Displaying publications 141 - 160 of 317 in total

Abstract:
Sort:
  1. Lau CP, Abdul-Wahab MF, Jaafar J, Chan GF, Abdul Rashid NA
    J Microbiol Immunol Infect, 2017 Aug;50(4):427-434.
    PMID: 26427880 DOI: 10.1016/j.jmii.2015.08.004
    BACKGROUND/PURPOSE: Currently, silver nanoparticles (AgNPs) have gained importance in various industrial applications. However, their impact upon release into the environment on microorganisms remains unclear. The aim of this study was to analyze the effect of polyvinylpyrrolidone-capped AgNPs synthesized in this laboratory on two bacterial strains isolated from the environment, Gram-negative Citrobacter sp. A1 and Gram-positive Enterococcus sp. C1.

    METHODS: Polyvinylpyrrolidone-capped AgNPs were synthesized by ultrasound-assisted chemical reduction. Characterization of the AgNPs involved UV-visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, and energy dispersive X-ray spectroscopy. Citrobacter sp. A1 and Enterococcus sp. C1 were exposed to varying concentrations of AgNPs, and cell viability was determined. Scanning electron microscopy was performed to evaluate the morphological alteration of both species upon exposure to AgNPs at 1000 mg/L.

    RESULTS: The synthesized AgNPs were spherical in shape, with an average particle size of 15 nm. The AgNPs had different but prominent effects on either Citrobacter sp. A1 or Enterococcus sp. C1. At an AgNP concentration of 1000 mg/L, Citrobacter sp. A1 retained viability for 6 hours, while Enterococcus sp. C1 retained viability only for 3 hours. Citrobacter sp. A1 appeared to be more resistant to AgNPs than Enterococcus sp. C1. The cell wall of both strains was found to be morphologically altered at that concentration.

    CONCLUSION: Minute and spherical AgNPs significantly affected the viability of the two bacterial strains selected from the environment. Enterococcus sp. C1 was more vulnerable to AgNPs, probably due to its cell wall architecture and the absence of silver resistance-related genes.

    Matched MeSH terms: Spectrum Analysis
  2. Lee TH, Wani WA, Koay YS, Kavita S, Tan ETT, Shreaz S
    Food Res Int, 2017 10;100(Pt 1):14-27.
    PMID: 28873672 DOI: 10.1016/j.foodres.2017.07.036
    Edible bird's nest (EBN) is an expensive animal bioproduct due to its reputation as a food and delicacy with diverse medicinal properties. One kilogram of EBN costs ~$6000 in China. EBN and its products are consumed in mostly Asian countries such as China, Hong Kong, Taiwan, Singapore, Malaysia, Indonesia, Vietnam and Thailand, making up almost 1/3 of world population. The rapid growth in EBN consumption has led to a big rise in the trade scale of its global market. Presently, various fake materials such as tremella fungus, pork skin, karaya gum, fish swimming bladder, jelly, agar, monosodium glutamate and egg white are used to adulterate EBNs for earning extra profits. Adulterated or fake EBN may be hazardous to the consumers. Thus, it is necessary to identify of the adulterants. Several sophisticated techniques based on genetics, immunochemistry, spectroscopy, chromatography and gel electrophoresis have been used for the detection of various types of adulterants in EBN. This article describes the recent advances in the authentication methods for EBN. Different genetic, immunochemical, spectroscopic and analytical methods such as genetics (DNA) based techniques, enzyme-linked immunosorbent assays, Fourier transform infrared and Raman spectroscopic techniques, and chromatographic and gel electrophoretic methods have been discussed. Besides, significance of the reported methods that might pertain them to applications in EBN industry has been described. Finally, efforts have been made to discuss the challenges and future perspectives of the authentication methods for EBN.
    Matched MeSH terms: Spectrum Analysis
  3. Mana SCA, Fatt NT, Ashraf MA
    Environ Sci Pollut Res Int, 2017 Oct;24(29):22799-22807.
