Displaying publications 161 - 180 of 294 in total

Abstract:
Sort:
  1. Elayappan PK, Kandasamy K, Sasikumar V, Bharathi M, Hirad AH, Alarfaj AA, et al.
    Biotechnol Lett, 2024 Apr 27.
    PMID: 38676857 DOI: 10.1007/s10529-024-03491-2
    Nanocomposites selectively induce cancer cell death, holding potential for precise liver cancer treatment breakthroughs. This study assessed the cytotoxicity of gold nanocomposites (Au NCs) enclosed within silk fibroin (SF), aptamer (Ap), and the myogenic Talaromyces purpureogenus (TP) against a human liver cancer cell (HepG2). The ultimate product, Ap-SF-TP@Au NCs, results from a three-step process. This process involves the myogenic synthesis of TP@Au NCs derived from TP mycelial extract, encapsulation of SF on TP@Au NCs (SF-TP@Au NCs), and the conjugation of Ap within SF-TP@Au NCs. The synthesized NCs are analyzed by various characteristic techniques. Ap-SF-TP@Au NCs induced potential cell death in HepG2 cells but exhibited no cytotoxicity in non-cancerous cells (NIH3T3). The morphological changes in cells were examined through various biochemical staining methods. Thus, Ap-SF-TP@Au NCs emerge as a promising nanocomposite for treating diverse cancer cells.
  2. Anbu P, Murugan K, Madhiyazhagan P, Dinesh D, Subramaniam J, Panneerselvam C, et al.
    Nat Prod Res, 2016 Sep;30(18):2077-84.
    PMID: 26679526 DOI: 10.1080/14786419.2015.1114935
    The impact of green-synthesised mosquitocidal nanoparticles on non-target aquatic predators is poorly studied. In this research, we proposed a single-step method to synthesise silver nanoparticles (Ag NP) using the seed extract of Melia azedarach. Ag NP were characterised using a variety of biophysical methods, including UV-vis spectrophotometry, scanning electron microscopy, energy-dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy. In laboratory assays on Anopheles stephensi, Ag NP showed LC50 ranging from 2.897 (I instar larvae) to 14.548 ppm (pupae). In the field, the application of Ag NP (10 × LC50) lead to complete elimination of larval populations after 72 h. The application of Ag NP in the aquatic environment did not show negative adverse effects on predatory efficiency of the mosquito natural enemy Cyclops vernalis. Overall, this study highlights the concrete possibility to employ M. azedarach-synthesised Ag NP on young instars of malaria vectors.
  3. Higuchi A, Kao SH, Ling QD, Chen YM, Li HF, Alarfaj AA, et al.
    Sci Rep, 2015 Dec 14;5:18136.
    PMID: 26656754 DOI: 10.1038/srep18136
    The tentative clinical application of human pluripotent stem cells (hPSCs), such as human embryonic stem cells and human induced pluripotent stem cells, is restricted by the possibility of xenogenic contamination resulting from the use of mouse embryonic fibroblasts (MEFs) as a feeder layer. Therefore, we investigated hPSC cultures on biomaterials with different elasticities that were grafted with different nanosegments. We prepared dishes coated with polyvinylalcohol-co-itaconic acid hydrogels grafted with an oligopeptide derived from vitronectin (KGGPQVTRGDVFTMP) with elasticities ranging from 10.3 to 30.4 kPa storage moduli by controlling the crosslinking time. The hPSCs cultured on the stiffest substrates (30.4 kPa) tended to differentiate after five days of culture, whereas the hPSCs cultured on the optimal elastic substrates (25 kPa) maintained their pluripotency for over 20 passages under xeno-free conditions. These results indicate that cell culture matrices with optimal elasticity can maintain the pluripotency of hPSCs in culture.
  4. Chen DC, Chen LY, Ling QD, Wu MH, Wang CT, Suresh Kumar S, et al.
    Biomaterials, 2014 May;35(14):4278-87.
