Displaying publications 1761 - 1780 of 3311 in total

Abstract:
Sort:
  1. Gan BK, Rullah K, Yong CY, Ho KL, Omar AR, Alitheen NB, et al.
    Sci Rep, 2020 Oct 08;10(1):16867.
    PMID: 33033330 DOI: 10.1038/s41598-020-73967-4
    Chemotherapy is widely used in cancer treatments. However, non-specific distribution of chemotherapeutic agents to healthy tissues and normal cells in the human body always leads to adverse side effects and disappointing therapeutic outcomes. Therefore, the main aim of this study was to develop a targeted drug delivery system based on the hepatitis B virus-like nanoparticle (VLNP) for specific delivery of 5-fluorouracil-1-acetic acid (5-FA) to cancer cells expressing epithelial growth factor receptor (EGFR). 5-FA was synthesized from 5-fluorouracil (5-FU), and it was found to be less toxic than the latter in cancer cells expressing different levels of EGFR. The cytotoxicity of 5-FA increased significantly after being conjugated on the VLNP. A cell penetrating peptide (CPP) of EGFR was displayed on the VLNP via the nanoglue concept, for targeted delivery of 5-FA to A431, HT29 and HeLa cells. The results showed that the VLNP displaying the CPP and harboring 5-FA internalized the cancer cells and killed them in an EGFR-dependent manner. This study demonstrated that the VLNP can be used to deliver chemically modified 5-FU derivatives to cancer cells overexpressing EGFR, expanding the applications of the VLNP in targeted delivery of chemotherapeutic agents to cancer cells overexpressing this transmembrane receptor.
    Matched MeSH terms: HeLa Cells; HT29 Cells
  2. Bannister ML, Alvarez-Laviada A, Thomas NL, Mason SA, Coleman S, du Plessis CL, et al.
    Br J Pharmacol, 2016 08;173(15):2446-59.
    PMID: 27237957 DOI: 10.1111/bph.13521
    BACKGROUND AND PURPOSE: Flecainide is a use-dependent blocker of cardiac Na(+) channels. Mechanistic analysis of this block showed that the cationic form of flecainide enters the cytosolic vestibule of the open Na(+) channel. Flecainide is also effective in the treatment of catecholaminergic polymorphic ventricular tachycardia but, in this condition, its mechanism of action is contentious. We investigated how flecainide derivatives influence Ca(2) (+) -release from the sarcoplasmic reticulum through the ryanodine receptor channel (RyR2) and whether this correlates with their effectiveness as blockers of Na(+) and/or RyR2 channels.

    EXPERIMENTAL APPROACH: We compared the ability of fully charged (QX-FL) and neutral (NU-FL) derivatives of flecainide to block individual recombinant human RyR2 channels incorporated into planar phospholipid bilayers, and their effects on the properties of Ca(2) (+) sparks in intact adult rat cardiac myocytes.

    KEY RESULTS: Both QX-FL and NU-FL were partial blockers of the non-physiological cytosolic to luminal flux of cations through RyR2 channels but were significantly less effective than flecainide. None of the compounds influenced the physiologically relevant luminal to cytosol cation flux through RyR2 channels. Intracellular flecainide or QX-FL, but not NU-FL, reduced Ca(2) (+) spark frequency.

    CONCLUSIONS AND IMPLICATIONS: Given its inability to block physiologically relevant cation flux through RyR2 channels, and its lack of efficacy in blocking the cytosolic-to-luminal current, the effect of QX-FL on Ca(2) (+) sparks is likely, by analogy with flecainide, to result from Na(+) channel block. Our data reveal important differences in the interaction of flecainide with sites in the cytosolic vestibules of Na(+) and RyR2 channels.