    PMID: 27987120 DOI: 10.1007/s11356-016-8195-7
    The field of arsenic pollution research has grown rapidly in recent years. Arsenic constitutes a broad range of elements from the Earth's crust and is released into the environment from both anthropogenic and natural sources due to its relative mobility under different redox conditions. The toxicity of arsenic is described in its inorganic form, as inorganic arsenic compounds can leach into different environments. Sampling was carried out in the Bestari Jaya catchment while using a land use map to locate the site, and experiments were conducted via sequential extraction and inductively coupled plasma optical emission spectroscopy to quantify proportions of arsenic in the sediment samples. The results show that metals in sediments of nonresidual fractions, which are more likely to be likely released into aquatic environments, are more plentiful than the residual sediment fractions. These findings support the mobility of heavy metals and especially arsenic through sediment layers, which can facilitate remediation in environments heavily polluted with heavy metals.
    Matched MeSH terms: Spectrum Analysis
  4. Saifullah B, Maitra A, Chrzastek A, Naeemullah B, Fakurazi S, Bhakta S, et al.
    Molecules, 2017 Oct 12;22(10).
    PMID: 29023384 DOI: 10.3390/molecules22101697
    Tuberculosis (TB) is a dreadful bacterial disease, infecting millions of human and cattle every year worldwide. More than 50 years after its discovery, ethambutol continues to be an effective part of the World Health Organization's recommended frontline chemotherapy against TB. However, the lengthy treatment regimens consisting of a cocktail of antibiotics affect patient compliance. There is an urgent need to improve the current therapy so as to reduce treatment duration and dosing frequency. In this study, we have designed a novel anti-TB multifunctional formulation by fabricating graphene oxide with iron oxide magnetite nanoparticles serving as a nano-carrier on to which ethambutol was successfully loaded. The designed nanoformulation was characterised using various analytical techniques. The release of ethambutol from anti-TB multifunctional nanoparticles formulation was found to be sustained over a significantly longer period of time in phosphate buffer saline solution at two physiological pH (7.4 and 4.8). Furthermore, the nano-formulation showed potent anti-tubercular activity while remaining non-toxic to the eukaryotic cells tested. The results of this in vitro evaluation of the newly designed nano-formulation endorse its further development in vivo.
    Matched MeSH terms: Spectrum Analysis, Raman
  5. Saifullah B, Chrzastek A, Maitra A, Naeemullah B, Fakurazi S, Bhakta S, et al.
    Molecules, 2017 Oct 12;22(10).
    PMID: 29023399 DOI: 10.3390/molecules22101560
    Tuberculosis (TB) is a bacterial disease responsible for millions of infections and preventable deaths each year. Its treatment is complicated by patients' noncompliance due to dosing frequency, lengthy treatment, and adverse side effects associated with current chemotherapy. However, no modifications to the half-a-century old standard chemotherapy have been made based on a nanoformulation strategy to improve pharmacokinetic efficacy. In this study, we have designed a new nanodelivery formulation, using graphene oxide as the nanocarrier, loaded with the anti-TB antibiotic, ethambutol. The designed formulation was characterized using a number of molecular analytical techniques. It was found that sustained release of the drug resulted in better bioavailability. In addition, the designed formulation demonstrated high biocompatibility with mouse fibroblast cells. The anti-TB activity of the nanodelivery formulation was determined using whole-cell resazurin microtiter plate assay, modified-spot culture growth inhibition assay, and biofilm inhibition assay. The nanodelivery formulation showed good anti-mycobacterial activity. The anti-mycobacterial activity of Ethambutol was unaffected by the drug loading and release process. The results of this study demonstrated the potential of this new nanodelivery formulation strategy to be considered for modifying existing chemotherapy to yield more efficacious antibiotic treatment against TB.
    Matched MeSH terms: Spectrum Analysis, Raman
  6. Sadri R, Hosseini M, Kazi SN, Bagheri S, Zubir N, Solangi KH, et al.
    J Colloid Interface Sci, 2017 Oct 15;504:115-123.