    PMID: 24565521 DOI: 10.1016/j.biomaterials.2014.02.004
    The purification of human adipose-derived stem cells (hADSCs) from human adipose tissue cells (stromal vascular fraction) was investigated using membrane filtration through poly(lactide-co-glycolic acid)/silk screen hybrid membranes. Membrane filtration methods are attractive in regenerative medicine because they reduce the time required to purify hADSCs (i.e., less than 30 min) compared with conventional culture methods, which require 5-12 days. hADSCs expressing the mesenchymal stem cell markers CD44, CD73, and CD90 were concentrated in the permeation solution from the hybrid membranes. Expression of the surface markers CD44, CD73, and CD99 on the cells in the permeation solution from the hybrid membranes, which were obtained using 18 mL of feed solution containing 50 × 10⁴ cells, was statistically significantly higher than that of the primary adipose tissue cells, indicating that the hADSCs can be purified in the permeation solution by the membrane filtration method. Cells expressing the stem cell-associated marker CD34 could be successfully isolated in the permeation solution, whereas CD34⁺ cells could not be purified by the conventional culture method. The hADSCs in the permeation solution demonstrated a superior capacity for osteogenic differentiation based on their alkali phosphatase activity, their osterix gene expression, and the results of mineralization analysis by Alizarin Red S and von Kossa staining compared with the cells from the suspension of human adipose tissue. These results suggest that the hADSCs capable of osteogenic differentiation preferentially permeate through the hybrid membranes.
  5. Peng IC, Yeh CC, Lu YT, Muduli S, Ling QD, Alarfaj AA, et al.
    Biomaterials, 2016 Jan;76:76-86.
    PMID: 26519650 DOI: 10.1016/j.biomaterials.2015.10.039
    Stem cell culture is typically based on batch-type culture, which is laborious and expensive. Here, we propose a continuous harvest method for stem cells cultured on thermoresponsive nanobrush surfaces. In this method, stem cells are partially detached from the nanobrush surface by reducing the temperature of the culture medium below the critical solution temperature needed for thermoresponse. The detached stem cells are harvested by exchange into fresh culture medium. Following this, the remaining cells are continuously cultured by expansion in fresh culture medium at 37 °C. Thermoresponsive nanobrush surfaces were prepared by coating block copolymers containing polystyrene (for hydrophobic anchoring onto culture dishes) with three types of polymers: (a) polyacrylic acid with cell-binding oligopeptides, (b) thermoresponsive poly-N-isopropylacrylamide, and (c) hydrophilic poly(ethyleneglycol)methacrylate. The optimal coating durations and compositions for these copolymers to facilitate adequate attachment and detachment of human adipose-derived stem cells (hADSCs) and embryonic stem cells (hESCs) were determined. hADSCs and hESCs were continuously harvested for 5 and 3 cycles, respectively, via the partial detachment of cells from thermoresponsive nanobrush surfaces.
  6. Yeh CC, Muduli S, Peng IC, Lu YT, Ling QD, Alarfaj AA, et al.
    Data Brief, 2016 Mar;6:603-8.
    PMID: 26909373 DOI: 10.1016/j.dib.2015.12.056
    This data article contains two figures and one table supporting the research article entitled: "Continuous harvest of stem cells via partial detachment from thermoresponsive nanobrush surface" [1]. The table shows coating conditions of three copolymers, poly(styrene-co-acrylic acid) grafted with oligovitronectin, poly(styrene-co-N-isopropylacrylamide) and poly(styrene-co-polyethylene glycol methacrylate) to prepare thermoresponsive surface. XPS spectra show the nitrogen peak of the polystyrene surface coated with poly(styrene-co-acrylic acid) grafted with oligovitronectin. The surface coating density analyzed from sorption of poly(styrene-co-acrylic acid) grafted with oligovitronectin by UV-vis spectroscopy is also presented.
  7. Higuchi A, Wang CT, Ling QD, Lee HH, Kumar SS, Chang Y, et al.
    Sci Rep, 2015;5:10217.
    PMID: 25970301 DOI: 10.1038/srep10217
    Human adipose-derived stem cells (hADSCs) exhibit heterogeneous characteristics, indicating various genotypes and differentiation abilities. The isolated hADSCs can possess different purity levels and divergent properties depending on the purification methods used. We developed a hybrid-membrane migration method that purifies hADSCs from a fat tissue solution with extremely high purity and pluripotency. A primary fat-tissue solution was permeated through the porous membranes with a pore size from 8 to 25 μm, and the membranes were incubated in cell culture medium for 15-18 days. The hADSCs that migrated from the membranes contained an extremely high percentage (e.g., >98%) of cells positive for mesenchymal stem cell markers and showed almost one order of magnitude higher expression of some pluripotency genes (Oct4, Sox2, Klf4 and Nanog) compared with cells isolated using the conventional culture method.