    Matched MeSH terms: Cells, Cultured; HEK293 Cells
  3. Jazayeri SD, Ideris A, Zakaria Z, Omar AR
    J Biomed Biotechnol, 2012;2012:264986.
    PMID: 22701301 DOI: 10.1155/2012/264986
    Attenuated Salmonella has been used as a carrier for DNA vaccine. However, in vitro and in vivo studies on the bacteria following transfection of plasmid DNA were poorly studied. In this paper, eukaryotic expression plasmids encoding avian influenza virus (AIV) subtype H5N1 genes, pcDNA3.1/HA, NA, and NP, were transfected into an attenuated Salmonella enteric typhimurium SV4089. In vitro stability of the transfected plasmids into Salmonella were over 90% after 100 generations. The attenuated Salmonella were able to invade MCF-7 (1.2%) and MCF-10A (0.5%) human breast cancer cells. Newly hatched specific-pathogen-free (SPF) chicks were inoculated once by oral gavage with 10(9) colony-forming unit (CFU) of the attenuated Salmonella. No abnormal clinical signs or deaths were recorded after inoculation. Viable bacteria were detected 3 days after inoculation by plating from spleen, liver, and cecum. Fluorescent in situ hybridization (FISH) and polymerase chain reaction (PCR) were carried out for confirmation. Salmonella was not detected in blood cultures although serum antibody immune responses to Salmonella O antiserum group D1 factor 1, 9, and 12 antigens were observed in all the inoculated chickens after 7 days up to 35 days. Our results showed that live attenuated S. typhimurium SV4089 harboring pcDNA3.1/HA, NA, and NP may provide a unique alternative as a carrier for DNA oral vaccine in chickens.
    Matched MeSH terms: Stem Cells; MCF-7 Cells
  4. Abdel Wahab SI, Abdul AB, Alzubairi AS, Mohamed Elhassan M, Mohan S
    J Biomed Biotechnol, 2009;2009:769568.
    PMID: 19343171 DOI: 10.1155/2009/769568
    Zerumbone (ZER), a potential anticancer compound, isolated from the fresh rhizomes of Zingiber zerumbet. In this investigation, the cytotoxic properties of ZER were evaluated, on cancer cells of human cervix (HeLa), breast and ovary, and normal cells of Chinese Hamster ovary, using MTT assay. Apoptogenic effects of ZER on HeLa were studied using fluorescence microscopy (AO/PI double staining), scanning and transmission electron microscopy (SEM and TEM), and colorimetric assay of the apoptosis promoter enzyme, caspase-3. The results of MTT assay showed that ZER has less effect on normal cells compared to cancer cells. The lowest IC(50) of ZER was observed on HeLa cells. Cytological observations showed nuclear and chromatin condensation, cell shrinkage, multinucleation, abnormalities of mitochondrial cristae, membrane blebbing, holes, cytoplasmic extrusions and formation of apoptotic bodies as confirmed collectively by double staining of AO/PI, SEM and TEM. Statistical analysis (two-tailed t-test) of differential counting of 200 cells under fluorescence microscope revealed significant difference in apoptotic cells populations between treated and untreated HeLa cells. In addition, ZER has increased the cellular level of caspase-3 on the treated HeLa cells. It could be concluded that ZER was able to produce distinctive morphological features of cell death that corresponds to apoptosis.
    Matched MeSH terms: HeLa Cells; CHO Cells
  5. Chu WL, Lim YW, Radhakrishnan AK, Lim PE
    BMC Complement Altern Med, 2010 Sep 21;10:53.
    PMID: 20858231 DOI: 10.1186/1472-6882-10-53
    BACKGROUND: Spirulina is a commercial alga well known to contain various antioxidants, especially phycocyanin. Apart from being sold as a nutraceutical, Spirulina is incorporated as a functional ingredient in food products and beverages. Most of the previous reports on antioxidant activity of Spirulina were based on chemical rather than cell-based assays. The primary objective of this study was to assess the antioxidant activity of aqueous extract from Spirulina based on its protective effect against cell death induced by free radicals.

    METHODS: The antioxidant activity of the cold water extract from food-grade Spirulina platensis was assessed using both chemical and cell-based assays. In the cell-based assay, mouse fibroblast cells (3T3) cells were incubated for 1 h in medium containing aqueous extract of Spirulina or vitamin C (positive control) at 25, 125 and 250 μg/mL before the addition of 50 μM 1,1-diphenyl-2-picrylhydrazyl (DPPH) or 3-ethylbenzothiazoline-6-sulfonic acid (ABTS). The cells were incubated for another 24 h before being assessed for cell death due to apoptosis using the Cell Death Detection ELISA Kit. Spectrophotometric assays based on DPPH and ABTS were also used to assess the antioxidant activity of the extract compared to vitamin C and vitamin E (positive controls).

