Displaying publications 141 - 160 of 371 in total

Abstract:
Sort:
  1. Lee TP, Saad B, Khayoon WS, Salleh B
    Talanta, 2012 Jan 15;88:129-35.
    PMID: 22265478 DOI: 10.1016/j.talanta.2011.10.021
    A simple, environmental friendly and selective sample preparation technique employing porous membrane protected micro-solid phase extraction (μ-SPE) loaded with molecularly imprinted polymer (MIP) for the determination of ochratoxin A (OTA) is described. After the extraction, the analyte was desorbed using ultrasonication and was analyzed using high performance liquid chromatography. Under the optimized conditions, the detection limits of OTA for coffee, grape juice and urine were 0.06 ng g(-1), 0.02 and 0.02 ng mL(-1), respectively while the quantification limits were 0.19 ng g(-1), 0.06 and 0.08 ng mL(-1), respectively. The recoveries of OTA from coffee spiked at 1, 25 and 50 ng g(-1), grape juice and urine samples at 1, 25 and 50 ng mL(-1) ranged from 90.6 to 101.5%. The proposed method was applied to thirty-eight samples of coffee, grape juice and urine and the presence of OTA was found in eighteen samples. The levels found, however, were all below the legal limits.
    Matched MeSH terms: Porosity
  2. Sangkert S, Kamonmattayakul S, Chai WL, Meesane J
    J Biomed Mater Res A, 2017 Jun;105(6):1624-1636.
    PMID: 28000362 DOI: 10.1002/jbm.a.35983
    Maxillofacial bone defect is a critical problem for many patients. In severe cases, the patients need an operation using a biomaterial replacement. Therefore, to design performance biomaterials is a challenge for materials scientists and maxillofacial surgeons. In this research, porous silk fibroin scaffolds with mimicked microenvironment based on decellularized pulp and fibronectin were created as for bone regeneration. Silk fibroin scaffolds were fabricated by freeze-drying before modification with three different components: decellularized pulp, fibronectin, and decellularized pulp/fibronectin. The morphologies of the modified scaffolds were observed by scanning electron microscopy. Existence of the modifying components in the scaffolds was proved by the increase in weights and from the pore size measurements of the scaffolds. The modified scaffolds were seeded with MG-63 osteoblasts and cultured. Testing of the biofunctionalities included cell viability, cell proliferation, calcium content, alkaline phosphatase activity (ALP), mineralization and histological analysis. The results demonstrated that the modifying components organized themselves into aggregations of a globular structure. They were arranged themselves into clusters of aggregations with a fibril structure in the porous walls of the scaffolds. The results showed that modified scaffolds with a mimicked microenvironment of decellularized pulp/fibronectin were suitable for cell viability since the cells could attach and spread into most of the pores of the scaffold. Furthermore, the scaffolds could induce calcium synthesis, mineralization, and ALP activity. The results indicated that modified silk fibroin scaffolds with a mimicked microenvironment of decellularized pulp/fibronectin hold promise for use in tissue engineering in maxillofacial bone defects. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1624-1636, 2017.
    Matched MeSH terms: Porosity
  3. Hj Latip DN, Samsudin H, Utra U, Alias AK
    Crit Rev Food Sci Nutr, 2021;61(17):2841-2862.
    PMID: 32648775 DOI: 10.1080/10408398.2020.1789064
    Starch is a complex carbohydrate formed by the repeating units of glucose structure connected by the alpha-glycosidic linkages. Starch is classified according to their derivatives such as cereals, legumes, tubers, palms, fruits, and stems. For decades, native starch has been widely utilized in various applications such as a thickener, stabilizer, binder, and coating agent. However, starches need to be modified to enhance their properties and to make them more functional in a wide range of applications. Porous starch is a modified starch product which has attracted interest of late. It consists of abundant pores that are distributed on the granule surface without compromising the integrity of its granular structure. Porous starch can be produced either by enzymatic, chemical, and physical methods or a combination thereof. The type of starch and selection of the modification method highly influence the formation of pore structure. By carefully choosing a suitable starch and modification method, the desired morphology of porous starch can be produced and applied accordingly for its intended application. Innovations and technologies related to starch modification methods have evolved over the years in terms of the structure, properties and modification effects of different starch varieties. Therefore, this article reviews recent modification methods in developing porous starch from various origins.
