;14(5):495-505.
    PMID: 30603504 DOI: 10.1007/s13770-017-0065-y
    Advancement in cell culture protocols, multidisciplinary research approach, and the need of clinical implication to reconstruct damaged or diseased tissues has led to the establishment of three-dimensional (3D) test systems for regeneration and repair. Regenerative therapies, including dental tissue engineering, have been pursued as a new prospect to repair and rebuild the diseased/lost oral tissues. Interactions between the different cell types, growth factors, and extracellular matrix components involved in angiogenesis are vital in the mechanisms of new vessel formation for tissue regeneration. In vitro pre-vascularization is one of the leading scopes in the tissue-engineering field. Vascularization strategies that are associated with co-culture systems have proved that there is communication between different cell types with mutual beneficial effects in vascularization and tissue regeneration in two-dimensional or 3D cultures. Endothelial cells with different cell populations, including osteoblasts, smooth muscle cells, and fibroblasts in a co-culture have shown their ability to advocate pre-vascularization. In this review, a co-culture perspective of human gingival fibroblasts and vascular endothelial cells is discussed with the main focus on vascularization and future perspective of this model in regeneration and repair.
    Matched MeSH terms: Fibroblasts
  17. Abuzarifa N, Al-Chalabi MMM, Wan Sulaiman WA
    Cureus, 2021 Mar 05;13(3):e13712.
    PMID: 33842103 DOI: 10.7759/cureus.13712
    Malignant peripheral nerve sheath tumours (also called neurofibrosarcomas) are a rare, highly aggressive soft tissue sarcomas that arise from the peripheral nerves or cells associated with the nerve sheath, such as Schwann cells, peri-neural cells and fibroblasts. It is representing 10% of all soft tissue sarcomas in which it is considered as an extremely rare malignancy, especially in patients with neurofibromatosis type I. In the general population, it affects approximately 1 in 100,000 people. This article is reporting a 56-year-old Malay female patient who is a known case of neurofibromatosis type I for 20 years, presented with a lower back, pruritic, gradually increasing swelling during the last five months. Last month before the presentation, the lesion rapidly grows, reaching a size of (15×15 cm), accompanied by foul-smelling discharge and pain exacerbated with movement. Although no history of preceding trauma or accident, the mass bleeds within contact. In conclusion, only a few cases of giant malignant peripheral nerve sheath tumours reported in the literature describing its location and growth progression. We present a massive, extremely rapid growth of cutaneous exophytic malignant peripheral nerve sheath tumours over the lower back.
    Matched MeSH terms: Fibroblasts
  18. Ebadi M, Bullo S, Buskaran K, Hussein MZ, Fakurazi S, Pastorin G
    Polymers (Basel), 2021 Mar 10;13(6).
    PMID: 33802205 DOI: 10.3390/polym13060855
    Iron oxide nanoparticles are suitable for biomedical applications owing to their ability to anchor to various active agents and drugs, unique magnetic properties, nontoxicity, and biocompatibility. In this work, the physico-chemical and magnetic properties, as well as the cytotoxicity, of Fe3O4 nanoparticles coated with a polymeric carrier and loaded with a 5-fluorouracil (5-FU) anti-cancer drug are discussed. The synthesized Fe3O4 nanoparticles were coated with polyvinyl alcohol and Zn/Al-layered double hydroxide as the drug host. The XRD, DTA/TG, and FTIR analyzes confirmed the presence of the coating layer on the surface of nanoparticles. The results showed a decrease in saturation magnetization of bare Fe3O4 nanoparticles after coating with the PVA/5FU/Zn/Al-LDH layer. In addition, the presence of the coating prevented the agglomeration of nanoparticles. Furthermore, the pseudo-second-order equation governed the kinetics of drug release. Finally, the coated nanoparticles showed stronger activity against liver cancer cells (HepG2) compared to that of the naked 5-FU drug, and displayed no cytotoxicity towards 3T3 fibroblast cell lines. The results of the present study demonstrate the potential of a nano delivery system for cancer treatment.