  8. Yashni G, Al-Gheethi A, Radin Mohamed RMS, Dai-Viet NV, Al-Kahtani AA, Al-Sahari M, et al.
    Chemosphere, 2021 Oct;281:130661.
    PMID: 34029959 DOI: 10.1016/j.chemosphere.2021.130661
    Textile industry is one of the most environmental unfriendly industrial processes due to the massive generation of colored wastewater contaminated with dyes and other chemical auxiliaries. These contaminants are known to have undesirable consequences to ecosystem. The present study investigated the best operating parameters for the removal of congo red (CR, as the model for dye wastewater) by orange peels extract biosynthesized zinc oxide nanoparticles (ZnO NPs) via photocatalysis in an aqueous solution. The response surface methodology (RSM) with ZnO NPs loadings (0.05-0.20 g), pH (3.00-11.00), and initial CR concentration (5-20 ppm) were used for the optimization process. The applicability of ZnO NPs in the dye wastewater treatment was evaluated based on the techno-economic analysis (TEA). ZnO NPs exhibited hexagonal wurtzite structure with = C-H, C-O, -C-O-C, CC, O-H as the main functional groups. The maximum degradation of CR was more than 96% with 0.171 g of ZnO NPs, at pH 6.43 and 5 ppm of CR and 90% of the R2 coefficient. The specific cost of ZnO NPs production is USD 20.25 per kg. These findings indicated that the biosynthesized ZnO NPs with orange peels extract provides alternative method for treating dye wastewater.
  9. Chen YM, Chen LH, Li MP, Li HF, Higuchi A, Kumar SS, et al.
    Sci Rep, 2017 03 23;7:45146.
    PMID: 28332572 DOI: 10.1038/srep45146
    Establishing cultures of human embryonic (ES) and induced pluripotent (iPS) stem cells in xeno-free conditions is essential for producing clinical-grade cells. Development of cell culture biomaterials for human ES and iPS cells is critical for this purpose. We designed several structures of oligopeptide-grafted poly (vinyl alcohol-co-itaconic acid) hydrogels with optimal elasticity, and prepared them in formations of single chain, single chain with joint segment, dual chain with joint segment, and branched-type chain. Oligopeptide sequences were selected from integrin- and glycosaminoglycan-binding domains of the extracellular matrix. The hydrogels grafted with vitronectin-derived oligopeptides having a joint segment or a dual chain, which has a storage modulus of 25 kPa, supported the long-term culture of human ES and iPS cells for over 10 passages. The dual chain and/or joint segment with cell adhesion molecules on the hydrogels facilitated the proliferation and pluripotency of human ES and iPS cells.
  10. Al-Mekhlafi HM, Madkhali AM, Abdulhaq AA, Atroosh WM, Ghzwani AH, Zain KA, et al.
    Sci Rep, 2022 01 11;12(1):517.
    PMID: 35017593 DOI: 10.1038/s41598-021-04450-x
    A total of 227 Plasmodium falciparum isolates from Jazan region, southwestern Saudi Arabia were amplified for the P. falciparum multi-drug resistance 1 (pfmdr1) gene to detect point mutations 11 years after the introduction of artemisinin-based combination therapy (ACT) in Saudi Arabia. The pfmdr1 86Y mutation was found in 11.5% (26/227) of the isolates while the N86 wild allele was detected in 88.5%. Moreover, 184F point mutations dominated (86.3%) the instances of pfmdr1 polymorphism while no mutation was observed at codons 1034, 1042 and 1246. Three pfmdr1 haplotypes were identified, NFSND (74.9%), NYSND (13.7%) and YFSND (11.4%). Associations of the prevalence of 86Y mutation and YFSND haplotype with participants' nationality, residency and parasitaemia level were found to be significant (P 
  11. Madkhali AM, Abdulhaq AA, Atroosh WM, Ghzwani AH, Zain KA, Ghailan KY, et al.
    Parasitol Res, 2021 Nov;120(11):3771-3781.