    PMID: 28531649 DOI: 10.1016/j.jcis.2017.03.051
    In this study, we propose an innovative, bio-based, environmentally friendly approach for the covalent functionalization of multi-walled carbon nanotubes using clove buds. This approach is innovative because we do not use toxic and hazardous acids which are typically used in common carbon nanomaterial functionalization procedures. The MWCNTs are functionalized in one pot using a free radical grafting reaction. The clove-functionalized MWCNTs (CMWCNTs) are then dispersed in distilled water (DI water), producing a highly stable CMWCNT aqueous suspension. The CMWCNTs are characterized using Raman spectroscopy, X-ray photoelectron spectroscopy and transmission electron microscopy. The electrostatic interactions between the CMWCNT colloidal particles in DI water are verified via zeta potential measurements. UV-vis spectroscopy is also used to examine the stability of the CMWCNTs in the base fluid. The thermo-physical properties of the CMWCNT nano-fluids are examined experimentally and indeed, this nano-fluid shows remarkably improved thermo-physical properties, indicating its superb potential for various thermal applications.
    Matched MeSH terms: Spectrum Analysis, Raman
  7. Manawi Y, Kochkodan V, Mahmoudi E, Johnson DJ, Mohammad AW, Atieh MA
    Sci Rep, 2017 Nov 20;7(1):15831.
    PMID: 29158521 DOI: 10.1038/s41598-017-14735-9
    Novel polyethersulfone (PES) membranes blended with 0.1-3.0 wt. % of Acacia gum (AG) as a pore-former and antifouling agent were fabricated using phase inversion technique. The effect of AG on the pore-size, porosity, surface morphology, surface charge, hydrophilicity, and mechanical properties of PES/AG membranes was studied by scanning electron microscopy (SEM), Raman spectroscopy, contact angle and zeta potential measurements. The antifouling -properties of PES/AG membranes were evaluated using Escherichia coli bacteria and bovine serum albumine (BSA). The use of AG as an additive to PES membranes was found to increase the surface charge, hydrophilicity (by 20%), porosity (by 77%) and permeate flux (by about 130%). Moreover, PES/AG membranes demonstrated higher antifouling and tensile stress (by 31%) when compared to pure PES membranes. It was shown that the prepared PES/AG membranes efficiently removed lead ions from aqueous solutions. Both the sieving mechanism of the membrane and chelation of lead with AG macromolecules incorporated in the membrane matrix contributed to lead removal. The obtained results indicated that AG can be used as a novel pore-former, hydrophilizing and antifouling agent, as well as an enhancer to the mechanical and rejection properties of the PES membranes.
    Matched MeSH terms: Spectrum Analysis, Raman
  8. Ahmed D, Anwar A, Khan AK, Ahmed A, Shah MR, Khan NA
    AMB Express, 2017 Nov 21;7(1):210.
    PMID: 29164404 DOI: 10.1186/s13568-017-0515-x
    Biofilm formation by pathogenic bacteria is one of the major threats in hospital related infections, hence inhibiting and eradicating biofilms has become a primary target for developing new anti-infection approaches. The present study was aimed to develop novel antibiofilm agents against two Gram-positive bacteria; Staphylococcus aureus (ATCC 43300) and Streptococcus mutans (ATCC 25175) using gold nanomaterials conjugated with 3-(diphenylphosphino)propionic acid (Au-LPa). Gold nanomaterials with different sizes as 2-3 nm small and 9-90 nm (50 nm average size) large were stabilized by LPa via different chemical synthetic strategies. The nanomaterials were fully characterized using atomic force microscope (AFM), transmission electron microscope, ultraviolet-visible absorption spectroscopy, and Fourier transformation infrared spectroscopy. Antibiofilm activity of Au-LPa nanomaterials was tested using LPa alone, Au-LPa and unprotected gold nanomaterials against the both biofilm-producing bacteria. The results showed that LPa alone did not inhibit biofilm formation to a significant extent below 0.025 mM, while conjugation with gold nanomaterials displayed manifold enhanced antibiofilm potential against both strains. Moreover, it was also observed that the antibiofilm potency of the Au-LPa nanomaterials varies with size variations of nanomaterials. AFM analysis of biofilms further complemented the assay results and provided morphological aspects of the antibiofilm action of Au-LPa nanomaterials.
    Matched MeSH terms: Spectrum Analysis
  9. Materić D, Peacock M, Kent M, Cook S, Gauci V, Röckmann T, et al.
    Sci Rep, 2017 Nov 21;7(1):15936.
