Displaying publications 161 - 180 of 382 in total

Abstract:
Sort:
  1. Zengin G, Mahomoodally MF, Sinan KI, Picot-Allain MCN, Yildiztugay E, Cziáky Z, et al.
    Food Res Int, 2020 07;133:109129.
    PMID: 32466933 DOI: 10.1016/j.foodres.2020.109129
    The Crocus and Cyclamen genus have been reported to possess diverse biological properties. In the present investigation, two geophytes from these genus, namely Crocus pallasi and Cyclamen cilicium have been studied. The in vitro antioxidant, enzyme inhibitory, and cytotoxic effects of the methanol extracts of Crocus pallasii and Cyclamen cilicium aerial and underground parts were investigated. Antioxidant abilities of the extracts were investigated via different antioxidant assays (metal chelating, radical quenching (ABTS and DPPH), reducing power (CUPRAC and FRAP) and phosphomolybdenum). Cholinesterases, amylase, tyrosinase, and glucosidase were used as target enzymes for detecting enzyme inhibitory abilities of the samples. Regarding the cytotoxic abilities, breast cancer cell lines (MDA-MB 231 and MCF-7) and prostate cancer cell lines (DU-145) were used. The flowers extracts of Crocus pallasii and C. cilicium possessed the highest flavonoid content. The highest phenolic content was recorded from C. cilicium root extract (47.62 mg gallic acid equivalent/g extract). Cyclamen cilicium root extract showed significantly (p 
    Matched MeSH terms: Enzyme Inhibitors/analysis*
  2. Lai HY, Lim YY, Tan SP
    Biosci Biotechnol Biochem, 2009 Jun;73(6):1362-6.
    PMID: 19502733
    Leaf extracts of five medicinal ferns, Acrostichum aureum L. (Pteridaceae), Asplenium nidus L. (Aspleniaceae), Blechnum orientale L. (Blechnaceae), Cibotium barometz (L.) J. Sm. (Cyatheaceae) and Dicranopteris linearis (Burm.) underwood var. linearis (Gleicheniaceae), were investigated for their total phenolic content (TPC), and antioxidative, tyrosinase inhibiting and antibacterial activities. The antioxidative activity was measured by assays for radical scavenging against 1,1-diphenyl-2-picrylhydrazyl (DPPH), ferric ion reducing power (FRP), beta-carotene bleaching (BCB) and ferrous ion chelating (FIC). The results revealed B. orientale to possess the highest amount of total polyphenols and strongest potential as a natural antioxidative, tyrosinase inhibiting and antibacterial agent as demonstrated by its strong activities in all related bioassays. The other ferns with antioxidative potential were C. barometz and D. linearis. Except for A. aureum, all ferns showed antibacterial activity which may justify their usage in traditional medicines.
    Matched MeSH terms: Enzyme Inhibitors/pharmacology*
  3. Bahari AN, Saari N, Salim N, Ashari SE
    Molecules, 2020 Jun 08;25(11).
    PMID: 32521731 DOI: 10.3390/molecules25112663
    Actinopyga lecanora (A. lecanora) is classified among the edible species of sea cucumber, known to be rich in protein. Its hydrolysates were reported to contain relatively high antioxidant activity. Antioxidants are one of the essential properties in cosmeceutical products especially to alleviate skin aging. In the present study, pH, reaction temperature, reaction time and enzyme/substrate ratio (E/S) have been identified as the parameters in the papain enzymatic hydrolysis of A. lecanora. The degree of hydrolysis (DH) with antioxidant activities of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric-reducing antioxidant power (FRAP) assays were used as the responses in the optimization. Analysis of variance (ANOVA), normal plot of residuals and 3D contour plots were evaluated to study the effects and interactions between parameters. The best conditions selected from the optimization were at pH 5.00, 70 °C of reaction temperature, 9 h of hydrolysis time and 1.00% enzyme/substrate (E/S) ratio, with the hydrolysates having 51.90% of DH, 42.70% of DPPH activity and 109.90 Fe2+μg/mL of FRAP activity. The A. lecanora hydrolysates (ALH) showed a high amount of hydrophobic amino acids (286.40 mg/g sample) that might be responsible for antioxidant and antityrosinase activities. Scanning electron microscopy (SEM) image of ALH shows smooth structures with pores. Antityrosinase activity of ALH exhibited inhibition of 31.50% for L-tyrosine substrate and 25.40% for L-DOPA substrate. This condition suggests that the optimized ALH acquired has the potential to be used as a bioactive ingredient for cosmeceutical applications.
    Matched MeSH terms: Enzyme Inhibitors/pharmacology*
  4. Koh HM, Chong PF, Tan JN, Chidambaram SK, Chua HJ
    J Clin Pharm Ther, 2021 Jun;46(3):800-806.
    PMID: 33768612 DOI: 10.1111/jcpt.13356
    WHAT IS KNOWN AND OBJECTIVE: Hydroxychloroquine and protease inhibitors were widely used as off-label treatment options for COVID-19 but the safety data of these drugs among the COVID-19 population are largely lacking. Drug-induced QTc prolongation is a known adverse reaction of hydroxychloroquine, especially during chronic treatment. However, when administered concurrently with potential pro-arrhythmic drugs such as protease inhibitors, the risk of QTc prolongation imposed on these patients is not known. We aim to investigate the incidence of QTc prolongation events and potential factors associated with its occurrence in COVID-19 population.