    PMID: 34561749 DOI: 10.1007/s00436-021-07323-4
    This study investigated the polymorphism in the P. falciparum chloroquine resistance transporter (pfcrt) gene 11 years after chloroquine (CQ) cessation in Jazan region, southwestern Saudi Arabia. Two hundred and thirty-five P. falciparum isolates were amplified to detect mutations in the pfcrt gene. The pfcrt 76 T molecular marker for CQ resistance was detected in 66.4% (156/235) of the isolates, while the K76 CQ-sensitive wild type was detected in 33.6%. The pfcrt 74I and pfcrt 75E point mutations were each found to be present in 56.2% of isolates, while only four isolates (1.7%) were found to carry the pfcrt 72S mutation. Moreover, four pfcrt haplotypes were identified as follows: the CVIET triple-allele (56.2%), SVMET double-allele (1.7%) and CVMNT single-allele (8.5%) mutant haplotypes and the CVMNK wild haplotype (33.6%). The analysis also revealed significant associations between the prevalence of mutant pfcrt alleles and haplotypes and the age group, governorate and nationality of the patients as well as the parasitaemia level (p 
  12. Sung TC, Li HF, Higuchi A, Ling QD, Yang JS, Tseng YC, et al.
    J Vis Exp, 2018 02 03.
    PMID: 29443075 DOI: 10.3791/57314
    The effect of physical cues, such as the stiffness of biomaterials on the proliferation and differentiation of stem cells, has been investigated by several researchers. However, most of these investigators have used polyacrylamide hydrogels for stem cell culture in their studies. Therefore, their results are controversial because those results might originate from the specific characteristics of the polyacrylamide and not from the physical cue (stiffness) of the biomaterials. Here, we describe a protocol for preparing hydrogels, which are not based on polyacrylamide, where various stem, cells including human embryonic stem (ES) cells and human induced pluripotent stem (iPS) cells, can be cultured. Hydrogels with varying stiffness were prepared from bioinert polyvinyl alcohol-co-itaconic acid (P-IA), with stiffness controlled by crosslinking degree by changing crosslinking time. The P-IA hydrogels grafted with and without oligopeptides derived from extracellular matrix were investigated as a future platform for stem cell culture and differentiation. The culture and passage of amniotic fluid stem cells, adipose-derived stem cells, human ES cells, and human iPS cells is described in detail here. The oligopeptide P-IA hydrogels showed superior performances, which were induced by their stiffness properties. This protocol reports the synthesis of the biomaterial, their surface manipulation, along with controlling the stiffness properties and finally, their impact on stem cell fate using xeno-free culture conditions. Based on recent studies, such modified substrates can act as future platforms to support and direct the fate of various stem cells line to different linkages; and further, regenerate and restore the functions of the lost organ or tissue.
  13. Padma Priya S, Higuchi A, Abu Fanas S, Pooi Ling M, Kumari Neela V, Sunil PM, et al.
    Lab Invest, 2015 Dec;95(12):1344-52.
    PMID: 26367485 DOI: 10.1038/labinvest.2015.108
    The ultimate goal of dental stem cell research is to construct a bioengineered tooth. Tooth formation occurs based on the well-organized reciprocal interaction of epithelial and mesenchymal cells. The dental mesenchymal stem cells are the best explored, but because the human odontogenic epithelium is lost after the completion of enamel formation, studies on these cells are scarce. The successful creation of a bioengineered tooth is achievable only when the odontogenic epithelium is reconstructed to produce a replica of natural enamel. This article discusses the untapped sources of odontogenic epithelial stem cells in humans, such as those present in the active dental lamina in postnatal life, in remnants of dental lamina (the gubernaculum cord), in the epithelial cell rests of Malassez, and in reduced enamel epithelium. The possible uses of these stem cells in regenerative medicine, not just for enamel formation, are discussed.
  14. Higuchi A, Ku NJ, Tseng YC, Pan CH, Li HF, Kumar SS, et al.
    Lab Invest, 2017 Oct;97(10):1167-1179.
    PMID: 28869589 DOI: 10.1038/labinvest.2017.100
    Cardiovascular disease remains the leading cause of death and disability in advanced countries. Stem cell transplantation has emerged as a promising therapeutic strategy for acute and chronic ischemic cardiomyopathy. The current status of stem cell therapies for patients with myocardial infarction is discussed from a bioengineering and biomaterial perspective in this review. We describe (a) the current status of clinical trials of human pluripotent stem cells (hPSCs) compared with clinical trials of human adult or fetal stem cells, (b) the gap between fundamental research and application of human stem cells, (c) the use of biomaterials in clinical and pre-clinical studies of stem cells, and finally (d) trends in bioengineering to promote stem cell therapies for patients with myocardial infarction. We explain why the number of clinical trials using hPSCs is so limited compared with clinical trials using human adult and fetal stem cells such as bone marrow-derived stem cells.