    PMID: 29162906 DOI: 10.1038/s41598-017-16256-x
    Proton Transfer Reaction - Mass Spectrometry (PTR-MS) is a sensitive, soft ionisation method suitable for qualitative and quantitative analysis of volatile and semi-volatile organic vapours. PTR-MS is used for various environmental applications including monitoring of volatile organic compounds (VOCs) emitted from natural and anthropogenic sources, chemical composition measurements of aerosols, etc. Here we apply thermal desorption PTR-MS for the first time to characterise the chemical composition of dissolved organic matter (DOM). We developed a clean, low-pressure evaporation/sublimation system to remove water from samples and coupled it to a custom-made thermal desorption unit to introduce the samples to the PTR-MS. Using this system, we analysed waters from intact and degraded peat swamp forest of Kalimantan, Indonesian Borneo, and an oil palm plantation and natural forest in Sarawak, Malaysian Borneo. We detected more than 200 organic ions from these samples and principal component analysis allowed clear separation of the different sample origins based on the composition of organic compounds. The method is sensitive, reproducible, and provides a new and comparatively cheap tool for a rapid characterisation of water and soil DOM.
    Matched MeSH terms: Spectrum Analysis
  10. Obeng EM, Dullah EC, Razak NSA, Danquah MK, Budiman C, Ongkudon CM
    J Biol Methods, 2017;4(2):e71.
    PMID: 31453229 DOI: 10.14440/jbm.2017.172
    Endotoxin has been one of the topical chemical contaminants of major concern to researchers, especially in the field of bioprocessing. This major concern of researchers stems from the fact that the presence of Gram-negative bacterial endotoxin in intracellular products is unavoidable and requires complex downstream purification steps. For instance, endotoxin interacts with recombinant proteins, peptides, antibodies and aptamers and these interactions have formed the foundation for most biosensors for endotoxin detection. It has become imperative for researchers to engineer reliable means/techniques to detect, separate and remove endotoxin, without compromising the quality and quantity of the end-product. However, the underlying mechanism involved during endotoxin-biomolecule interaction is still a gray area. The use of quantitative molecular microscopy that provides high resolution of biomolecules is highly promising, hence, may lead to the development of improved endotoxin detection strategies in biomolecule preparation. Förster resonance energy transfer (FRET) spectroscopy is one of the emerging most powerful tools compatible with most super-resolution techniques for the analysis of molecular interactions. However, the scope of FRET has not been well-exploited in the analysis of endotoxin-biomolecule interaction. This article reviews endotoxin, its pathophysiological consequences and the interaction with biomolecules. Herein, we outline the common potential ways of using FRET to extend the current understanding of endotoxin-biomolecule interaction with the inference that a detailed understanding of the interaction is a prerequisite for the design of strategies for endotoxin identification and removal from protein milieus.
    Matched MeSH terms: Spectrum Analysis
  11. Yusof, F., Chowdhury, S., Faruck, M. O., Sulaiman, N.
    MyJurnal
    Cancer still presents enormous challenges in the medical world. Currently, the search for
    anticancer compounds has garnered a lot of interest, especially in finding them from the natural
    sources. In this study, by using Sulforhodamine B (SRB) colorimetric assay, compounds,
    extracted from supermeal worm (Zophobas morio) larvae using two types of acidified organic
    solvent (ethanol and isopropanol), were shown to inhibit the growth of a breast cancer line,
    MCF-7. A comparative study of the effect was carried out on a normal cell line, Vero. Results
    showed that, the two types of extracts inhibits growth of MCF-7 cell at varying degrees, on
    the other hand, have much less effect on Vero cell. Extracts analysed by UV-vis spectroscopy,
    showed peaks in the range of 260 to 280 nm, inferring the presence of aromatic amino acids,
    whereas the highest peak of 3.608 AU at 230 nm indicates the presence of peptide bonds. By
    Raman spectroscopy, peaks are observed at 1349 cm-1, 944 cm-1 and 841 cm-1 indicating the
    presence of Tyr, Try and Gly, confirming the UV-vis analyses. All results of analyses implied
    that the anticancer compounds contain peptides.
