Displaying publications 161 - 180 of 371 in total

Abstract:
Sort:
  1. Moniruzzaman M, Goto M
    PMID: 29744542 DOI: 10.1007/10_2018_64
    Ionic liquids (ILs), a potentially attractive "green," recyclable alternative to environmentally harmful volatile organic compounds, have been increasingly exploited as solvents and/or cosolvents and/or reagents in a wide range of applications, including pretreatment of lignocellulosic biomass for further processing. The enzymatic delignification of biomass to degrade lignin, a complex aromatic polymer, has received much attention as an environmentally friendly process for clean separation of biopolymers including cellulose and lignin. For this purpose, enzymes are generally isolated from naturally occurring fungi or genetically engineered fungi and used in an aqueous medium. However, enzymatic delignification has been found to be very slow in these conditions, sometimes taking several months for completion. In this chapter, we highlight an environmentally friendly and efficient approach for enzymatic delignification of lignocellulosic biomass using room temperature ionic liquids (ILs) as (co)solvents or/and pretreatment agents. The method comprises pretreatment of lignocellulosic biomass in IL-aqueous systems before enzymatic delignification, with the aim of overcoming the low delignification efficiency associated with low enzyme accessibility to the solid substrate and low substrate and product solubilities in aqueous systems. We believe the processes described here can play an important role in the conversion of lignocellulosic biomass-the most abundant renewable biomaterial in the world-to biomaterials, biopolymers, biofuels, bioplastics, and hydrocarbons. Graphical Abstract.
    Matched MeSH terms: Biofuels
  2. Ahmad Razi Othman, Intan Safinar Ismail, Norhani Abdullah, Syahida Ahmad
    MyJurnal
    Jatropha curcas is a multipurpose plant that has been suggested as a possible cure to
    inflammation. It can be used as a source of animal feed, live fence, biodiesel and in traditional
    medicine. Practitioners have used various extraction techniques to extract the active components
    of the plant. This article compares the efficiency of three methods of drying technique for the
    extraction of the total phenolic content from the plant. The freeze-drying method was the best
    method compared to oven dry and air dry. The freeze-drying method dries J. curcas root sample
    faster and preserve the total phenolic content better than the other methods.
    Matched MeSH terms: Biofuels
  3. Abdul Aziz Ahmad, Raihan Othman, Faridah Yusof, Mohd Firdaus Abdul Wahab
    Sains Malaysiana, 2014;43:459-465.
    A hybrid biofuel cell, a zinc-air cell employing laccase as the oxygen reduction catalyst is investigated. A simple cell design is employed; a membraneless single chamber and a freely suspended laccase in the buffer electrolyte. The cell is characterised based on its open-circuit voltage, power density profile and galvanostatic discharge at 0.5 mA. The activity of laccase as an oxidoreductase is substantiated from the cell discharge profiles. The use of air electrode in the cell design enhanced the energy output by 14%. The zinc-air biofuel cell registered an open-circuit voltage of 1.2 V and is capable to deliver a maximum power density of 1.1 mWcm-2 at 0.4 V. Despite its simple design features, the power output is comparable to that of biocatalytic cell utilising a much more complex system design.
    Matched MeSH terms: Biofuels
  4. Wong Y, Taufiq-Yap YH, Ramli I
    Sains Malaysiana, 2015;44:281-290.
    Biodiesel was produced via transesterification of palm oil with methanol in the presence of CaO-Nb2O5 mixed oxide catalyst. Response surface methodology (RSM) with central composite design (CCD) was performed to determine the optimum operating conditions and to optimize the biodiesel yield. In this study, the reaction variables being optimized were reaction time, catalyst loading and methanol to oil molar ratio. From the analysis of variance (ANOVA), the most influential parameter on biodiesel production was reaction time. The predicted yield was found in good agreement with the experimental value, with R2= 0.9902. The optimum biodiesel yield of 97.67% was achieved at 2.67 h reaction time, with 3.60 wt. % of catalyst and with methanol to oil molar ratio of 13.04. The high biodiesel yield can be correlated to the synergic effect of basicity between the metallic ions of CaO-Nb2O5 shown in the physicochemical analysis.