    RESULTS: Spirulina extract did not cause cytotoxic effect on 3T3 cells within the range of concentrations tested (0 - 250 μg/mL). The extract reduced significantly (p < 0.05) apoptotic cell death due to DPPH and ABTS by 4 to 5-fold although the activity was less than vitamin C. Based on the DPPH assay, the radical scavenging activity of the extract was higher than phycocyanin and was at least 50% of vitamin C and vitamin E. Based on the ABTS assay, the antioxidant activity of the extract at 50 μmug/mL was as good as vitamin C and vitamin E.

    CONCLUSIONS: The results showed that aqueous extract of Spirulina has a protective effect against apoptotic cell death due to free radicals. The potential application of incorporating Spirulina into food products and beverages to enhance their antioxidant capacity is worth exploring.

    Matched MeSH terms: 3T3 Cells/drug effects
  6. Usman MS, Hussein MZ, Fakurazi S, Masarudin MJ, Ahmad Saad FF
    PLoS One, 2018;13(7):e0200760.
    PMID: 30044841 DOI: 10.1371/journal.pone.0200760
    We have synthesized a bimodal theranostic nanodelivery system (BIT) that is based on graphene oxide (GO) and composed of a natural chemotherapeutic agent, chlorogenic acid (CA) used as the anticancer agent, while gadolinium (Gd) and gold nanoparticles (AuNPs) were used as contrast agents for magnetic resonance imaging (MRI) modality. The CA and Gd guest agents were simultaneously loaded on the GO nanolayers using chemical interactions, such as hydrogen bonding and π-π non-covalent interactions to form GOGCA nanocomposite. Subsequently, the AuNPs were doped on the surface of the GOGCA by means of electrostatic interactions, which resulted in the BIT. The physico-chemical studies of the BIT affirmed its successful development. The X-ray diffractograms (XRD) collected of the various stages of BIT synthesis showed the successive development of the hybrid system, while 90% of the chlorogenic acid was released in phosphate buffer solution (PBS) at pH 4.8. This was further reaffirmed by the in vitro evaluations, which showed stunted HepG2 cancer cells growth against the above 90% cell growth in the control cells. A reverse case was recorded for the 3T3 normal cells. Further, the acquired T1-weighted image of the BIT doped samples obtained from the MRI indicated contrast enhancement in comparison with the plain Gd and water references. The abovementioned results portray our BIT as a promising future chemotherapeutic for anticancer treatment with diagnostic modalities.
    Matched MeSH terms: 3T3 Cells; Hep G2 Cells
  7. Tan MSF, Rahman S, Dykes GA
    Food Microbiol, 2017 Apr;62:62-67.
    PMID: 27889167 DOI: 10.1016/j.fm.2016.10.009
    This study investigated the removal of bacterial surface structures, particularly flagella, using sonication, and examined its effect on the attachment of Salmonella Typhimurium ATCC 14028 cells to plant cell walls. S. Typhimurium ATCC 14028 cells were subjected to sonication at 20 kHz to remove surface structures without affecting cell viability. Effective removal of flagella was determined by staining flagella of sonicated cells with Ryu's stain and enumerating the flagella remaining by direct microscopic counting. The attachment of sonicated S. Typhimurium cells to bacterial cellulose-based plant cell wall models and cut plant material (potato, apple, lettuce) was then evaluated. Varying concentrations of pectin and/or xyloglucan were used to produce a range of bacterial cellulose-based plant cell wall models. As compared to the non-sonicated controls, sonicated S. Typhimurium cells attached in significantly lower numbers (between 0.5 and 1.0 log CFU/cm2) to all surfaces except to the bacterial cellulose-only composite without pectin and xyloglucan. Since attachment of S. Typhimurium to the bacterial cellulose-only composite was not affected by sonication, this suggests that bacterial surface structures, particularly flagella, could have specific interactions with pectin and xyloglucan. This study indicates that sonication may have potential applications for reducing Salmonella attachment during the processing of fresh produce.
    Matched MeSH terms: Plant Cells/microbiology*
  8. Paydar M, Wong YL, Moharam BA, Wong WF, Looi CY
    Pak J Biol Sci, 2013 Oct 15;16(20):1212-5.
    PMID: 24506026
    Sanchezia speciosa, is a bushy shrub from Acanthaceae family which commonly grows in tropical areas of South and Central America. In this study, we employed MTT assay to test the cytotoxicity of that methanolic fraction of S. speciosa leaves on MCF-7 human breast cancer, SK-MEL-5 human malignant melanoma and human umbilical vein endothelial cells, HUVEC cells. The extract showed highest activity on MCF-7 and moderate cytotoxicity towards SK-MEL-5. In contrast, the extract demonstrated lowest cell growth inhibition activity on HUVEC cells, indicating better selectivity compare to standard drug, doxorubicin. In addition, we also performed ORAC assay to determine the radical scavenging capacity of methanolic extract of S. speciosa leaves. The extract exhibited nearly similar anti-oxidant activity as quercetin, suggesting S. speciosa leaves as a potential source of natural anti-oxidant. To the best of our knowledge, this is the first report on anti-oxidant and cytotoxic activity of S. speciosa.
    Matched MeSH terms: Human Umbilical Vein Endothelial Cells; MCF-7 Cells
  9. Dashtdar H, Murali MR, Abbas AA, Suhaeb AM, Selvaratnam L, Tay LX, et al.
    Knee Surg Sports Traumatol Arthrosc, 2015 May;23(5):1368-1377.
    PMID: 24146054 DOI: 10.1007/s00167-013-2723-5
    PURPOSE: To investigate whether mesenchymal stem cells (MSCs) seeded in novel polyvinyl alcohol (PVA)-chitosan composite hydrogel can provide comparable or even further improve cartilage repair outcomes as compared to previously established alginate-transplanted models.