    Matched MeSH terms: Spectrum Analysis, Raman
  12. Ashraf Z, Rafiq M, Nadeem H, Hassan M, Afzal S, Waseem M, et al.
    PLoS One, 2017;12(5):e0178069.
    PMID: 28542395 DOI: 10.1371/journal.pone.0178069
    The present work describesthe development of highly potent mushroom tyrosinase inhibitor better than the standard kojic acid. Carvacrol derivatives 4a-f and 6a-d having substituted benzoic acid and cinnamic acidresidues were synthesized with the aim to possess potent tyrosinase inhibitory activity.The structures of the synthesized compounds were ascertained by their spectroscopic data (FTIR, 1HNMR, 13CNMR and Mass Spectroscopy).Mushroom tyrosinase inhibitory activity of synthesized compounds was determined and it was found that one of the derivative 6c possess higher activity (IC50 0.0167μM) than standard kojic acid (IC50 16.69μM). The derivatives 4c and 6b also showed good tyrosinase inhibitory activity with (IC50 16.69μM) and (IC50 16.69μM) respectively.Lineweaver-Burk and Dixon plots were used for the determination of kinetic mechanism of the compounds 4c and 6b and 6c. The kinetic analysis revealed that compounds 4c and 6b showed mixed-type inhibition while 6c is a non-competitive inhibitor having Ki values19 μM, 10 μM, and 0.05 μMrespectively. The enzyme inhibitory kinetics further showed thatcompounds 6b and 6c formed irreversible enzyme inhibitor complex while 4c bind reversibly with mushroom tyrosinase.The docking studies showed that compound 6c have maximum binding affinity against mushroom tyrosinase (PDBID: 2Y9X) with binding energy value (-7.90 kcal/mol) as compared to others.The 2-hydroxy group in compound 6c interacts with amino acid HIS85 which is present in active binding site. The wet lab results are in good agreement with the dry lab findings.Based upon our investigation we may propose that the compound 6c is promising candidate for the development of safe cosmetic agent.
    Matched MeSH terms: Spectrum Analysis
  13. Che Engku Noramalina Che-Engku-Chik, Nor Azah Yusof, Jaafar Abdullah, Siti Sarah Othman, Helmi Wasoh
    MyJurnal
    A novel DNA biosensing platform was designed by the functionalization of iron oxide (Fe3O4)
    with the carboxylic group via capping agent, mercaptopropionic acid (MPA) and conjugated
    with nanocellulose crystalline (NCC) surface modified with surfactant cetyltrimethylammonium
    bromide (CTAB) to assist in the DNA sensing capability. The product of nanocomposites
    compound was drop-casted on screen printed carbon electrode (SPCE). Characterization by field
    emission scanning electron microscope (FESEM) and energy dispersive X-Ray (EDX)
    spectroscopy showing that carboxyl functionalized iron oxide (COOH-Fe3O4) can be hybridized
    with NCC-CTA+ via electrostatic interaction.
    Matched MeSH terms: Spectrum Analysis
  14. Nizam MK, Sebastian D, Kairi MI, Khavarian M, Mohamed AR
    Sains Malaysiana, 2017;46:1039-1045.
    The synthesis of high quality graphene via economic way is highly desirable for practical applications. In this study, graphene flake was successfully synthesized on Cu/MgO catalyst derived from recovered Cu via etching in ammonium persulfate solution. Recovered Cu acted as efficient active metal in Cu/MgO catalyst with good crystal structure and composition according to XRD and XRF results. FESEM, EDX, HRTEM, Raman spectroscopy and SAED analysis were carried out on the synthesized graphene. The formation of single, bilayer and few layer of graphene from Cu/MgO catalyst derived from recovered Cu was feasible.
