Displaying publications 161 - 180 of 701 in total

Abstract:
Sort:
  1. Jusoh M, Loh SH, Aziz A, Cha TS
    Appl Biochem Biotechnol, 2019 Jun;188(2):450-459.
    PMID: 30536033 DOI: 10.1007/s12010-018-02937-4
    Microalgae lipids and oils are potential candidates for renewable biofuels and nutritional inventions. Recent studies from our lab have shown that two plant hormones, auxin and jasmonic acid, influence microalgae growth and fatty acid accumulation. Therefore, in this study, a high oil-producing strain Chlorella vulgaris UMT-M1 was selected for hormonal study using gibberellin (GA). Exogenous GA3 was applied to early stationary culture of C. vulgaris UMT-M1. Results showed that GA3 gradually increases the cell density of C. vulgaris to up to 42% on days after treatment (DAT)-8 and also capable of delaying the algal senescence. However, the increment in cell density did not enhance the total oil production albeit transient modification of fatty acid compositions was observed for saturated (SFA) and polyunsaturated (PUFA) fatty acids. This illustrates that GA3 only promotes cell division and growth but not the oil accumulation. In addition, application of GA3 in culture medium was shown to promote transient increment of palmitic (C16:0) and stearic (C18:0) acids from DAT-4 to DAT-6 and these changes are correlated with the expression of β-ketoacyl ACP synthase I (KAS I) gene.
    Matched MeSH terms: Fatty Acids/biosynthesis*; Fatty Acids/genetics; Fatty Acids/chemistry
  2. Zarnowski R, Jaromin A, Certik M, Czabany T, Fontaine J, Jakubik T, et al.
    Z Naturforsch C J Biosci, 2008 11 13;59(5-6):321-6.
    PMID: 18998394
    The oil of Adenanthera pavonina L. seeds was analysed by chromatographic and instrumental means. The oil was found to be rich in neutral lipids (86.2%), and low in polar lipids (13.8%). The neutral lipids consisted mainly of triacylglycerols (64.2%). Unsaturated fatty acids were found as high as 71%, while the percentage of saturated fatty acids was only 29%. GC and GC/MS analyses revealed linoleic, oleic and lignocerotic acid to be predominant among all fatty acids in the A. pavonina oil, whereas stigmasterol was the major steroid identified within this study. Subsequently, the oil was used for preparation of submicron oil-in-water (o/w) lipid emulsions. Lipid emulsions were formulated by using soybean lecithin (SL) to investigate their particle size, Zeta potential and stability at the different oil and SL ratios. The results obtained indicate possible applications of the tested oil in pharmaceutical and medical fields as drug and cosmetic active ingredient carriers.
    Matched MeSH terms: Fatty Acids/analysis; Fatty Acids, Nonesterified/analysis
  3. Loh SH, Chen MK, Fauzi NS, Aziz A, Cha TS
    Sci Rep, 2021 Feb 01;11(1):2720.
    PMID: 33526809 DOI: 10.1038/s41598-021-81609-6
    Conventional microalgae oil extraction applies physicochemical destruction of dry cell biomass prior to transesterification process to produce fatty acid methyl esters (FAMEs). This report presents a simple and rapid direct transesterification (DT) method for FAMEs production and fatty acid profiling of microalgae using freshly harvested biomass. Results revealed that the FAMEs recovered from Chlorella vulgaris were 50.1 and 68.3 mg with conventional oil-extraction-transesterification (OET) and DT method, respectively. While for Messastrum gracile, the FAMEs recovered, were 49.9 and 76.3 mg, respectively with OET and DT methods. This demonstrated that the DT method increased FAMEs recovery by 36.4% and 53.0% from C. vulgaris and M. gracile, respectively, as compared to OET method. Additionally, the DT method recovered a significantly higher amount of palmitic (C16:0) and stearic (C18:0) acids from both species, which indicated the important role of these fatty acids in the membranes of cells and organelles. The DT method performed very well using a small volume (5 mL) of fresh biomass coupled with a shorter reaction time (~ 15 min), thus making real-time monitoring of FAMEs and fatty acid accumulation in microalgae culture feasible.
    Matched MeSH terms: Fatty Acids
  4. Manikan V, Nazir Y, Hamid AA
    Heliyon, 2021 Jan;7(1):e06085.