  15. Sujitha V, Murugan K, Dinesh D, Pandiyan A, Aruliah R, Hwang JS, et al.
    Aquat Toxicol, 2017 Jul;188:100-108.
    PMID: 28482328 DOI: 10.1016/j.aquatox.2017.04.015
    Currently, nano-formulated mosquito larvicides have been widely proposed to control young instars of malaria vector populations. However, the fate of nanoparticles in the aquatic environment is scarcely known, with special reference to the impact of nanoparticles on enzymatic activity of non-target aquatic invertebrates. In this study, we synthesized CdS nanoparticles using a green protocol relying on the cheap extract of Valoniopsis pachynema algae. CdS nanoparticles showed high toxicity on young instars of the malaria vectors Anopheles stephensi and A. sundaicus. The antimalarial activity of the nano-synthesized product against chloroquine-resistant (CQ-r) Plasmodium falciparum parasites was investigated. From a non-target perspective, we focused on the impact of this novel nano-pesticide on antioxidant enzymes acetylcholinesterase (AChE) and glutathione S-transferase (GST) activities of the mud crab Scylla serrata. The characterization of nanomaterials was carried out by UV-vis and FTIR spectroscopy, as well as SEM and XRD analyses. In mosquitocidal assays, LC50 of V. pachynema-synthesized CdS nanoparticles on A. stephensi ranged from 16.856 (larva I), to 30.301μg/ml (pupa), while for An. sundaicus they ranged from 13.584 to 22.496μg/ml. The antiplasmodial activity of V. pachynema extract and CdS nanoparticles was evaluated against CQ-r and CQ-sensitive (CQ-s) strains of Plasmodium falciparum. IC50 of V. pachynema extract was 58.1μg/ml (CQ-s) and 71.46μg/ml (CQ-r), while nano-CdS IC50 was 76.14μg/ml (CQ-s) and 89.21μg/ml (CQ-r). In enzymatic assays, S. serrata crabs were exposed to sub-lethal concentrations, i.e. 4, 6 and 8μg/ml of CdS nanoparticles, assessing changes in GST and AChE activity after 16days. We observed significantly higher activity of GST, if compared to the control, during the whole experiment period. In addition, a single treatment with CdS nanoparticles led to a significant decrease in AChE activity over time. The toxicity of CdS nanoparticles and Cd ions in aqueous solution was also assessed in mud crabs, showing higher toxicity of aqueous Cd ions if compared to nano-CdS. Overall, our results underlined the efficacy of green-synthesized CdS nanoparticles in malaria vector control, outlining also significant impacts on the enzymatic activity of non-target aquatic organisms, with special reference to mud crabs.
  16. Murugan K, Suresh U, Panneerselvam C, Rajaganesh R, Roni M, Aziz AT, et al.
    Environ Sci Pollut Res Int, 2018 Apr;25(11):10456-10470.