    Matched MeSH terms: Porosity
  4. Majdi HS, Saud AN, Saud SN
    Materials (Basel), 2019 May 29;12(11).
    PMID: 31146451 DOI: 10.3390/ma12111752
    Porous γ-alumina is widely used as a catalyst carrier due to its chemical properties. These properties are strongly correlated with the physical properties of the material, such as porosity, density, shrinkage, and surface area. This study presents a technique that is less time consuming than other techniques to predict the values of the above-mentioned physical properties of porous γ-alumina via an artificial neural network (ANN) numerical model. The experimental data that was implemented was determined based on 30 samples that varied in terms of sintering temperature, yeast concentration, and socking time. Of the 30 experimental samples, 25 samples were used for training purposes, while the other five samples were used for the execution of the experimental procedure. The results showed that the prediction and experimental data were in good agreement, and it was concluded that the proposed model is proficient at providing high accuracy estimation data derived from any complex analytical equation.
    Matched MeSH terms: Porosity
  5. Tham L, Roslindar Nazar
    Sains Malaysiana, 2012;41:1643-1649.
    A steady laminar mixed convection boundary layer flow about an isothermal solid sphere embedded in a porous medium filled with a nanofluid has been studied for both cases of assisting and opposing flows. The transformed boundary layer equations were solved numerically using an implicit finite-difference scheme. Three different types of nanoparticles, namely Cu, Al2O3 and TiO2 in water-based fluid were considered. Numerical solutions were obtained for the skin friction coefficient, the velocity and temperature profiles. The features of the flow and heat transfer characteristics for various values of the nanoparticle volume fraction and the mixed convection parameters were analyzed and discussed.
    Matched MeSH terms: Porosity
  6. Kannan, T.P., Quah, B.B., Azlina, A., Samsudin, A.R.
    MyJurnal
    Dentistry has searched for an ideal material to place in osseous defects for many years. Endogenous bone replacement has been the golden standard but involves additional surgery and may be available in limited quantities. Also, the exogenous bone replacement poses a risk of viral or bacterial transmission and the human body may even reject them. Therefore, before new biomaterials are approved for medical use, mutagenesis systems to exclude cytotoxic, mutagenic or carcinogenic properties are applied worldwide. The present preliminary study was carried out in five male New Zealand white rabbits (Oryctolagus cuniculus). Porous form of synthetic hydroxyapatite granules (500 mg), manufactured by School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Penang, was implanted in the femur of the rabbits. Blood samples were collected prior to implantation and one week after implantation. The blood was cultured in vitro and the cell division was arrested at metaphase using colcemid. This was followed by the hypotonic treatment and fixation. Then, the chromosomes were prepared and stained for analysis. The modal chromosome number of rabbit (Oryctolagus cuniculus) was found to be 2n=44. The mean mitotic index values prior to and after implantation were 3.30 ± 0.66 and 3.24 ± 0.27 per cent respectively. No gross chromosome aberrations, both numerical and structural were noticed either prior to or after implantation of the biomaterial. These findings indicate that the test substance, synthetic hydroxyapatite granules does not produce gross chromosome aberrations under the present test conditions in rabbits.
    Matched MeSH terms: Porosity
  7. Yue X, Ma NL, Sonne C, Guan R, Lam SS, Van Le Q, et al.
    J Hazard Mater, 2021 03 05;405:124138.