    METHODS: We included 446 SARS-CoV-2 RT-PCR-positive patients taking at least one treatment drug for COVID-19 within a period of one month (March-April 2020). In addition to COVID-19-related treatment (HCQ/PI), concomitant drugs with risks of QTc prolongation were considered. We defined QTc prolongation as QTc interval of ≥470 ms in postpubertal males, and ≥480 ms in postpubertal females.

    RESULTS AND DISCUSSION: QTc prolongation events occurred in 28/446 (6.3%) patients with an incidence rate of 1 case per 100 person-days. A total of 26/28 (93%) patients who had prolonged QTc intervals received at least two pro-QT drugs. Multivariate analysis showed that HCQ and PI combination therapy had five times higher odds of QTc prolongation as compared to HCQ-only therapy after controlling for age, cardiovascular disease, SIRS and the use of concurrent QTc-prolonging agents besides HCQ and/or PI (OR 5.2; 95% CI, 1.11-24.49; p = 0.036). Independent of drug therapy, presence of SIRS resulted in four times higher odds of QTc prolongation (OR 4.3; 95% CI, 1.66-11.06; p = 0.003). In HCQ-PI combination group, having concomitant pro-QT drugs led to four times higher odds of QTc prolongation (OR 3.8; 95% CI, 1.53-9.73; p = 0.004). Four patients who had prolonged QTc intervals died but none were cardiac-related deaths.

    WHAT IS NEW AND CONCLUSION: In our cohort, hydroxychloroquine monotherapy had low potential to increase QTc intervals. However, when given concurrently with protease inhibitors which have possible or conditional risk, the odds of QTc prolongation increased fivefold. Interestingly, independent of drug therapy, the presence of systemic inflammatory response syndrome (SIRS) resulted in four times higher odds of QTc prolongation, leading to the postulation that some QTc events seen in COVID-19 patients may be due to the disease itself. ECG monitoring should be continued for at least a week from the initiation of treatment.