    Matched MeSH terms: Biofuels
  5. Isa MH, Wong LP, Bashir MJK, Shafiq N, Kutty SRM, Farooqi IH, et al.
    Sci Total Environ, 2020 Jun 20;722:137833.
    PMID: 32199372 DOI: 10.1016/j.scitotenv.2020.137833
    Palm oil mill effluent (POME) is a highly polluted wastewater that consists of a high organic content of 4-5% total solids; a potential renewable energy source. A waste to energy study was conducted to improve biogas production using POME as substrate by ultrasonication pretreatment at mesophilic temperatures. The effect of temperature on the specific growth rate of anaerobes and methanogenic activity was investigated. Five sets of assays were carried out at operating temperatures between 25 °C and 45 °C. Each set consisted of two experiments using identical anaerobic sequencing batch reactors (AnSBR); fed with raw POME (control) and sonicated POME, respectively. The ultrasonication was set at 16.2 min ultrasonication time and 0.88 W mL-1 ultrasonication density with substrate total solids concentration of 6% (w/v). At 25 °C, biogas production rate and organic matter removal exhibited lowest values for both reactors. The maximum organic degradation was 96% from AnSBR operated at 30 °C fed with sonicated POME and 91% from AnSBR operated at 35 °C fed with unsonicated POME. In addition, the methane yield from AnSBR operated at 30 °C was enhanced by 21.5% after ultrasonication pretreatment. A few normality tests and a t-test were carried out. Both tests indicated that the residuals of the experimental data were normality distributed with mean equals to zero. The results demonstrated that ultrasonication treatment was a promising pretreatment to positively affect the organic degradation and biogas production rates at 30-35 °C.
    Matched MeSH terms: Biofuels
  6. Mat Nawi NI, Abd Halim NS, Lee LC, Wirzal MDH, Bilad MR, Nordin NAH, et al.
    Polymers (Basel), 2020 Jan 21;12(2).
    PMID: 31973178 DOI: 10.3390/polym12020252
    The competitiveness of algae as biofuel feedstock leads to the growth of membrane filtration as one of promising technologies for algae harvesting. Nanofiber membrane (NFM) was found to be efficient for microalgae harvesting via membrane filtration, but it is highly limited by its weak mechanical strength. The main objective of this study is to enhance the applicability of nylon 6,6 NFM for microalgae filtration by optimizing the operational parameters and applying solvent vapor treatment to improve its mechanical strength. The relaxation period and filtration cycle could be optimized to improve the hydraulic performance. For a cycle of 5 min., relaxation period of ≤2 min shows the highest steady-state permeability of 365 ± 14.14 L m-2 h-1 bar-1, while for 10 min cycle, 3 min. of relaxation period was found optimum that yields permeability of 402 ± 34.47 L m-2 h-1 bar-1. The treated nylon 6,6 NFM was also used to study the effect of aeration rate. It is confirmed that the aeration rate enhances the steady-state performance for both intermittent and continuous mode of aeration. Remarkably, intermittent aeration shows 7% better permeability than the full aeration for all tested condition, which is beneficial for reducing the total energy consumption.
    Matched MeSH terms: Biofuels
  7. Yusuf Chong Yu Lok, Idris Abu Seman, Nor Aini Ab Shukor, Mohd Norfaizull Mohd Nor, Mohd Puad Abdullah
    Sains Malaysiana, 2018;47:1709-1723.
    The empty fruit bunches of oil palm have been used as the raw material to produce biofuel. However, the lignin present
    in oil palm tissues hampers the enzymatic saccharification of lignocellulosic biomass and lower the yield of biofuel
    produced. Hence, various efforts were taken to identify the lignin biosynthetic genes in oil palm and to investigate
    their regulation at the molecular level. In this study, a lignin biosynthetic gene, Eg4CL1 and its promoter were isolated
    from the oil palm. Eg4CL1 contains the acyl-activating enzyme consensus motif and boxes I & II which are present in
    other 4CL homologs. Eg4CL1 was clustered together with known type I 4CL proteins involved in lignin biosynthesis in
    other plants. Gene expression analysis showed that Eg4CL1 was expressed abundantly in different organs of oil palm
    throughout the course of development, reflecting its involvement in lignin biosynthesis in different organs at all stages
    of growth. The presence of the lignification toolbox - AC elements in the 1.5 kb promoter of Eg4CL1 further suggests the
    potential role of the gene in lignin biosynthesis in oil palm. Together, these results suggested that Eg4CL1 is a potential
    candidate gene involved in lignin biosynthesis in oil palm.