    PMID: 33092884 DOI: 10.1016/j.jhazmat.2020.124138
    Indoor air pollution with toxic volatile organic compounds (VOCs) and fine particulate matter (PM2.5) is a threat to human health, causing cancer, leukemia, fetal malformation, and abortion. Therefore, the development of technologies to mitigate indoor air pollution is important to avoid adverse effects. Adsorption and photocatalytic oxidation are the current approaches for the removal of VOCs and PM2.5 with high efficiency. In this review we focus on the recent development of indoor air pollution mitigation materials based on adsorption and photocatalytic decomposition. First, we review on the primary indoor air pollutants including formaldehyde, benzene compounds, PM2.5, flame retardants, and plasticizer: Next, the recent advances in the use of adsorption materials including traditional biochar and MOF (metal-organic frameworks) as the new emerging porous materials for VOCs absorption is reviewed. We review the mechanism for mitigation of VOCs using biochar (noncarbonized organic matter partition and adsorption) and MOF together with parameters that affect indoor air pollution removal efficiency based on current mitigation approaches including the mitigation of VOCs using photocatalytic oxidation. Finally, we bring forward perspectives and directions for the development of indoor air mitigation technologies.
    Matched MeSH terms: Porosity
  8. Foo KY, Hameed BH
    Bioresour Technol, 2012 Sep;119:234-40.
    PMID: 22728787 DOI: 10.1016/j.biortech.2012.05.061
    Microwave heating was used in the regeneration of methylene blue-loaded activated carbons produced from fibers (PFAC), empty fruit bunches (EFBAC) and shell (PSAC) of oil palm. The dye-loaded carbons were treated in a modified conventional microwave oven operated at 2450 MHz and irradiation time of 2, 3 and 5 min. The virgin properties of the origin and regenerated activated carbons were characterized by pore structural analysis and nitrogen adsorption isotherm. The surface chemistry was examined by zeta potential measurement and determination of surface acidity/basicity, while the adsorptive property was quantified using methylene blue (MB). Microwave irradiation preserved the pore structure, original active sites and adsorption capacity of the regenerated activated carbons. The carbon yield and the monolayer adsorption capacities for MB were maintained at 68.35-82.84% and 154.65-195.22 mg/g, even after five adsorption-regeneration cycles. The findings revealed the potential of microwave heating for regeneration of spent activated carbons.
    Matched MeSH terms: Porosity/radiation effects
  9. Foo KY, Hameed BH
    Bioresour Technol, 2012 Jan;103(1):398-404.
    PMID: 22050840 DOI: 10.1016/j.biortech.2011.09.116
    Preparation of activated carbon has been attempted using KOH as activating agent by microwave heating from biodiesel industry solid residue, oil palm empty fruit bunch (EFBAC). The significance of chemical impregnation ratio (IR), microwave power and activation time on the properties of activated carbon were investigated. The optimum condition has been identified at the IR of 1.0, microwave power of 600 W and activation time of 7 min. EFBAC was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy and nitrogen adsorption isotherm. The surface chemistry was examined by zeta potential measurement, determination of surface acidity/basicity, while the adsorptive property was quantified using methylene blue as dye model compound. The optimum conditions resulted in activated carbon with a monolayer adsorption capacity of 395.30 mg/g and carbon yield of 73.78%, while the BET surface area and total pore volume were corresponding to 1372 m2/g and 0.76 cm3/g, respectively.
    Matched MeSH terms: Porosity
  10. Kutty MG, De A, Bhaduri SB, Yaghoubi A
    ACS Appl Mater Interfaces, 2014 Aug 27;6(16):13587-93.
    PMID: 25095907 DOI: 10.1021/am502967n
    Morphological surface modifications have been reported to enhance the performance of biomedical implants. However, current methods of introducing graded porosity involves postprocessing techniques that lead to formation of microcracks, delamination, loss of fatigue strength, and, overall, poor mechanical properties. To address these issues, we developed a microwave sintering procedure whereby pure titanium powder can be readily densified into implants with graded porosity in a single step. Using this approach, surface topography of implants can be closely controlled to have a distinctive combination of surface area, pore size, and surface roughness. In this study, the effect of various surface topographies on in vitro response of neonatal rat calvarial osteoblast in terms of attachment and proliferation is studied. Certain graded surfaces nearly double the chance of cell viability in early stages (∼one month) and are therefore expected to improve the rate of healing. On the other hand, while the osteoblast morphology significantly differs in each sample at different periods, there is no straightforward correlation between early proliferation and quantitative surface parameters such as average roughness or surface area. This indicates that the nature of cell-surface interactions likely depends on other factors, including spatial parameters.