    Matched MeSH terms: Enzyme Inhibitors/adverse effects*
  5. Shori AB, Ming KS, Baba AS
    Biotechnol Appl Biochem, 2021 Apr;68(2):221-229.
    PMID: 32249982 DOI: 10.1002/bab.1914
    Plain and Lycium barbarum yogurt were made in the presence and absence of fish collagen. Yogurt samples were analyzed for acidification, milk protein proteolysis, angiotensin I-converting enzyme (ACE) inhibitory activity, and sensory evaluation during refrigerated storage for up to 21 days. The o-phthaldialdehyde peptides amount of L. barbarum yogurt both in the presence and absence of fish collagen were significantly increased during 14 days of storage. SDS-PAGE showed improvement in whey proteins degradation of L. barbarum yogurt with/without fish collagen after 3 weeks of storage. L. barbarum yogurt in absence of fish collagen was acting as a great ACE inhibitor reached up to 85% on day 7 of storage. The incorporation of L. barbarum and/or fish collagen affected to a small extent the overall sensory characteristics of yogurt. Yogurt supplemented with L. barbarum and/or fish collagen may lead to the improvement in the production and formulation of yogurt differing in their anti-ACE activity.
    Matched MeSH terms: Angiotensin-Converting Enzyme Inhibitors/chemistry*
  6. Shafaei A, Sultan Khan MS, F A Aisha A, Abdul Majid AM, Hamdan MR, Mordi MN, et al.
    Molecules, 2016 Nov 09;21(11).
    PMID: 27834876
    This study aims to evaluate the in vitro angiotensin-converting enzyme (ACE) inhibition activity of different extracts of Orthosiphon stamineus (OS) leaves and their main flavonoids, namely rosmarinic acid (RA), sinensetin (SIN), eupatorin (EUP) and 3'-hydroxy-5,6,7,4'-tetramethoxyflavone (TMF). Furthermore, to identify possible mechanisms of action based on structure-activity relationships and molecular docking. The in vitro ACE inhibition activity relied on determining hippuric acid (HA) formation from ACE-specific substrate (hippuryl-histidyl-leucine (HHL)) by the action of ACE enzyme. A High Performance Liquid Chromatography method combined with UV detection was developed and validated for measurement the concentration of produced HA. The chelation ability of OS extract and its reference compounds was evaluated by tetramethylmurexide reagent. Furthermore, molecular docking study was performed by LeadIT-FlexX: BioSolveIT's LeadIT program. OS ethanolic extract (OS-E) exhibited highest inhibition and lowest IC50 value (45.77 ± 1.17 µg/mL) against ACE compared to the other extracts. Among the tested reference compounds, EUP with IC50 15.35 ± 4.49 µg/mL had highest inhibition against ACE and binding ability with Zn (II) (56.03% ± 1.26%) compared to RA, TMF and SIN. Molecular docking studies also confirmed that flavonoids inhibit ACE via interaction with the zinc ion and this interaction is stabilized by other interactions with amino acids in the active site. In this study, we have demonstrated that changes in flavonoids active core affect their capacity to inhibit ACE. Moreover, we showed that ACE inhibition activity of flavonoids compounds is directly related to their ability to bind with zinc ion in the active site of ACE enzyme. It was also revealed that OS extract contained high amount of flavonoids other than RA, TMF, SIN and EUP. As such, application of OS extract is useful as inhibitors of ACE.
    Matched MeSH terms: Angiotensin-Converting Enzyme Inhibitors/chemistry*
  7. Ngoh YY, Gan CY
    Food Chem, 2018 Nov 30;267:124-131.
    PMID: 29934146 DOI: 10.1016/j.foodchem.2017.04.166
    Five Pinto bean peptides with α-amylase and angiotensin converting enzyme (ACE) inhibitory activities were successfully identified using the integrated bioinformatics approach. By using PEAKS studio, 511 peptide sequences were first shortlisted based on their de novo sequence property and average local confidence (ALC) yield of ≥60%. Subsequently, only five peptides were found to have high potential (score ≥0.80) for contributing bioactivy. The important sites which were potentially bound by the peptides: (a) Trp58, Trp59, Tyr 62, Asp96, Arg195, Asp197, Glu233, His299, Asp300 and His305 for α-amylase; (b) His353, Ala354, His383, Glu384, His387, Glu411, Lys511, His513, Tyr520 and Tyr523 for ACE had corresponded to the catalytic and substrate binding sites of the two enzymes. A validation assay was then conducted and IC50 values were determined. The range of the values for α-amylase inhibitory activity was 10.03-23.33mM, whereas the values for ACE inhibitory activity were of 1.52-31.88μM.
    Matched MeSH terms: Angiotensin-Converting Enzyme Inhibitors/pharmacology*
  8. Muchtaridi M, Nuwarda RF, Ikram EHK, Abdul Rahim AS, Gazzali AM, Wahab HA
    Molecules, 2022 Jan 30;27(3).
    PMID: 35164214 DOI: 10.3390/molecules27030949
    Neuraminidase (NA) is an enzyme that prevents virions from aggregating within the host cell and promotes cell-to-cell spread by cleaving glycosidic linkages to sialic acid. The best-known neuraminidase is the viral neuraminidase, which present in the influenza virus. Thus, the development of anti-influenza drugs that inhibit NA has emerged as an important and intriguing approach in the treatment of influenza. Garcinia atroviridis L. (GA) dried fruits (GAF) are used commercially as seasoning and in beverages. The main objective of this study was to identify a new potential neuraminidase inhibitor from GA. A bioassay-guided fractionation method was applied to obtain the bioactive compounds leading to the identification of garcinia acid and naringenin. In an enzyme inhibition study, garcinia acid demonstrated the highest activity when compared to naringenin. Garcinia acid had the highest activity, with an IC50 of 17.34-17.53 µg/mL or 91.22-92.21 µM against Clostridium perfringens-NA, and 56.71-57.85 µg/mL or 298.32-304.31 µM against H1N1-NA. Based on molecular docking results, garcinia acid interacted with the triad arginine residues (Arg118, Arg292, and Arg371) of the viral neuraminidase, implying that this compound has the potential to act as a NA enzyme inhibitor.
    Matched MeSH terms: Enzyme Inhibitors/pharmacology*
  9. Ibadallah BX, Abdullah N, Shuib AS
    Planta Med, 2015 Jan;81(2):123-9.
    PMID: 25590365 DOI: 10.1055/s-0034-1383409
    Pleurotus pulmonarius (grey oyster mushroom) has been acknowledged as a recuperative agent for many diseases in addition to its recognition as a nutritious provision. We performed a study on P. pulmonarius mycelium for an antihypertensive effect via the angiotensin-converting enzyme inhibitory activity. The preliminary assay on the mycelial water extract demonstrated that the angiotensin-converting enzyme inhibitory activity had an IC50 value of 720 µg/mL. Further protein purifications via ammonium sulphate precipitation and RP-HPLC resulted in 60× stronger angiotensin-converting enzyme inhibitory activity than that of the mycelial water extract (IC50 = 12 µg/mL). Protein identification and characterisation by MALDI-TOF/TOF, later corroborated by LC-MS/MS, indicated three proteins that are responsible for the blood pressure lowering effects via different mechanisms: serine proteinase inhibitor-like protein, nitrite reductase-like protein, and DEAD/DEAH box RNA helicase-like protein.