    PMID: 33553753 DOI: 10.1016/j.heliyon.2021.e06085
    Thraustochytrids are getting increasingly popular due to their high potential role as alternative producers of the high-valued ω-3 polyunsaturated fatty acids (PUFA), docosahexaenoic acid (DHA). While most thraustochytrids prefer glucose as the major carbon source, few strains have been reported to prefer fructose. One such strain is Aurantiochytrium sp. SW1. In this study, the effect of fructose on DHA accumulation by SW1 was investigated using a two-level full factorial design. Besides, biomass, lipid and DHA accumulation profiles of SW1 cultivated in fructose and glucose media were compared. Results revealed that fructose has a very significant positive effect on the volumetric DHA content. Meanwhile, its involvement in affecting DHA biosynthetic capacity, though significant, is not very profound. It was also found that when cultivated in fructose medium, SW1 had a less steep log phase compared to that of glucose medium. However, after 48h of cultivation, biomass and lipid accumulation in fructose medium outweighed the other. Volumetric DHA content in fructose medium at 96h was 11% higher than that of glucose medium. Overall, fructose was found to be a more suitable substrate for biomass, lipid and DHA accumulation in SW1 compared to the conventional source, glucose.
    Matched MeSH terms: Fatty Acids, Omega-3
  5. He M, Tan CP, Xu YJ, Liu Y
    Food Res Int, 2020 12;138(Pt B):109812.
    PMID: 33288187 DOI: 10.1016/j.foodres.2020.109812
    Cardiovascular disease (CVD) is a serious disease that endangers human health and is one of the leading causes of death. Recent studies have reported that gut microbiota plays an important role in the development of CVD, especially its metabolite trimethylamine-N-oxide (TMAO). Dietary precursors, such as choline, L-carnitine, phosphatidylcholine and betaine were metabolized to trimethylamine (TMA) under the action of gut microbiota, and subsequently oxidized by hepatic flavin monooxygenases (FMOs) to form TMAO. Dietary fat is one of three major nutrients in food, has been found to have a positive or negative effect on the development of CVD. Multiple clinical and experimental evidences suggested that dietary fatty acids (FAs) can affect TMAO production through gut microbiota and/or FMO3 enzyme activity. This article summarizes the existing gut microbiota-mediated reduction of TMA, discusses the molecular mechanism of dietary FAs in the pathobiology of CVD from the view of TMAO. Therefore, this review provides new insight into the association of dietary FAs and CVD, paving the way for dietary FAs therapy for CVD.
    Matched MeSH terms: Fatty Acids
  6. Wan Ishak, W.I., Kit, W.H., Awwal, M. A.
    MyJurnal
    This paper describes the design and development of harvesting system for the gantry system to harvest eggplants. For this purpose, the harvesting robot was successfully designed and fabricated for the gantry system to harvest eggplants. The operation of the harvester was controlled by Programmable Logic Controller (PLC). Basically, the limit switches, DC motor, and relay are connected to the PLC. Meanwhile, a PLC ladder diagram was designed and developed to control the operation of the eggplant harvester. A visual basic programme was developed to interface the harvester with a greenhouse gantry control system. A videogrammetry method was employed to calculate the distance between the stems of eggplants and the cutter of robot end effector. The end effector used electric as its power source and it was controlled via Programmable Logic Controller (PLC). Visual Basic Programme was developed to interface the harvester with the gantry control system. The accuracy of the videogrammetry was tested to be 67.2% for X-axis, 88.2% for Y-axis and 84.7% for Z-axis. Meanwhile, the speed of the end effector for harvester is 2.4 km/h and it could lift up to 55 cm. In order to determine detachment force of eggplant, 16 samples of mature eggplants were tested in a greenhouse, and as a result, more than 22.76 N force was needed to detach a mature eggplant inside the gantry system.
    Matched MeSH terms: Fatty Acids, Monounsaturated
  7. Mansor, T. S. T., Che Man, Y. B., Shuhaimi, M., Abdul Afiq, M. J., Ku Nurul, F. K. M.
    MyJurnal
    Virgin Coconut Oils (VCO) were prepared from fresh-dry (grated coconut route), chilling and thawing, enzymatic and fermentation method in this study. All of the VCO produced conformed physicochemically to the standards established by the Asian and Pacific Coconut Community (APCC) and Codex Alimentarius Commission. The highest FA (fatty acid) is lauric acid in all of the VCO and ranged from 46.36 – 48.42 %, while the principal TAG (triacylglycerol) is LaLaLa (La: Lauric) with 17.94 – 19.83 % of the total TAG. Tocopherol analysis showed the presence of beta, gamma and delta tocopherols at low levels. In all, the physicochemical, FA and TAG analyses of the VCO extracted from different methods showed some significant differences, while the tocopherol content does not differ significantly among the different types of extraction methods used.