    PMID: 28913784 DOI: 10.1007/s11356-017-0074-3
    The development of novel mosquito control tools is a key prerequisite to build effective and reliable Integrated Vector Management strategies. Here, we proposed a novel method using cigarette butts for the synthesis of Ag nanostructures toxic to young instars of the malaria vector Anopheles stephensi, chloroquine (CQ)-resistant malaria parasites Plasmodium falciparum and microbial pathogens. The non-target impact of these nanomaterials in the aquatic environment was evaluated testing them at sub-lethal doses on the predatory copepod Mesocyclops aspericornis. Cigarette butt-synthesized Ag nanostructures were characterized by UV-vis and FTIR spectroscopy, as well as by EDX, SEM and XRD analyses. Low doses of cigarette butt extracts (with and without tobacco) showed larvicidal and pupicidal toxicity on An. stephensi. The LC50 of cigarette butt-synthesized Ag nanostructures ranged from 4.505 ppm (I instar larvae) to 8.070 ppm (pupae) using smoked cigarette butts with tobacco, and from 3.571 (I instar larvae) to 6.143 ppm (pupae) using unsmoked cigarette butts without tobacco. Smoke toxicity experiments conducted against adults showed that unsmoked cigarette butts-based coils led to mortality comparable to permethrin-based positive control (84.2 and 91.2%, respectively). A single treatment with cigarette butts extracts and Ag nanostructures significantly reduced egg hatchability of An. stephensi. Furthermore, the antiplasmodial activity of cigarette butt extracts (with and without tobacco) and synthesized Ag nanostructures was evaluated against CQ-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of P. falciparum. The lowest IC50 values were achieved by cigarette butt extracts without tobacco, they were 54.63 μg/ml (CQ-s) and 63.26 μg/ml (CQ-r); while Ag nanostructure IC50 values were 72.13 μg/ml (CQ-s) and 77.33 μg/ml (CQ-r). In MIC assays, low doses of the Ag nanostructures inhibited the growth of Bacillus subtilis, Klebsiella pneumoniae and Salmonella typhi. Finally, the predation efficiency of copepod M. aspericornis towards larvae of An. stephensi did not decrease in a nanoparticle-contaminated environment, if compared to control predation assays. Overall, the present research would suggest that an abundant hazardous waste, such as cigarette butts, can be turned to an important resource for nanosynthesis of highly effective antiplasmodials and insecticides.
  17. Benelli G, Maggi F, Pavela R, Murugan K, Govindarajan M, Vaseeharan B, et al.
    Environ Sci Pollut Res Int, 2018 Apr;25(11):10184-10206.
    PMID: 28755145 DOI: 10.1007/s11356-017-9752-4
    The rapid spread of highly aggressive arboviruses, parasites, and bacteria along with the development of resistance in the pathogens and parasites, as well as in their arthropod vectors, represents a huge challenge in modern parasitology and tropical medicine. Eco-friendly vector control programs are crucial to fight, besides malaria, the spread of dengue, West Nile, chikungunya, and Zika virus, as well as other arboviruses such as St. Louis encephalitis and Japanese encephalitis. However, research efforts on the control of mosquito vectors are experiencing a serious lack of eco-friendly and highly effective pesticides, as well as the limited success of most biocontrol tools currently applied. Most importantly, a cooperative interface between the two disciplines is still lacking. To face this challenge, we have reviewed a wide number of promising results in the field of green-fabricated pesticides tested against mosquito vectors, outlining several examples of synergy with classic biological control tools. The non-target effects of green-fabricated nanopesticides, including acute toxicity, genotoxicity, and impact on behavioral traits of mosquito predators, have been critically discussed. In the final section, we have identified several key challenges at the interface between "green" nanotechnology and classic biological control, which deserve further research attention.
  18. Ghosh S, Mondol S, Lahiri D, Nag M, Sarkar T, Pati S, et al.
    Front Chem, 2023;11:1118454.
    PMID: 36959877 DOI: 10.3389/fchem.2023.1118454
    Medicinal plants are long known for their therapeutic applications. Tinospora cordifolia (commonly called gulancha or heart-leaved moonseed plant), a herbaceous creeper widely has been found to have antimicrobial, anti-inflammatory, anti-diabetic, and anti-cancer properties. However, there remains a dearth of reports regarding its antibiofilm activities. In the present study, the anti-biofilm activities of phytoextractof T. cordifolia and the silver nanoparticles made from this phytoextract were tested against the biofilm of S.taphylococcus aureus, one of the major nosocomial infection-producing bacteria taking tetracycline antibiotic as control. Both phytoextract from the leaves of T. cordifolia, and the biogenic AgNPs from the leaf extract of T. cordifolia, were found successful in reducing the biofilm of Staphylococcus aureus. The biogenic AgNPs formed were characterized by UV- Vis spectroscopy, Field emission Scanning Electron Microscopy (FE- SEM), and Dynamic light scattering (DLS) technique. FE- SEM images showed that the AgNPs were of size ranging between 30 and 50 nm and were stable in nature, as depicted by the zeta potential analyzer. MIC values for phytoextract and AgNPs were found to be 180 mg/mL and 150 μg/mL against S. aureusrespectively. The antibiofilm properties of the AgNPs and phytoextract were analyzed using the CV assay and MTT assay for determining the reduction of biofilms. Reduction in viability count and revival of the S. aureus ATCC 23235 biofilm cells were analyzed followed by the enfeeblement of the EPS matrix to quantify the reduction in the contents of carbohydrates, proteins and eDNA. The SEM analyses clearly indicated that although the phytoextracts could destroy the biofilm network of S. aureuscells yet the biogenicallysynthesizedAgNPs were more effective in biofilm disruption. Fourier Transformed Infrared Radiations (FT- IR) analyses revealed that the AgNPs could bring about more exopolysaccharide (EPS) destruction in comparison to the phytoextract. The antibiofilm activities of AgNPs made from the phytoextract were found to be much more effective than the non-conjugated phytoextract, indicating the future prospect of using such particles for combatting biofilm-mediated infections caused by S aureus.