    Matched MeSH terms: Spectrum Analysis, Raman
  15. Lina A, Shaharuddin M
    The purpose of this study was to determine aluminium (Al) concentrations in groundwater used for drinking and cooking and its related health risk among population of 28th Mile Orang Asli village in Jenderam Hilir, Selangor, Malaysia. A total of 100 respondents were recruited, comprising 51 (51.0 %) male and 49 (49.0 %) female residents. Inductively coupled plasma mass spectrometry (ICP-MS) was used to determine Al concentration, while the LAMOTTE TRACER ORP PockeTester was used to measure pH levels. Statistical Package for Social Science (SPSS) was used to analyze the data. Results showed that Al concentration ranged from 0.041 - 0.136 mg/L with a mean of 0.136 + SD 0.041 mg/L, hence the values obtained were below the standard value (0.2 mg/L). pH levels ranged from 3.82 to 5.84, with a mean of 4.163 + SD 0.411, which is acidic and below the range permitted by the health authorities. The acidic nature may have an impact on the Al concentration in the water. The Hazard Index (HI) was found to be less than 1, thus there was no health risk of Al exposure in drinking water for the respondents involved. The study area was considered safe from having health risk associated with Al exposure.
    Matched MeSH terms: Spectrum Analysis
  16. Sirimahachai R, Harome H, Wongnawa S
    Sains Malaysiana, 2017;46:1393-1399.
    AgCl/BiYO3
    composite was successfully synthesized via the aqueous precipitation method followed by calcination. The
    varied amount of AgCl (10, 20 and 30%) was mixed into BiYO3
    via sonochemical-assisted method. The structures and
    morphologies of the as-prepared AgCl/BiYO3
    composite were characterized by x-ray diffraction (XRD), scanning electron
    microscopy (SEM) and UV-vis diffused reflectance spectroscopy (UV-vis DRS). The optical absorption spectrum of AgCl/
    BiYO3
    composite showed strong absorption in visible region. The photocatalytic activity of AgCl/BiYO3
    composite was
    evaluated by the photodegradation of reactive orange16 (RO16), which was selected to represent the dye pollutants,
    under UV and visible light irradiation. The results indicated that 20% AgCl/BiYO3 photocatalyst was the most capable
    photocatalyst in this series in the degradation of RO16 under both UV and visible light illumination within 1 h. Moreover,
    the mechanism of photocatalytic degradation of AgCl/BiYO3
    was elucidated using three types of free radical scavengers.
    The significant enhancement was attributed to the formation of AgCl/BiYO3
    heterojunction resulting in the low electronhole
    pair recombination rate.
    Matched MeSH terms: Spectrum Analysis
  17. Mohamad Asri MN, Mat Desa WNS, Ismail D
    J Forensic Sci, 2018 Jan;63(1):285-291.
    PMID: 28480527 DOI: 10.1111/1556-4029.13522
    The potential combination of two nondestructive techniques, that is, Raman spectroscopy (RS) and attenuated total reflectance-fourier transform infrared (ATR-FTIR) spectroscopy with Pearson's product moment correlation (PPMC) coefficient (r) and principal component analysis (PCA) to determine the actual source of red gel pen ink used to write a simulated threatening note, was examined. Eighteen (18) red gel pens purchased from Japan and Malaysia from November to December 2014 where one of the pens was used to write a simulated threatening note were analyzed using RS and ATR-FTIR spectroscopy, respectively. The spectra of all the red gel pen inks including the ink deposited on the simulated threatening note gathered from the RS and ATR-FTIR analyses were subjected to PPMC coefficient (r) calculation and principal component analysis (PCA). The coefficients r = 0.9985 and r = 0.9912 for pairwise combination of RS and ATR-FTIR spectra respectively and similarities in terms of PC1 and PC2 scores of one of the inks to the ink deposited on the simulated threatening note substantiated the feasibility of combining RS and ATR-FTIR spectroscopy with PPMC coefficient (r) and PCA for successful source determination of red gel pen inks. The development of pigment spectral library had allowed the ink deposited on the threatening note to be identified as XSL Poppy Red (CI Pigment Red 112).
    Matched MeSH terms: Spectrum Analysis, Raman
  18. Simone E, Othman R, Vladisavljević GT, Nagy ZK
    Pharmaceutics, 2018 Jan 24;10(1).