    Matched MeSH terms: Porosity
  11. Liew RK, Azwar E, Yek PNY, Lim XY, Cheng CK, Ng JH, et al.
    Bioresour Technol, 2018 Oct;266:1-10.
    PMID: 29936405 DOI: 10.1016/j.biortech.2018.06.051
    A micro-mesoporous activated carbon (AC) was produced via an innovative approach combining microwave pyrolysis and chemical activation using NaOH/KOH mixture. The pyrolysis was examined over different chemical impregnation ratio, microwave power, microwave irradiation time and types of activating agents for the yield, chemical composition, and porous characteristic of the AC obtained. The AC was then tested for its feasibility as textile dye adsorbent. About 29 wt% yield of AC was obtained from the banana peel with low ash and moisture (<5 wt%), and showed a micro-mesoporous structure with high BET surface area (≤1038 m2/g) and pore volume (≤0.80 cm3/g), indicating that it can be utilized as adsorbent to remove dye. Up to 90% adsorption of malachite green dye was achieved by the AC. Our results indicate that the microwave-activation approach represents a promising attempt to produce good quality AC for dye adsorption.
    Matched MeSH terms: Porosity
  12. Khan NI, Ijaz K, Zahid M, Khan AS, Abdul Kadir MR, Hussain R, et al.
    Mater Sci Eng C Mater Biol Appl, 2015 Nov 1;56:286-93.
    PMID: 26249592 DOI: 10.1016/j.msec.2015.05.025
    Hydroxyapatite is used extensively in hard tissue repair due to its biocompatibility and similarity to biological apatite, the mineral component of bone. It differs subtly in composition from biological apatite which contains other ions such as magnesium, zinc, carbonate and silicon (believed to play biological roles). Traditional methods of hydroxyapatite synthesis are time consuming and require strict reaction parameter control. This paper outlines synthesis of magnesium substituted hydroxyapatite using simple microwave irradiation of precipitated suspensions. Microwave irradiation resulted in a drastic decrease in ageing times of amorphous apatitic phases. Time taken to synthesize hydroxyapatite (which remained stable upon heat treatment at 900°C for 1h) reduced twelve folds (to 2h) as compared to traditionally required times. The effects of increasing magnesium concentration in the precursors on particle size, surface area, phase-purity, agglomeration and thermal stability, were observed using scanning electron microscopy, BET surface area analysis, X-ray diffraction and photo acoustic Fourier transform infra-red spectroscopy. Porous agglomerates were obtained after a brief heat-treatment (1h) at 900°C.
    Matched MeSH terms: Porosity
  13. Ridha NJ, Umar AA, Alosfur F, Jumali MH, Salleh MM
    J Nanosci Nanotechnol, 2013 Apr;13(4):2667-74.
    PMID: 23763142
    Porous ZnO nanostructures have become the subject of research interest--due to their special structures with high surface to volume ratio that may produce peculiar properties for use in optoelectronics, sensing and catalysis applications. A microwave-assisted hydrothermal method has been used for effecting the formation of porous nanostructure of metaloxide materials, such as CoO and SnO2, in solution. Here, by adopting the unique performance of a microwave-assisted-hydrothermal method, we realized the formation of highly porous ZnO nanostructures directly on the substrate surface, instead of in solution. The effects of the ambient reaction conditions and the microwave power on the structural growth of the ZnO nanostructures were studied in detail. Two different ambient reaction conditions, namely refluxed and isolated in autoclave systems, were used in this work. Porous ZnO (PZO) nanostructures with networked-nanoflakes morphology is the typical result for this approach. It was found that the morphology of the ZnO nanostructures was strongly depended on the ambient conditions of the reaction; the isolated-autoclave system may produce reasonably high porous ZnO that is constituted by vertically oriented grainy-flakes structures, whereas the refluxed system produced solid vertically-oriented flake structures. The microwave power did not influence the structural growth of the ZnO. It was also found that both the ambient reaction conditions and the microwave power used influenced the crystallographic orientation of the PZO. For instance, PZO with dominant (002) Bragg plane could be obtained by using refluxed system, whereas PZO with dominant (101) plane could be realized if using isolated system. For the case of microwave power, the crystallographic orientation of PZO prepared using both systems changed from dominant (002) to (101) planes if the power was increased. The mechanism for the formation of porous ZnO nanostructures using the present approach is proposed. The ZnO nanostructures prepared using the present method should find an extensive use in currently existing application due to its property of reasonably high porosity.