    Matched MeSH terms: Angiotensin-Converting Enzyme Inhibitors/pharmacology*
  10. Bonsu KO, Arunmanakul P, Chaiyakunapruk N
    Heart Fail Rev, 2018 03;23(2):147-156.
    PMID: 29411216 DOI: 10.1007/s10741-018-9679-y
    Pharmacological interventions for heart failure with preserved ejection fraction (HFpEF) have failed to reduce mortality and hospitalization. Evidence for mineralocorticoid antagonists (MRAs), β-adrenoceptor blockers (β-blockers), and angiotensin-converting enzyme inhibitors/angiotensin receptor blockers (ACEIs/ARBs)-to reduce clinical outcomes in HFpEF remains unclear. We conducted a systematic search of MEDLINE, EMBASE, Cochrane Central Register of Controlled Trials, and Clinical Trials.gov for randomized controlled trials (RCTs) assessing pharmacological treatments in HFpEF diagnosed according the recommendations of the European Society of Cardiology (ESC) 2016 guidelines from inception to August, 2017. The study outcomes were mortality, hospitalization, changes in indexes of cardiac structure and function, biomarkers, and indexes of functional capacity-quality of life (QoL) assessment and 6-min walk distance test (6-MWD). The random-effects models were used to estimate pooled relative risks (RRs) for the binary outcomes and standardized mean differences for continuous outcomes, with 95% CI. A network meta-analysis using a random-effects model was employed to estimate the comparative efficacy of treatments. We included data from 15 RCTs comprising 5930 patients. There was no significant effect seen with all treatments compared with placebo and comparative efficacy of any two treatments on all outcomes assessed. However, mineralocorticoid antagonist spironolactone demonstrated a trend towards reducing mortality compared with placebo (RR 0.92; 95% CI 0.79-1.08), sildenafil (0.14; 0.01-2.78), perindopril (0.87; 0.59-1.28), and eplerenone (0.91; 0.25-3.33). Similar trends in treatment effect were observed with spironolactone on surrogate outcomes while eplerenone demonstrated a trend of superior effect in reduction of hospitalizations compared with all other drug treatment. No drug treatment demonstrated statistically significant improvement in clinical and surrogate outcomes in HFpEF diagnosed according to the ESC 2016 guideline. Spironolactone and eplerenone showed clinically relevant reduction in mortality and hospitalization respectively compared with other drug treatments. Further trials with MRAs are warranted to confirm treatment effects in HFpEF.
    Matched MeSH terms: Angiotensin-Converting Enzyme Inhibitors/therapeutic use*
  11. Jan RK, Alsheikh-Ali A, Mulla AA, Sulaiman K, Panduranga P, Al-Mahmeed W, et al.
    Medicine (Baltimore), 2022 Jun 10;101(23):e29452.
    PMID: 35687781 DOI: 10.1097/MD.0000000000029452
    This study aimed to report on the use, predictors and outcomes of guideline-based medical therapy (GBMT) in patients with acute heart failure (HF) with reduced ejection fraction of <40% (HFrEF), from seven countries in the Arabian Gulf.Patients with acute HFrEF (N = 2680), aged 18 years or older, and hospitalized February-November 2012 were recruited and data were collected post discharge at 3 months (n = 2477) and 1 year (n = 2418). The use and doses of GBMT were evaluated as per European, American and Canadian HF guidelines. Analyses were performed using multivariate logistic regression. This study was registered at clinicaltrials.gov (NCT01467973).The majority of patients were on dual (39%) and triple (39%) GBMT modalities, 14% received one GBMT medication, while 7.2% were not on any GBMT medications. On admission, 80% of patients were on renin-angiotensin system (RAS) blockers, 75% on b-blockers and 56% on mineralocorticoid receptor antagonists (MRAs), with a small proportion of these patients were taking target doses (RAS blockers 13%, b-blockers 7.3%, MRAs 14%). Patients taking triple GBMT were younger (P 
    Matched MeSH terms: Angiotensin-Converting Enzyme Inhibitors/therapeutic use
  12. Kow CS, Ming LC, Hasan SS
    Hypertens Res, 2021 Aug;44(8):1042-1045.
    PMID: 34017093 DOI: 10.1038/s41440-021-00670-w
    Matched MeSH terms: Angiotensin-Converting Enzyme Inhibitors/adverse effects*
  13. Shahhiran MAA, Abdul Kadir MF, Nor Rashid N, Abdul-Rahman PS, Othman S
    Histochem Cell Biol, 2024 Nov 18;163(1):3.
    PMID: 39557682 DOI: 10.1007/s00418-024-02339-0
    Dihydroorotate dehydrogenase (DHODH) inhibitors have recently gained increasing research interest owing to their potential for treating breast cancers. We explored their effects in different breast cancer subtypes, focusing on mitochondrial dysfunction. The sensitivity of different subtypes to the inhibitors was investigated with respect to DHODH expression, tumorigenic, and receptor status. Analysis of respiratory complexes, cell cycle, reactive oxygen species (ROS), and cell differentiation were performed. Four cell lines with different receptor status were included, namely MCF-7, MDAMB-231, SKBR-3, and MCF-10A. We showed that MCF-7 and MDAMB-231 cells of the subtypes (ER+/PR+/HER2-) and (ER-/PR-/HER2-), respectively, were responsive to brequinar. Brequinar (BQR) caused cell cycle arrest in the S-phase in sensitive subtypes of breast cells but induced cell differentiation only in poorly differentiated breast cells. All cell subtypes showed increased generation of ROS, both intracellular and mitochondrial ROS with a greater increase seen in mitochondrial ROS in response to DHODH inhibitor, subsequently contributing to mitochondrial dysfunction. BQR also disrupts the function of complex III in ER+/PR+ and triple negative breast cancer (TNBC) subtypes. Collectively, we have found that MDAMB-231 TNBC cell was the most affected by DHODH inhibition in terms of sensitivity, cell cycle arrest, induction of cell differentiation, production of ROS, and mitochondrial complexes disruption. In conclusion, these findings suggest that DHODH inhibitors can potentially become a valuable targeted therapy for TNBC subtype and further consolidates its therapeutic potential as part of the combinatorial therapy against this resilient breast cancer subtype.
    Matched MeSH terms: Enzyme Inhibitors/pharmacology
  14. Hasan SS, Kow CS, Hadi MA, Zaidi STR, Merchant HA
    Am J Cardiovasc Drugs, 2020 Dec;20(6):571-590.
    PMID: 32918209 DOI: 10.1007/s40256-020-00439-5
    INTRODUCTION: The use of renin-angiotensin system (RAS) inhibitors, including angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs), was alleged to cause a more severe course of novel coronavirus disease 2019 (COVID-19).