    METHODS: Medial femoral condyle defect was created in both knees of twenty-four mature New Zealand white rabbits, and the animals were divided into four groups containing six animals each. After 3 weeks, the right knees were transplanted with PVA-chitosan-MSC, PVA-chitosan scaffold alone, alginate-MSC construct or alginate alone. The left knee was kept as untreated control. Animals were killed at the end of 6 months after transplantation, and the cartilage repair was assessed through Brittberg morphological score, histological grading by O'Driscoll score and quantitative glycosaminoglycan analysis.

    RESULTS: Morphological and histological analyses showed significant (p < 0.05) tissue repair when treated with PVA-chitosan-MSC or alginate MSC as compared to the scaffold only and untreated control. In addition, safranin O staining and the glycosaminoglycan (GAG) content were significantly higher (p < 0.05) in MSC treatment groups than in scaffold-only or untreated control group. No significant difference was observed between the PVA-chitosan-MSC- and alginate-MSC-treated groups.

    CONCLUSION: PVA-chitosan hydrogel seeded with mesenchymal stem cells provides comparable treatment outcomes to that of previously established alginate-MSC construct implantation. This study supports the potential use of PVA-chitosan hydrogel seeded with MSCs for clinical use in cartilage repair such as traumatic injuries.

    Matched MeSH terms: Mesenchymal Stromal Cells/cytology*
  10. Ti TK
    Ann Acad Med Singap, 1983 Oct;12(4):507-17.
    PMID: 6678134
    Basal and pentagastrin stimulated acid output was measured in 80 normal and 179 duodenal ulcer subjects of Chinese, Indian and Malay origin. Basal and maximally stimulated acid output was significantly higher in duodenal ulcer patients compared with normal subjects. There was however considerable overlap and less than one in four duodenal ulcer patients were hypersecretors. The acid output (and hence the parietal cell mass) was lower than in Caucasian subjects and this was possibly related to weight differences. The acid output did not differ significantly in the Chinese, Indian and Malay subjects, suggesting that parietal cell mass in the three racial groups is closely similar. The difference in frequency of duodenal ulcer disease in the three racial groups is thus not related to gastric secretory capacity.
    Matched MeSH terms: Parietal Cells, Gastric/pathology
  11. Camerino MA, Liu M, Moriya S, Kitahashi T, Mahgoub A, Mountford SJ, et al.
    J. Pept. Sci., 2016 Jun;22(6):406-14.
    PMID: 27282137 DOI: 10.1002/psc.2883
    Kisspeptin analogues with improved metabolic stability may represent important ligands in the study of the kisspeptin/KISS1R system and have therapeutic potential. In this paper we assess the activity of known and novel kisspeptin analogues utilising a dual luciferase reporter assay in KISS1R-transfected HEK293T cells. In general terms the results reflect the outcomes of other assay formats and a number of potent agonists were identified among the analogues, including β(2) -hTyr-modified and fluorescently labelled forms. We also showed, by assaying kisspeptin in the presence of protease inhibitors, that proteolysis of kisspeptin activity within the reporter assay itself may diminish the agonist outputs. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.
    Matched MeSH terms: HEK293 Cells
  12. Karunakaran T, Ee GC, Teh SS, Daud S, Mah SH, Lim CK, et al.
    Nat Prod Res, 2016 Jul;30(14):1591-7.
    PMID: 26710827 DOI: 10.1080/14786419.2015.1120727
    A new alkylated coumarin derivative, hexapetarin (1) along with three other xanthones, trapezifolixanthone (2), cudraxanthone G (3) and 1,3,7-trihydroxy-2,4-di (3-methyl-2-butenyl)xanthone (4), and four common triterpenoids, friedelin (5), stigmasterol (6), beta-sitosterol (7) and gamma-sitosterol (8) were isolated from the stem bark of Mesua hexapetala (Clusiaceae), a plant, native to Malaysia. The structures of these compounds were elucidated and determined using spectroscopic techniques such as NMR and MS. Anti-inflammatory activity assay indicated hexapetarin (1) to possess moderate anti-inflammatory activity, while 1,3,7-trihydroxy-2,4-di (3-methyl-2-butenyl)xanthone (4) gave very good activity.
    Matched MeSH terms: Cells, Cultured
  13. Rezvanian M, Amin MCIM, Ng SF
    Carbohydr Polym, 2016 Feb 10;137:295-304.
    PMID: 26686133 DOI: 10.1016/j.carbpol.2015.10.091