    Matched MeSH terms: Biofuels
  8. Ryu HW, Kim DH, Jae J, Lam SS, Park ED, Park YK
    Bioresour Technol, 2020 Aug;310:123473.
    PMID: 32389430 DOI: 10.1016/j.biortech.2020.123473
    The global economy is threatened by the depletion of fossil resources and fluctuations in fossil fuel prices, and thus it is necessary to exploit sustainable energy sources. Carbon-neutral fuels including bio-oil obtained from biomass pyrolysis can act as alternatives to fossil fuels. Co-pyrolysis of lignocellulosic biomass and plastic is efficient to upgrade the quality of bio-oil because plastic facilitates deoxygenation. However, catalysts are required to produce bio-oil that is suitable for potential use as transportation fuel. This review presents an overview of recent advances in catalytic co-pyrolysis of biomass and plastic from the perspective of chemistry, catalyst, and feedstock pretreatment. Additionally, this review introduces not only recent research results of acid catalysts for catalytic co-pyrolysis, but also recent approaches that utilize base catalysts. Future research directions are suggested for commercially feasible co-pyrolysis process.
    Matched MeSH terms: Biofuels
  9. Talha NS, Sulaiman S
    Waste Manag, 2018 Aug;78:929-937.
    PMID: 32559988 DOI: 10.1016/j.wasman.2018.07.015
    In this study, solid coconut waste and CaO/PVA was used as raw material and catalyst respectively to produce biodiesel through in situ transesterification. Both, raw material and catalyst were packed in a packed bed reactor. The reaction was fixed for 3 h and the mixing was kept constant at 350 rpm. The highest biodiesel yield of 95% was obtained at reaction temperature of 61 °C with catalyst loading (CaO/PVA) of 2.29 wt% and methanol to solid ratio of 12:1. CaO-waste derived catalyst has been successfully proven to be utilized as heterogeneous base catalyst for the production of biodiesel from solid coconut waste.
    Matched MeSH terms: Biofuels
  10. Goveas LC, Nayak S, Vinayagam R, Loke Show P, Selvaraj R
    Bioresour Technol, 2022 Dec;365:128169.
    PMID: 36283661 DOI: 10.1016/j.biortech.2022.128169
    Overexploitation of natural resources to meet human needs has considerably impacted CO2 emissions, contributing to global warming and severe climatic change. This review furnishes an understanding of the sources, brutality, and effects of CO2 emissions and compelling requirements for metamorphosis from a linear to a circular bioeconomy. A detailed emphasis on microalgae, its types, properties, and cultivation are explained with significance in attaining a zero-carbon circular bioeconomy. Microalgal treatment of a variety of wastewaters with the conversion of generated biomass into value-added products such as bio-energy and pharmaceuticals, along with agricultural products is elaborated. Challenges encountered in large-scale implementation of microalgal technologies for low-carbon circular bioeconomy are discussed along with solutions and future perceptions. Emphasis on the suitability of microalgae in wastewater treatment and its conversion into alternate low-carbon footprint bio-energies and value-added products enforcing a zero-carbon circular bioeconomy is the major focus of this review.
    Matched MeSH terms: Biofuels
  11. Lu L, Fan W, Meng X, Xue L, Ge S, Wang C, et al.
    Sci Total Environ, 2023 Jan 15;856(Pt 1):158798.
    PMID: 36116663 DOI: 10.1016/j.scitotenv.2022.158798
    The rapid development of the textile industry and improvement of people's living standards have led to the production of cotton textile and simultaneously increased the production of textile wastes. Cotton is one of the most common textile materials, and the waste cotton accounts for 24% of the total textile waste. To effectively manage the waste, recycling and reusing waste cotton are common practices to reduce global waste production. This paper summarizes the characteristics of waste cotton and high-value products derived from waste cotton (e.g., yarns, composite reinforcements, regenerated cellulose fibers, cellulose nanocrystals, adsorptive materials, flexible electronic devices, and biofuels) via mechanical, chemical, and biological recycling methods. The advantages and disadvantages of making high-value products from waste cotton are summarized and discussed. New technologies and products for recycling waste cotton are proposed, providing a guideline and direction for merchants and researchers. This review paper can shed light on converting textile wastes other than cotton (e.g., bast, silk, wool, and synthetic fibers) into value-added products.