    PMID: 29364167 DOI: 10.3390/pharmaceutics10010017
    In this work, a novel membrane crystallization system was used to crystallize micro-sized seeds of piroxicam monohydrate by reverse antisolvent addition. Membrane crystallization seeds were compared with seeds produced by conventional antisolvent addition and polymorphic transformation of a fine powdered sample of piroxicam form I in water. The membrane crystallization process allowed for a consistent production of pure monohydrate crystals with narrow size distribution and without significant agglomeration. The seeds were grown in 350 g of 20:80w/wacetone-water mixture. Different seeding loads were tested and temperature cycling was applied in order to avoid agglomeration of the growing crystals during the process. Focused beam reflectance measurement (FBRM); and particle vision and measurement (PVM) were used to monitor crystal growth; nucleation and agglomeration during the seeded experiments. Furthermore; Raman spectroscopy was used to monitor solute concentration and estimate the overall yield of the process. Membrane crystallization was proved to be the most convenient and consistent method to produce seeds of highly agglomerating compounds; which can be grown via cooling crystallization and temperature cycling.
    Matched MeSH terms: Spectrum Analysis, Raman
  19. Bhavani P, Manikandan A, Jaganathan SK, Shankar S, Antony SA
    J Nanosci Nanotechnol, 2018 Feb 01;18(2):1388-1395.
    PMID: 29448597 DOI: 10.1166/jnn.2018.14112
    Undoped and Mn2+ doped CoAl2O4 (MnxCo1-xAl2O4; x = 0.0 to 1.0) spinel nanoparticles were successfully synthesized by a microwave heating method using glycine as the fuel. X-ray powder diffraction (XRD) was confirmed the cubic spinel structure. The average crystallite size of the samples was found to be in the range of 16.46 nm to 20.25 nm calculated by Scherrer's formula. The nano-sized particle-like morphology of the samples was confirmed by high resolution scanning electron microscopy (HR-SEM) and transmission electron microscopy (HR-TEM) analysis. Energy dispersive X-ray (EDX) results showed the pure form of spinel aluminate structure. The band gap energy (Eg) of pure CoAl2O4 was estimated to be 3.68 eV from UV-Visible diffuse reflectance spectroscopy (DRS), and the Eg values increased with increase of Mn2+ ions, due to the smaller grain size. The magnetic hysteresis (M-H) loop showed the superparamagnetic nature, and the magnetization and coercivity values increased with increasing Mn2+ ions, which was confirmed by vibrating sample magnetometer (VSM). All compositions of the nano-catalysts were tested as catalyst successfully for the conversion of benzyl alcohol into benzaldehyde and observed good catalytic activity.
    Matched MeSH terms: Spectrum Analysis
  20. Daood U, Abduljabbar T, Al-Hamoudi N, Akram Z
    J Periodontal Res, 2018 Feb;53(1):123-130.
    PMID: 28940417 DOI: 10.1111/jre.12496
    BACKGROUND AND OBJECTIVE: The aim of the present study was to compare clinical periodontal parameters and to assess the release of C-telopeptides pyridinoline cross-links (ICTP) and C-terminal crosslinked telopeptide (CTX) from gingival collagen of naswar (NW) and non-naswar (control) dippers.

    MATERIAL AND METHODS: Eighty-seven individuals (42 individuals consuming NW and 45 controls) were included. Clinical (plaque index, bleeding on probing, probing depth and clinical attachment loss) and radiographic (marginal bone loss) periodontal parameters were compared among NW and control groups. Gingival specimens were taken from subjects in NW and control groups, assessed for ICTP and CTX levels (using ELISA) and analyzed using micro-Raman spectroscopy. The significance of differences in periodontal parameters between the groups was determined using Kruskal-Wallis and Mann-Whitney U tests. The percent loss of dry mass over exposure time and the rate of release of ICTP and CTX from all groups were compared using the paired t-test to examine the effects of exposure time.

    RESULTS: Clinical and radiographic periodontal parameters were significantly higher in the NW group than the control group (P spectrum, the strongest and sharpest band occurred at 1260 cm-1 amongst NW users. A Raman band at Amide I was observed with slight shifts in wave numbers. The rate of ICTP and CTX release was significantly higher in subjects from the NW group compared with those from the control group (P 

    Matched MeSH terms: Spectrum Analysis, Raman
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links