    Previously, studies have demonstrated that topical application of simvastatin can promote wound healing in diabetic mice via augmentation of angiogenesis and lymphangiogenesis. This study aimed to formulate and characterize simvastatin in alginate-based composite film wound dressings. Biopolymers used for composite films were sodium alginate blended with pectin or gelatin. The films were prepared and characterized based on their physical properties, surface morphology, mechanical strength and rheology. Then, in vitro drug releases from the films were investigated and, finally, the cell viability assay was performed to assess the cytotoxicity profile. From the pre-formulation studies, alginate/pectin composite film showed to possess desirable wound dressing properties and superior mechanical properties. The in vitro drug release profile revealed that alginate/pectin film produced a controlled release drug profile, and cell viability assay showed that the film was non-toxic. In summary, alginate/pectin composite film is suitable to be formulated with simvastatin as a potential wound dressing.
    Matched MeSH terms: Cells, Cultured
  14. Shi M, Ling K, Yong KW, Li Y, Feng S, Zhang X, et al.
    Sci Rep, 2015 Dec 14;5:17928.
    PMID: 26655688 DOI: 10.1038/srep17928
    Cryopreservation is the most promising way for long-term storage of biological samples e.g., single cells and cellular structures. Among various cryopreservation methods, vitrification is advantageous by employing high cooling rate to avoid the formation of harmful ice crystals in cells. Most existing vitrification methods adopt direct contact of cells with liquid nitrogen to obtain high cooling rates, which however causes the potential contamination and difficult cell collection. To address these limitations, we developed a non-contact vitrification device based on an ultra-thin freezing film to achieve high cooling/warming rate and avoid direct contact between cells and liquid nitrogen. A high-throughput cell printer was employed to rapidly generate uniform cell-laden microdroplets into the device, where the microdroplets were hung on one side of the film and then vitrified by pouring the liquid nitrogen onto the other side via boiling heat transfer. Through theoretical and experimental studies on vitrification processes, we demonstrated that our device offers a high cooling/warming rate for vitrification of the NIH 3T3 cells and human adipose-derived stem cells (hASCs) with maintained cell viability and differentiation potential. This non-contact vitrification device provides a novel and effective way to cryopreserve cells at high throughput and avoid the contamination and collection problems.
    Matched MeSH terms: NIH 3T3 Cells
  15. Sowndhararajan K, Hong S, Jhoo JW, Kim S, Chin NL
    Saudi J Biol Sci, 2015 Nov;22(6):685-91.
    PMID: 26586994 DOI: 10.1016/j.sjbs.2015.03.010
    Acacia species are multipurpose trees, widely used in the traditional systems of medicine to treat various ailments. The major objective of the present study was to determine the gene expression of enzymatic antioxidants by acetone extract from the stem bark of three Acacia species (Acacia dealbata, Acacia ferruginea and Acacia leucophloea) in hydrogen peroxide (H2O2)-induced human hepatoma (HepG2) cells. The expression of antioxidant enzymes such as superoxide dismutase containing copper-zinc (CuZnSOD)/manganese (MnSOD), catalase (CAT) and glutathione peroxidase (GPx) in HepG2 cells was evaluated by real-time PCR. The results of antioxidant enzyme expression in real-time PCR study revealed that the H2O2 (200 μM) challenged HepG2 cells reduced the expression of enzymes such as SOD, GPx and CAT. However, the cells pre-treated with acetone extracts of all the three Acacia species significantly (P > 0.05) up-regulated the expression of antioxidant enzymes in a concentration dependent manner (25, 50 and 75 μg/mL). In conclusion, the findings of our study demonstrated that the acetone extract of Acacia species effectively inhibited H2O2 mediated oxidative stress and may be useful as a therapeutic agent in preventing oxidative stress mediated diseases.
    Matched MeSH terms: Hep G2 Cells
  16. Lim CK, Subramaniam H, Say YH, Jong VY, Khaledi H, Chee CF
    Nat Prod Res, 2015;29(21):1970-7.
    PMID: 25716662 DOI: 10.1080/14786419.2015.1015020