    Matched MeSH terms: Biofuels
  12. Wan Mahari WA, Waiho K, Fazhan H, Necibi MC, Hafsa J, Mrid RB, et al.
    Chemosphere, 2022 Mar;291(Pt 2):133036.
    PMID: 34822867 DOI: 10.1016/j.chemosphere.2021.133036
    The recurrent environmental and economic issues associated with the diminution of fossil fuels are the main impetus towards the conversion of agriculture, aquaculture and shellfish biomass and the wastes into alternative commodities in a sustainable approach. In this review, the recent progress on recovering and processing these biomass and waste feedstocks to produce a variety of value-added products via various valorisation technologies, including hydrolysis, extraction, pyrolysis, and chemical modifications are presented, analysed, and discussed. These technologies have gained widespread attention among researchers, industrialists and decision makers alike to provide markets with bio-based chemicals and materials at viable prices, leading to less emissions of CO2 and sustainable management of these resources. In order to echo the thriving research, development and innovation, bioresources and biomass from various origins were reviewed including agro-industrial, herbaceous, aquaculture, shellfish bioresources and microorganisms that possess a high content of starch, cellulose, lignin, lipid and chitin. Additionally, a variety of technologies and processes enabling the conversion of such highly available bioresources is thoroughly analysed, with a special focus on recent studies on designing, optimising and even innovating new processes to produce biochemicals and biomaterials. Despite all these efforts, there is still a need to determine the more cost-effective and efficient technologies to produce bio-based commodities.
    Matched MeSH terms: Biofuels
  13. Abu Sepian NR, Mat Yasin NH, Zainol N, Rushan NH, Ahmad AL
    Environ Technol, 2019 Apr;40(9):1110-1117.
    PMID: 29161985 DOI: 10.1080/09593330.2017.1408691
    The immobilisation of Chlorella vulgaris 211/11B entrapped in combinations of natural matrices to simplify the harvesting process was demonstrated in this study. Three combinations of matrices composed of calcium alginate (CA) and sodium alginate (SA), sodium carboxymethyl cellulose (CMC) and SA, and mixed matrices (SA, CA, and CMC) were investigated. The number of cells grown for each immobilised matrix to microalgae volume ratios (0.2:1-1:1) were explored and compared with using SA solely as a control. The optimum volume ratios obtained were 1:1 for SA, 0.3:1 for CA and SA, 1:1 for CMC and SA, and 0.3:1 for mixed matrices. The immobilised microalgae of mixed matrices exhibited the highest number of cells with 1.72 × 109 cells/mL at day 10 and 30.43% of oil extraction yield followed by CA and SA (24.29%), CMC and SA (13.00%), and SA (6.71%). Combining SA, CA, and CMC had formed a suitable structure which improved the growth of C. vulgaris and increased the lipid production compared to the immobilisation using single matrix. Besides, the fatty acids profile of the oil extracted indicates a high potential for biodiesel production.
    Matched MeSH terms: Biofuels
  14. Trinh H, Yusup S, Uemura Y
    Bioresour Technol, 2018 Jan;247:51-57.
    PMID: 28946094 DOI: 10.1016/j.biortech.2017.09.075
    Recently, rubber seed oil (RSO) has been considered as a promising potential oil source for biodiesel production. However, RSO is a non-edible feedstock with a significant high free fatty acid (FFA) content which has an adverse impact on the process of biodiesel production. In this study, ultrasonic-assisted esterification process was conducted as a pre-treatment step to reduce the high FFA content of RSO from 40.14% to 0.75%. Response surface methodology (RSM) using central composite design (CCD) was applied to the design of experiments (DOE) and the optimization of esterification process. The result showed that methanol to oil molar ratio was the most influential factor for FFA reduction whereas the effect of amount of catalyst and the reaction were both insignificant. The kinetic study revealed that the activation energy and the frequency factor of the process are 52.577kJ/mol and 3.53×108min-1, respectively.
