RESULT: We tested Naive Bayes, Logistic Regression, KNN, J48, Random Forest, SVM, and Deep Neural Network algorithms to ASD screening dataset and compared the classifiers' based on significant parameters; sensitivity, specificity, accuracy, receiver operating characteristic, area under the curve, and runtime, in predicting ASD occurrences. We also found that most of previous studies focused on classifying health-related dataset while ignoring the missing values which may contribute to significant impacts to the classification result which in turn may impact the life of the patients. Thus, we addressed the missing values by implementing imputation method where they are replaced with the mean of the available records found in the dataset.
CONCLUSION: We found that J48 produced promising results as compared to other classifiers when tested in both circumstances, with and without missing values. Our findings also suggested that SVM does not necessarily perform well for small and simple datasets. The outcome is hoped to assist health practitioners in making accurate diagnosis of ASD occurrences in patients.
INTRODUCTION: Magnetic resonance imaging is a useful technique to visualize soft tissues within the knee joint. Cartilage delineation in magnetic resonance (MR) images helps in understanding the disease progressions. Convolutional neural networks (CNNs) have shown promising results in computer vision tasks, and various encoder-decoder-based segmentation neural networks are introduced in the last few years. However, the performances of such networks are unknown in the context of cartilage delineation.
METHODS: This study trained and compared 10 encoder-decoder-based CNNs in performing cartilage delineation from knee MR images. The knee MR images are obtained from the Osteoarthritis Initiative (OAI). The benchmarking process is to compare various CNNs based on physical specifications and segmentation performances.
RESULTS: LadderNet has the least trainable parameters with the model size of 5 MB. UNetVanilla crowned the best performances by having 0.8369, 0.9108, and 0.9097 on JSC, DSC, and MCC.
CONCLUSION: UNetVanilla can be served as a benchmark for cartilage delineation in knee MR images, while LadderNet served as an alternative if there are hardware limitations during production.