    METHODS: We systematically reviewed the published studies to assess the association of RAS inhibitors with mortality as well as disease severity in COVID-19 patients. A systematic literature search was performed to retrieve relevant original studies investigating mortality and severity (severe/critical disease) in COVID-19 patients with and without exposure to RAS inhibitors.

    RESULTS: A total of 59 original studies were included for qualitative synthesis. Twenty-four studies that reported adjusted effect sizes (24 studies reported mortality outcomes and 16 studies reported disease severity outcomes), conducted in RAS inhibitor-exposed and unexposed groups, were pooled in random-effects models to estimate overall risk. Quality assessment of studies revealed that most of the studies included were of fair quality. The use of an ACEI/ARB in COVID-19 patients was significantly associated with lower odds (odds ratio [OR] = 0.73, 95% confidence interval [CI] 0.56-0.95; n = 18,749) or hazard (hazard ratio [HR] = 0.75, 95% CI 0.60-0.95; n = 26,598) of mortality compared with non-use of ACEI/ARB. However, the use of an ACEI/ARB was non-significantly associated with lower odds (OR = 0.91, 95% CI 0.75-1.10; n = 7446) or hazard (HR = 0.73, 95% CI 0.33-1.66; n = 6325) of developing severe/critical disease compared with non-use of an ACEI/ARB.