    A new chromanone acid, namely caloteysmannic acid (1), along with three known compounds, calolongic acid (2), isocalolongic acid (3) and stigmasterol (4) were isolated from the stem bark of Calophyllum teysmannii. All these compounds were evaluated for their cytotoxic and antioxidant activities in the MTT and DPPH assays, respectively. The structure of compound 1 was determined by means of spectroscopic methods including 1D and 2D NMR experiments as well as HR-EIMS spectrometry. The stereochemical assignment of compound 1 was done based on the NMR results and X-ray crystallographic analysis. The preliminary assay results revealed that all the test compounds displayed potent inhibitory activity against HeLa cancer cell line, in particular with compound 1 which exhibited the highest cytotoxic activity comparable to the positive control used, cisplatin. However, no significant antioxidant activity was observed for all the test compounds in the DPPH radical scavenging capacity assay.
    Matched MeSH terms: HeLa Cells
  17. Hussein MA, Guan TS, Haque RA, Khadeer Ahamed MB, Abdul Majid AM
    Spectrochim Acta A Mol Biomol Spectrosc, 2015 Feb 05;136 Pt C:1335-48.
    PMID: 25456676 DOI: 10.1016/j.saa.2014.10.021
    Four dioxomolybdenum(VI) complexes were synthesized by reacting [MoO2(acac)2] with N-ethyl-2-(5-bromo-2-hydroxybenzylidene) hydrazinecarbothioamide (1), N-ethyl-2-(5-allyl-3-methoxy-2-hydroxybenzylidene) hydrazinecarbothioamide (2), N-methyl-2-(3-tert-butyl-2-hydroxybenzylidene) hydrazinecarbothioamide (3), and N-ethyl-2-(3-methyl-2-hydroxybenzylidene) hydrazinecarbothioamide (4). The molecular structures of 1, 2, and all the synthesized complexes were determined using single crystal X-ray crystallography. The binding properties of the ligand and complexes with calf thymus DNA (CT-DNA) were investigated via UV, fluorescence titrations, and viscosity measurement. Gel electrophoresis revealed that all the complexes cleave pBR 322 plasmid DNA. The cytotoxicity of the complexes were studied against the HCT 116 human colorectal cell line. All the complexes exhibited more pronounced activity than the standard reference drug 5-fluorouracil (IC50 7.3μM). These studies show that dioxomolybdenum(VI) complexes could be potentially useful in chemotherapy.
    Matched MeSH terms: HCT116 Cells
  18. Radford R, Rcom-H'cheo-Gauthier A, Wong MB, Eaton ED, Quilty M, Blizzard C, et al.
    Mol. Cell. Neurosci., 2015 Mar;65:68-81.
    PMID: 25731829 DOI: 10.1016/j.mcn.2015.02.015
    Multiple system atrophy (MSA) exhibits widespread astrogliosis together with α-synuclein (α-syn) glial cytoplasmic inclusions (GCIs) in mature oligodendrocytes. We quantified astrocyte activation by morphometric analysis of MSA cases, and investigated the correlation to GCI proximity. Using Imaris software, we obtained "skinned" three-dimensional models of GFAP-positive astrocytes in MSA and control tissue (n=75) from confocal z-stacks and measured the astrocyte process length and thickness and radial distance to the GCI. Astrocytes proximal to GCI-containing oligodendrocytes (r<25μm) had significantly (p, 0.05) longer and thicker processes characteristic of activation than distal astrocytes (r>25μm), with a reciprocal linear correlation (m, 90μm(2)) between mean process length and radial distance to the nearest GCI (R(2), 0.7). In primary cell culture studies, α-syn addition caused ERK-dependent activation of rat astrocytes and perinuclear α-syn inclusions in mature (MOSP-positive) rat oligodendrocytes. Activated astrocytes were also observed in close proximity to α-syn deposits in a unilateral rotenone-lesion mouse model. Moreover, unilateral injection of MSA tissue-derived α-syn into the mouse medial forebrain bundle resulted in widespread neuroinflammation in the α-syn-injected, but not sham-injected hemisphere. Taken together, our data suggests that the action of localized concentrations of α-syn may underlie both astrocyte and oligodendrocyte MSA pathological features.
    Matched MeSH terms: Cells, Cultured
  19. Tang KS
    Lipids Health Dis, 2014 Dec 19;13:197.
    PMID: 25522984 DOI: 10.1186/1476-511X-13-197
    BACKGROUND: Parkinson's disease is a neurodegenerative disorder that is being characterized by the progressive loss of dopaminergic neurons of the nigrostriatal pathway in the brain. The protective effect of omega-6 fatty acids is unclear. There are lots of contradictions in the literature with regard to the cytoprotective role of arachidonic acid. To date, there is no solid evidence that shows the protective role of omega-6 fatty acids in Parkinson's disease. In the current study, the potential of two omega-6 fatty acids (i.e. arachidonic acid and linoleic acid) in alleviating 1-methyl-4-phenylpyridinium (MPP+)-induced cytotoxicity in PC12 cells was examined.