    Matched MeSH terms: Biofuels
  15. Liu L, Chen J, Lim PE, Wei D
    Bioresour Technol, 2018 May;255:140-148.
    PMID: 29414159 DOI: 10.1016/j.biortech.2018.01.114
    The single cell oil (SCO) production by the mono and mixed culture of microalgae Chlorella pyrenoidosa and red yeast Rhodotorula glutinis was investigated using non-detoxified cassava bagasse hydrolysate (CBH) as carbon source. The results suggested that the two strains were able to tolerate and even degrade some byproducts presented in the CBH, and the mixed culture approach enhanced the degradation of certain byproducts. Biomass (20.37 ± 0.38 g/L) and lipid yield (10.42 ± 1.21 g/L) of the mixed culture achieved in the batch culture were significantly higher than that of the mono-cultures (p 
    Matched MeSH terms: Biofuels
  16. Zulkefli NN, Noor Azam AMI, Masdar MS, Baharuddin NA, Wan Isahak WNR, Mohd Sofian N
    Molecules, 2022 Dec 17;27(24).
    PMID: 36558155 DOI: 10.3390/molecules27249024
    This study reports on the synthesis of bi-metal compound (BMC) adsorbents based on commercial coconut activated carbon (CAC), surface-modified with metal acetate (ZnAc2), metal oxide (ZnO), and the basic compounds potassium hydroxide (KOH) and sodium hydroxide (NaOH). The adsorbents were then characterized by scanning electron microscopy and elemental analysis, microporosity analysis through Brunauer-Emmett-Teller (BET) analysis, and thermal stability via thermogravimetric analysis. Adsorption-desorption test was conducted to determine the adsorption capacity of H2S via 1 L adsorber and 1000 ppm H2S balanced 49.95% for N2 and CO2. Characterization results revealed that the impregnated solution homogeneously covered the adsorbent surface, morphology, and properties. The adsorption test result reveals that the ZnAc2/ZnO/CAC_B had a higher H2S breakthrough adsorption capacity and performed at larger than 90% capability compared with a single modified adsorbent (ZnAc2/CAC). Therefore, the synthesized BMC adsorbents have a high H2S loading, and the abundance and low cost of CAC may lead to favorable adsorbents in H2S captured.
    Matched MeSH terms: Biofuels
  17. Kee PE, Cheng YS, Chang JS, Yim HS, Tan JCY, Lam SS, et al.
    Environ Res, 2023 Mar 15;221:115284.
    PMID: 36640934 DOI: 10.1016/j.envres.2023.115284
    With rapid growing world population and increasing demand for natural resources, the production of sufficient food, feed for protein and fat sources and sustainable energy presents a food insecurity challenge globally. Insect biorefinery is a concept of using insect as a tool to convert biomass waste into energy and other beneficial products with concomitant remediation of the organic components. The exploitation of insects and its bioproducts have becoming more popular in recent years. This review article presents a summary of the current trend of insect-based industry and the potential organic wastes for insect bioconversion and biorefinery. Numerous biotechnological products obtained from insect biorefinery such as biofertilizer, animal feeds, edible foods, biopolymer, bioenzymes and biodiesel are discussed in the subsequent sections. Insect biorefinery serves as a promising sustainable approach for waste management while producing valuable bioproducts feasible to achieve circular bioeconomy.
    Matched MeSH terms: Biofuels
  18. Hassan NS, Jalil AA, Bahari MB, Khusnun NF, Aldeen EMS, Mim RS, et al.
    Chemosphere, 2023 Feb;314:137709.