    Matched MeSH terms: Porosity
  14. Nizamuddin S, Qureshi SS, Baloch HA, Siddiqui MTH, Takkalkar P, Mubarak NM, et al.
    Materials (Basel), 2019 Jan 28;12(3).
    PMID: 30696042 DOI: 10.3390/ma12030403
    The process parameters of microwave-induced hydrothermal carbonization (MIHTC) play an important role on the hydrothermal chars (hydrochar) yield. The effect of reaction temperature, reaction time, particle size and biomass to water ratio was optimized for hydrochar yield by modeling using the central composite design (CCD). Further, the rice straw and hydrochar at optimum conditions have been characterized for energy, chemical, structural and thermal properties. The optimum condition for hydrochar synthesis was found to be at a 180 °C reaction temperature, a 20 min reaction time, a 1:15 weight per volume (w/v) biomass to water ratio and a 3 mm particle size, yielding 57.9% of hydrochar. The higher heating value (HHV), carbon content and fixed carbon values increased from 12.3 MJ/kg, 37.19% and 14.37% for rice straw to 17.6 MJ/kg, 48.8% and 35.4% for hydrochar. The porosity, crystallinity and thermal stability of the hydrochar were improved remarkably compared to rice straw after MIHTC. Two characteristic peaks from XRD were observed at 2θ of 15° and 26°, whereas DTG peaks were observed at 50⁻150 °C and 300⁻350 °C for both the materials. Based on the results, it can be suggested that the hydrochar could be potentially used for adsorption, carbon sequestration, energy and agriculture applications.
    Matched MeSH terms: Porosity
  15. Muhammad Awaludin, M.S., Mariattia, M.
    MyJurnal
    Porous ceramic scaffolds are widely studied in the tissue engineering field due to their potential in medical applications as bone substitutes or as bone-filling materials. In this study, porous hydroxyapatite (HA) was produced via polymer replication method. Polyurethane (PU) sponge was selected as the template and synthetic binder, polyvinyl alcohol (PVA) was used in this study. Fixed formulation of HA powder, distilled water and PVA (40:60:3) were prepared and stirred at a constant 4 hours time. PU sponges with 30 ppi and 60 ppi size were cut and impregnated in slurry using vacuum and roller infiltration methods. The microstructures were observed by using field emission scanning electron microscope (FESEM). The results obtained indicate that vacuum infiltration method and 60 ppi template pore size exhibited the highest compressive strength with moderate average strut thickness and lowest average pore size compared to samples produced by roller infiltration method at different template pore size.
    Matched MeSH terms: Porosity
  16. Rusnah M, Andanastuti M, Idris B
    Med J Malaysia, 2004 May;59 Suppl B:83-4.
    PMID: 15468830
    The paper discusses the influence of sintering temperature on the microstructure and strength of hydroxyapatite ceramics prepared using the extrusion process. The average pore diameters observed were in the range of approximately 150mm to 300mm whereas the compaction strength was found to be around 120-160 MPa.
    Matched MeSH terms: Porosity
  17. Wan, Ngeow Yen, Chin, Khaw Pei, Che Su Mt. Saad
    MyJurnal
    Reclaimed rubber from rejected natural rubber (NR) latex gloves (r-NRG) was evaluated as partial
    replacement for Standard Malaysian Rubber (SMR) 20 in producing microcellular rubber. In the study, the amount of reclaimed rubber varied from 20 pphr to 95 pphr for the purpose of cost reduction, environmental interest and as processing aids in reducing internal porosity, swells and to minimize shrinkage and air-trapped problems in producing microcellular rubber. A typical formulation in making microcellular rubber slab was developed and two-roll mill was used for compounding. The cure characteristics and mechanical properties, such as density, hardness, tensile strength, and elongation at break, were evaluated. Scorch time and cure rate index performed marginal decreased with increasing of r-NRG content. 95 pphr r-NRG blends showed a consequential drop in hardness. Both tensile properties and elongation at break decreased as the r-NRG content was increased.