    DISCUSSION: Since there was no increased risk of harm, the use of RAS inhibitors for hypertension and other established clinical indications can be maintained in COVID-19 patients.

    Matched MeSH terms: Angiotensin-Converting Enzyme Inhibitors/therapeutic use*
  15. Latif A, Hussain K, Shehzadi N, Islam M, Khan MT, Anwar R, et al.
    Pharm Biol, 2017 Dec;55(1):547-553.
    PMID: 27951746
    CONTEXT: Kanji, a liquid preparation of roots of Daucus carota L. ssp. sativus (Hoffm.) Arcang. var. vavilovii Mazk. (Apiaceae), may inhibit glutathione sulfotransferase (GST) activity due to ferulic acid content.

    OBJECTIVES: GST inhibition activity and characterization of Kanji and methanol extract of D. carota roots, and oral absorption pattern of ferulic acid from Kanji in rats.

    MATERIALS AND METHODS: GST inhibition activity of Kanji and methanol extract of D. carota roots in concentration range 0.001-100.00 mg/mL was determined using Sprague Dawley rat liver cytosolic fraction. Methanol extract upon column chromatography gave ferulic acid, which was used to characterize Kanji and determine its oral absorption pattern in Wistar rats.

    RESULTS: The GST inhibition activity of Kanji (100.00 μg/mL), methanol extract of D. carota roots (100.00 μg/mL) and tannic acid (10.00 μg/mL, positive control) was found to be 0.162 ± 0.016, 0.106 ± 0.013 and 0.073 ± 0.004 μM/min/mg, respectively. Different Kanji samples and methanol extract contained ferulic acid (0.222-0.316 mg/g) and 0.77 mg/g, respectively. Ferulic acid did not appear in plasma after oral administration of Kanji.