    PMID: 36592833 DOI: 10.1016/j.chemosphere.2022.137709
    Biogas consisting of carbon dioxide/methane (CO2/CH4) gas mixtures has emerged as an alternative renewable fuel to natural gas. The presence of CO2 can decrease the calorific value and generate greenhouse gas. Hence, separating CO2 from CH4 is a vital step in enhancing the use of biogas. Zeolite and zeolite-based mixed matrix membrane (MMM) is considered an auspicious candidate for CO2/CH4 separation due to thermal and chemical stability. This review initially addresses the development of zeolite and zeolite-based MMM for the CO2/CH4 separation. The highest performance in terms of CO2 permeance and CO2/CH4 selectivity was achieved using zeolite and zeolite-based MMM, which exhibited CO2 permeance in the range of 2.0 × 10- 7-7.0 × 10- 6 mol m- 2 s- 1 Pa- 1 with CO2/CH4 selectivity ranging from 3 to 300. Current trends directed toward improving CO2/CH4 selectivity via modification methods including post-treatment, ion-exchanged, amino silane-grafted, and ionic liquid encapsulated of zeolite-based MMM. Those modification methods improved the defect-free and interfacial adhesions between zeolite particulates and polymer matrices and subsequently enhanced the CO2/CH4 selectivity. The modifications via ionic liquid and silane methods more influenced the CO2/CH4 selectivity with 90 and 660, respectively. This review also focuses on the possible applications of zeolite-based MMM, which include the purification and treatment of water as well as biomedical applications. Lastly, future advances and opportunities for gas separation applications are also briefly discussed. This review aims to share knowledge regarding zeolite-based MMM and inspire new industrial applications.
    Matched MeSH terms: Biofuels
  19. Satya ADM, Cheah WY, Yazdi SK, Cheng YS, Khoo KS, Vo DN, et al.
    Environ Res, 2023 Feb 01;218:114948.
    PMID: 36455634 DOI: 10.1016/j.envres.2022.114948
    Water usage increased alongside its competitiveness due to its finite amount. Yet, many industries still rely on this finite resource thus recalling the need to recirculate their water for production. Circular bioeconomy is presently the new approach emphasizing on the 'end-of-life' concept with reusing, recycling, and recovering materials. Microalgae are the ideal source contributing to circular bioeconomy as it exhibits fast growth and adaptability supported by biological rigidity which in turn consumes nutrients, making it an ideal and capable bioremediating agent, therefore allowing water re-use as well as its biomass potential in biorefineries. Nevertheless, there are challenges that still need to be addressed with consideration of recent advances in cultivating microalgae in wastewater. This review aimed to investigate the potential of microalgae biomass cultivated in wastewater. More importantly, how it'll play a role in the circular bioeconomy. This includes an in-depth look at the production of goods coming from wastes tattered by emerging pollutants. These emerging pollutants include microplastics, antibiotics, ever-increasingly sewage water, and heavy metals which have not been comprehensively compared and explored. Therefore, this review is aiming to bring new insights to researchers and industrial stakeholders with interest in green alternatives to eventually contribute towards environmental sustainability.
    Matched MeSH terms: Biofuels
  20. Sharif A, Bhattacharya M, Afshan S, Shahbaz M
    Environ Sci Pollut Res Int, 2021 Nov;28(41):57582-57601.
    PMID: 34089449 DOI: 10.1007/s11356-021-13829-2
    A key objective of renewable energy development in the USA is to reduce CO2 emissions by decreasing reliance on fossil fuels in the coming decades. Using quantile-on-quantile regressions, this research examines the relationship between disaggregated sources of renewable energy (biomass, biofuel, geothermal, hydroelectric, solar, wind, wood, and waste) and CO2 emissions in the USA during the period from 1995 to 2017. Our findings support the deployment of various types of renewables in combating CO2 emissions for each quantile. In particular, a negative effect of renewable energy consumption on CO2 emissions is observed for the lower quantiles in almost all types of renewables. The effect of all the renewable energy sources taken together is significant for the lower and upper quantiles of the provisional distribution of CO2 emissions. The effect of renewable energy becomes stronger and more significant in the middle quantiles, where a pronounced causal effect of return and volatility is detected for the lower and upper middle quantiles. At the same time, heterogeneity in the findings across various types of renewable energy sources reveals differences in the relative importance of each type within the energy sector taken as a whole. Future US initiatives in renewable energy deployment at both the federal and the state levels should take into consideration the relative importance of each type, so as to maximize the efficacy of renewable energy policies in combating CO2 emissions.
    Matched MeSH terms: Biofuels
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links