    METHODS: Cultured PC12 cells were either treated with MPP+ alone or co-treated with one of the omega-6 fatty acids for 1 day. Cell viability was then assessed by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay.

    RESULTS: Cells treated with 500 μM MPP+ for a day reduced cell viability to ~70% as compared to control group. Linoleic acid (50 and 100 μM) significantly reduced MPP+-induced cell death back to ~85-90% of the control value. The protective effect could be mimicked by arachidonic acid, but not by ciglitazone.

    CONCLUSIONS: Both linoleic acid and arachidonic acid are able to inhibit MPP+-induced toxicity in PC12 cells. The protection is not mediated via peroxisome proliferator-activated receptor gamma (PPAR-γ). Overall, the results suggest the potential role of omega-6 fatty acids in the treatment of Parkinson's disease.

    Matched MeSH terms: PC12 Cells
  20. Kamba AS, Ismail M, Ibrahim TA, Zakaria ZA
    PMID: 25392577
    BACKGROUND: Currently, there has been extensive research interest for inorganic nanocrystals such as calcium phosphate, iron oxide, silicone, carbon nanotube and layered double hydroxide as a drug delivery system especially in cancer therapy. However, toxicological screening of such particles is paramount importance before use as delivery carrier. In this study we examine the biocompatibility of CaCO3 nanocrystal on NIH 3T3 cell line.

    MATERIAL AND METHODS: Transmission and field emission scanning electron microscopy (TEM and FESEM) were used for the characterisation of CaCO3 nanocrystals. Cytotoxicity and genotoxic effect of calcium carbonate nanocrystals in cultured mouse embryonic fibroblast NIH 3T3 cell line using various bioassays including MTT, and Neutral red/Trypan blue double-staining assays. LDH, BrdU and reactive oxygen species were used for toxicity analysis. Cellular morphology was examined by scanning electron microscopy (SEM) and confocal fluorescence microscope.

    RESULTS: The outcome of the analyses revealed a clear rod-shaped aragonite polymorph of calcium carbonate nanocrystal. The analysed cytotoxic and genotoxicity of CaCO3 nanocrystal on NIH 3T3 cells using different bioassays revealed no significance differences as compared to control. A slight decrease in cell viability was noticed when the cells were exposed to higher concentrations of 200 to 400 µg/ml, while increase in ROS generation and LDH released at 200 and 400 µg/ml was observed.

    CONCLUSIONS: The study has shown that CaCO3 nanocrystal is biocompatible and non toxic to NIH 3T3 fibroblast cells. The analysed results offer a promising potential of CaCO3 nanocrystal for the development of intracellular drugs, genes and other macromolecule delivery systems.

    Matched MeSH terms: 3T3 Cells
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links