    Matched MeSH terms: Porosity
  18. Gorgani L, Mohammadi M, Najafpour Darzi G, Raoof JB
    Talanta, 2024 Jun 01;273:125854.
    PMID: 38447342 DOI: 10.1016/j.talanta.2024.125854
    MicroRNAs (miRNAs) play several crucial roles in the physiological and pathological processes of the human body. They are considered as important biomarkers for the diagnosis of various disorders. Thus, rapid, sensitive, selective, and affordable detection of miRNAs is of great importance. However, the small size, low abundance, and highly similar sequences of miRNAs impose major challenges to their accurate detection in biological samples. In recent years, metal-organic frameworks (MOFs) have been applied as promising sensing materials for the fabrication of different biosensors due to their distinctive characteristics, such as high porosity and surface area, tunable pores, outstanding adsorption affinities, and ease of functionalization. In this review, the applications of MOFs and MOF-derived materials in the fabrication of fluorescence, electrochemical, chemiluminescence, electrochemiluminescent, and photoelectrochemical biosensors for the detection of miRNAs and their detection principle and analytical performance are discussed. This paper attempts to provide readers with a comprehensive knowledge of the fabrication and sensing mechanisms of miRNA detection platforms.
    Matched MeSH terms: Porosity
  19. Lintang HO, Kinbara K, Yamashita T, Aida T
    Chem Asian J, 2012 Sep;7(9):2068-72.
    PMID: 22431445 DOI: 10.1002/asia.201200041
    An organometallic/silica nanocomposite of a 1D cylindrical assembly of a trinuclear gold(I)-pyrazolate complex ([Au(3)Pz(3)]) that was confined inside the nanoscopic channels of hexagonal mesoporous silica ([Au(3)Pz(3)]/silica(hex)), emitted red light with a luminescence center at 693 nm upon photoexcitation at 276 nm owing to a Au(I)-Au(I) metallophilic interaction. When a film of [Au(3)Pz(3)]/silica(hex) was dipped into a solution of Ag(+) in tetrahydrofuran (THF), the resulting nanocomposite material (Ag@[Au(3)Pz(3)]/silica(hex)) emitted green light with a new luminescence center at 486 nm, which was characteristic of a Au(I)-Ag(I) heterometallic interaction. Changes in the emission/excitation and XPS spectra of Ag@[Au(3)Pz(3)]/silica(hex) revealed that Ag(+) ions permeated into the congested nanochannels of [Au(3)Pz(3)]/silica(hex), which were filled with the cylindrical assembly of [Au(3)Pz(3)].
    Matched MeSH terms: Porosity
  20. Mohammad M, Maitra S, Ahmad N, Bustam A, Sen TK, Dutta BK
    J Hazard Mater, 2010 Jul 15;179(1-3):363-72.
    PMID: 20362390 DOI: 10.1016/j.jhazmat.2010.03.014
    The potential of physic seed hull (PSH), Jantropha curcas L. as an adsorbent for the removal of Cd(2+) and Zn(2+) metal ions from aqueous solution has been investigated. It has been found that the amount of adsorption for both Cd(2+) and Zn(2+) increased with the increase in initial metal ions concentration, contact time, temperature, adsorbent dosage and the solution pH (in acidic range), but decreased with the increase in the particle size of the adsorbent. The adsorption process for both metal ions on PSH consists of three stages-a rapid initial adsorption followed by a period of slower uptake of metal ions and virtually no uptake at the final stage. The kinetics of metal ions adsorption on PSH followed a pseudo-second-order model. The adsorption equilibrium data were fitted in the three adsorption isotherms-Freundlich, Langmuir and Dubinin-Radushkevich isotherms. The data best fit in the Langmuir isotherm indication monolayer chemisorption of the metal ions. The adsorption capacity of PSH for both Zn(2+) and Cd(2+) was found to be comparable with other available adsorbents. About 36-47% of the adsorbed metal could be leached out of the loaded PSH using 0.1M HCl as the eluting medium.
    Matched MeSH terms: Porosity
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links