  19. Kazmi I, Altamimi ASA, Afzal M, Majami AA, Abbasi FA, Almalki WH, et al.
    Pathol Res Pract, 2024 Jan;253:155037.
    PMID: 38160482 DOI: 10.1016/j.prp.2023.155037
    Ulcerative colitis (UC) is a persistent inflammatory condition affecting the colon's mucosal lining, leading to chronic bowel inflammation. Despite extensive research, the precise molecular mechanisms underlying UC pathogenesis remain elusive. NcRNAs form a category of functional RNA molecules devoid of protein-coding capacity. They have recently surfaced as pivotal modulators of gene expression and integral participants in various pathological processes, particularly those related to inflammatory disorders. The diverse classes of ncRNAs, encompassing miRNAs, circRNAs, and lncRNAs, have been implicated in UC. It highlights their involvement in key UC-related processes, such as immune cell activation, epithelial barrier integrity, and the production of pro-inflammatory mediators. ncRNAs have been identified as potential biomarkers for UC diagnosis and monitoring disease progression, offering promising avenues for personalized medicine. This approach may pave the way for novel, more specific treatments with reduced side effects, addressing the current limitations of conventional therapies. A comprehensive understanding of the interplay between ncRNAs and UC will advance our knowledge of the disease, potentially leading to more effective and personalized treatments for patients suffering from this debilitating condition. This review explores the pivotal role of ncRNAs in the context of UC, shedding light on their possible targets for diagnosis, prognosis, and therapeutic interventions.
  20. Kazmi I, Altamimi ASA, Afzal M, Majami AA, AlGhamdi AS, Alkinani KB, et al.
    Pathol Res Pract, 2024 Feb;254:155134.
    PMID: 38277746 DOI: 10.1016/j.prp.2024.155134
    Prostate cancer (PCa) is an important worldwide medical concern, necessitating a greater understanding of the molecular processes driving its development. The Wnt/-catenin signaling cascade is established as a central player in PCa pathogenesis, and recent research emphasizes the critical involvement of non-coding RNAs (ncRNAs) in this scenario. This in-depth study seeks to give a thorough examination of the complex relationship between ncRNAs and the Wnt/β-catenin system in PCa. NcRNAs, such as circular RNAs (circRNAs), long ncRNAs (lncRNAs), and microRNAs (miRNAs), have been recognized as essential regulators that modulate numerous facets of the Wnt/β-catenin network. MiRNAs have been recognized as targeting vital elements of the process, either enhancing or inhibiting signaling, depending on their specific roles and targets. LncRNAs participate in fine-tuning the Wnt/β-catenin network as a result of complicated interplay with both upstream and downstream elements. CircRNAs, despite being a relatively recent addition to the ncRNA family, have been implicated in PCa, influencing the Wnt/β-catenin cascade through diverse mechanisms. This article encompasses recent advances in our comprehension of specific ncRNAs that participate in the Wnt/β-catenin network, their functional roles, and clinical relevance in PCa. We investigate their use as screening and predictive indicators, and targets for treatment. Additionally, we delve into the interplay between Wnt/β-catenin and other signaling networks in PCa and the role of ncRNAs within this complex network. As we unveil the intricate regulatory functions of ncRNAs in the Wnt/β-catenin cascade in PCa, we gain valuable insights into the disease's pathogenesis. The implementation of these discoveries in practical applications holds promise for more precise diagnosis, prognosis, and targeted therapeutic approaches, ultimately enhancing the care of PCa patients. This comprehensive review underscores the evolving landscape of ncRNA research in PCa and the potential for innovative interventions in the battle against this formidable malignancy.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links