    Matched MeSH terms: Fibroblasts
  19. Nuge T, Liu X, Tshai KY, Lim SS, Nordin N, Hoque ME, et al.
    PMID: 33826152 DOI: 10.1002/bab.2162
    Despite a lot of intensive research on cells-scaffolds interaction, focused are mainly on the capacity of construct scaffolds to regulate cell mobility, migration and cytotoxicity. The effect of the scaffold's topographical and material properties on the expression of biologically active compounds from stem cells is not well understood. In this study, the influence of cellulose acetate (CA) on the electrospinnability of gelatin and the roles of gelatin-cellulose acetate (Ge-CA) on modulating the release of biologically active compounds from amniotic fluid stem cells (AFSCs) is emphasized. It was found that the presence of a small amount of CA could provide a better microenvironment that mimics AFSCs' niche. However, a large amount of CA exhibited no significant effect on AFSCs migration and infiltration. Further study on the effect of surface topography and mechanical properties on AFSCs showed that the tailored microenvironment provided by the Ge-CA scaffolds had transduced physical cues to biomolecules released into the culture media. It was found that the AFSCs seeded on electrospun scaffolds with less CA proportions has profound effects on the secretion of metabolic compounds compared to those with higher CA contained and gelatin coating. The enhanced secretion of biologically active molecules by the AFSCs on the electrospun scaffolds was proven by the accelerated wound closure on the injured human dermal fibroblast (HDF) model. The rapid HDF cell migration could be anticipated due to a higher level of paracrine factors in AFSCs media. Our study demonstrates that the fibrous topography and mechanical properties of the scaffold is a key material property that modulates the high expression of biologically active compounds from the AFSCs. The discovery elucidates a new aspect of material functions and scaffolds material-AFSCs interaction for regulating biomolecules release to promote tissue regeneration/repair. To the best of our knowledge, this is the first report describing the scaffolds material-AFSCs interaction and the efficacy of scratch assays on quantifying the cell migration in response to the AFSCs metabolic products. This article is protected by copyright. All rights reserved.
    Matched MeSH terms: Fibroblasts
  20. Zulfahmi Said, Hellen Colley, Craig Murdoch
    MyJurnal
    Introduction: Tissue-engineered oral mucosa (TEOM) is increasingly being used to model oral mucosal diseases and to assess drug toxicity. Current TEOM models are constructed using normal oral fibroblasts (NOF) contained within a hydrogel matrix with normal oral keratinocytes (NOK) cultured on top. NOK are not commercially available and suffer from donor-to-donor variability. Therefore, oral mucosal models based on immortalised keratinocytes may offer advantages over NOK-based models. The objective of this study was to construct and characterise the TEOM developed using TERT2-immortalised oral keratinocyte (FNB6) cells and validate its similarity to normal oral muco-sal tissue. Methods: TEOM were constructed by culturing FNB6 cells on top of a NOF-populated collagen type-1 hydrogel in tissue culture transwell inserts cultured at an air-to-liquid interface and collected at 14 day. TEOM were subjected to morphological (H&E and PAS), ultrastructural (TEM) and immunohistological (Ki-67, cytokeratin 14 and E-cadherin) analysis. Results: Histologically TEOM mimicked native oral mucosa displaying a stratified epithelium, fibroblast-containing connective tissue and basement membrane. Furthermore, TEM confirmed the presence of des-mosomes and hemi-desmosomes in the epithelium. IHC revealed expression of differentiation markers (cytokeratin 14), proliferation (Ki-67), cell adhesion (E-cadherin). Conclusion: FNB6 mucosal models able to mimic native oral mucosa structure. It has potential for drug delivery and toxicity evaluation, and replacing models based on NOK where access to primary cells is limited.
    Matched MeSH terms: Fibroblasts
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links