    DISCUSSION: Kanji having solid contents 80.0 μg/mL, equivalent to 0.0025 μg/mL ferulic acid, does not inhibit the activity of GST. The oral administration of Kanji, in human equivalent dose (528 mg/kg, 16.67 μg ferulic acid), to rats indicated poor absorption of ferulic acid.

    CONCLUSION: Kanji having solid contents 14-36 mg/mL does not inhibit GST activity, hence may not interfere with drugs that are the substrates of GST, if taken concomitantly.

    Matched MeSH terms: Enzyme Inhibitors/administration & dosage; Enzyme Inhibitors/blood; Enzyme Inhibitors/isolation & purification; Enzyme Inhibitors/pharmacology*
  16. Tan SY, Kan E, Lim WY, Chay G, Law JH, Soo GW, et al.
    J Pharm Pharmacol, 2011 Jul;63(7):918-25.
    PMID: 21635257 DOI: 10.1111/j.2042-7158.2011.01296.x
    The pharmacokinetic interaction between metronidazole, an antibiotic-antiparasitic drug used to treat anaerobic bacterial and protozoal infections, and imatinib, a CYP3A4, P-glycoprotein substrate kinase inhibitor anticancer drug, was evaluated.
    Matched MeSH terms: Enzyme Inhibitors/adverse effects; Enzyme Inhibitors/blood; Enzyme Inhibitors/metabolism; Enzyme Inhibitors/pharmacokinetics
  17. Mphahlele MJ, Magwaza NM, Malindisa ST, Choong YS
    Chem Biol Drug Des, 2021 08;98(2):234-247.
    PMID: 34013660 DOI: 10.1111/cbdd.13893
    The 2-aryl-2,3-dihydrobenzodiazaborinin-4(1H)-ones (azaborininone) were synthesized as analogues of the 2-arylquinazoline-4-ones and screened through enzymatic assay in vitro for inhibitory effect against α-glucosidase and α-amylase activities. These azaborininones exhibited moderate to good inhibitory effect against these enzymes compared to acarbose used as a reference standard. The results are supported by the enzyme-ligand interactions through kinetics (in vitro) and molecular docking (in silico) studies. The test compounds also exhibited significant antioxidant activity through the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and nitric oxide (NO) free radical scavenging assays. These azaborininone derivatives exhibited no effect on the viability of the human lung cancer (A549) cell line after 24 hr and were also not toxic towards the Vero cells.
    Matched MeSH terms: Enzyme Inhibitors/chemical synthesis; Enzyme Inhibitors/metabolism; Enzyme Inhibitors/pharmacology; Enzyme Inhibitors/chemistry*
  18. Choo CY, Sulong NY, Man F, Wong TW
    J Ethnopharmacol, 2012 Aug 1;142(3):776-81.
    PMID: 22683902 DOI: 10.1016/j.jep.2012.05.062
    The leaves of Ficus deltoidea are used as a traditional medicine by diabetes patients in Malaysia.
    Matched MeSH terms: Enzyme Inhibitors/analysis; Enzyme Inhibitors/therapeutic use
  19. Lim SV, Rahman MB, Tejo BA
    BMC Bioinformatics, 2011;12 Suppl 13:S24.
    PMID: 22373153 DOI: 10.1186/1471-2105-12-S13-S24
    The dengue virus is the most significant arthropod-borne human pathogen, and an increasing number of cases have been reported over the last few decades. Currently neither vaccines nor drugs against the dengue virus are available. NS5 methyltransferase (MTase), which is located on the surface of the dengue virus and assists in viral attachment to the host cell, is a promising antiviral target. In order to search for novel inhibitors of NS5 MTase, we performed a computer-aided virtual screening of more than 5 million commercially available chemical compounds using two approaches: i) structure-based screening using the crystal structure of NS5 MTase and ii) ligand-based screening using active ligands of NS5 MTase. Structure-based screening was performed using the LIDAEUS (LIgand Discovery At Edinburgh UniverSity) program. The ligand-based screening was carried out using the EDULISS (EDinburgh University LIgand Selection System) program.
    Matched MeSH terms: Enzyme Inhibitors/pharmacology*; Enzyme Inhibitors/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links