    Matched MeSH terms: Fatty Acids
  8. Zainab Ngaini, Rafeah Wahi, Dayang Halimatulzahara, Nur An-Nisaa’ Mohd Yusoff
    MyJurnal
    Oil pollution remains a serious concern especially in Malaysia. Many strategies have been employed to overcome oil pollution. In this research, sago waste material abundantly found in Sarawak was used and chemically modified into an oil adsorbent . Sago waste cellulosic residues were modified using fatty acid derivatives. The capability of the chemically modified sago waste to absorb oil from aqueous solution was studied and compared with the untreated sago waste. The modified sago waste showed higher hydrophobicity than the untreated sago waste, implying that it is less affinity for water and also an excellent affinity for oil. This chemically modified sago waste would be the most suitable for applications where engine oil (i.e., Shell Helix HX5) is to be removed from an aqueous environment. The modified sago waste selectively absorbs the oil and remains on the surface and is to be removed when the application is complete.
    Matched MeSH terms: Fatty Acids
  9. Nurul Najwa Zamimi, Noorhazayti Ab.Halim, Widya Lestari, Darnis, Deny Susanti, Wan Mohd Faizal Wan Ishak, Md Muziman Syah Md Mustafa
    MyJurnal
    Dental caries is the most common yet preventable disease. Study found that seaweed
    exhibits anti-cariogenic properties. However, little attention have been given to the study on anticariogenic properties of seaweed and the bioactive compound that responsible for the anticariogenic activities have not adequately investigated. This study was conducted to evaluate the
    best extraction methods for S. polycystum and to determine the fatty acid compounds of S.
    polycystum that have anti-cariogenic potential against oral cariogenic bacteria. (Copied from article).
    Matched MeSH terms: Fatty Acids
  10. Tan CH, Ariffin AA, Ghazali HM, Tan CP, Kuntom A, Choo AC
    J Food Sci Technol, 2017 Jun;54(7):1757-1764.
    PMID: 28720930 DOI: 10.1007/s13197-017-2569-9
    This article reports on the changes of oxidation indices and minor components of low free fatty acid (FFA) and freshly extracted crude palm oils after storage at ambient (28 ± 1 C) and 60 C for 77 days. The changes in peroxide value (PV), FFA, extinction coefficient at 233 and 269 nm (K233 and K269), bleachability index (DOBI), carotene and vitamin E contents were monitored. PV, FFA, K233 and K269 of both oil samples increased as storage progressed while the values of carotene and vitamin E contents decreased. At the end of storage period at 60 °C, the carotene content of low FFA crude palm oil was 4.24 ppm. The storage conditions used led to the loss of entire vitamin E fractions of both oil samples as well as a reduction in DOBI values except for freshly extracted crude palm oil stored at ambient temperature.
    Matched MeSH terms: Fatty Acids, Nonesterified
  11. Mohd Jaih, A.A., Abdul Rahman, R., Abdull Razis, A.F., Ariffin, A.A., Al-Awaadh, A., Suleiman, N.
    MyJurnal
    Oil is one of the major components of date seed alongside dietary fibre, carbohydrate, protein, moisture and ash. Therefore, the present work focused on the extraction of oil from five varieties of date seed using Soxhlet extraction method and subsequently characterised their physicochemical and antioxidant properties accordingly. Oil extracted from the seeds ranged between 8 to 9.8%, whereas the iodine values were between 48.7 to 55.5 g I2/100g. Furthermore, oleic and lauric acids were revealed as the main fatty acids present in the date seed oil, with LaOO (La: lauric acid; O: oleic acid) as the main triacylglycerol. The total phenolic content in the oil ranged from 7.96 to 17.72 mg GAE/g oil, while the antioxidant activity, expressed as EC50, ranged from 5.17 to 17.18 mg/mL. Additionally, the highest reducing activity was observed at 4mg/mL. Hence, oil characteristics are dependent on the type of date, thus indicating that different potential applications may be suggested.
    Matched MeSH terms: Fatty Acids
  12. Anne-Marie K, Yee W, Loh SH, Aziz A, Cha TS
    World J Microbiol Biotechnol, 2020 Jan 07;36(1):17.
    PMID: 31912247 DOI: 10.1007/s11274-019-2790-y
    In this study, the effects of limited and excess nitrate on biomass, lipid production, and fatty acid profile in Messastrum gracile SE-MC4 were determined. The expression of fatty acid desaturase genes, namely stearoyl-ACP desaturase (SAD), omega-6 fatty acid desaturase (ω-6 FAD), omega-3 fatty acid desaturase isoform 1 (ω-3 FADi1), and omega-3 fatty acid desaturase isoform 2 (ω-3 FADi2) was also assessed. It was found that nitrate limitation generally increased the total oil, α-linolenic acid (C18:3n3) and total polyunsaturated fatty acid (PUFA) contents in M. gracile. The reduction of nitrate concentration from 1.76 to 0.11 mM increased the total oil content significantly from 32.5 to 41.85% (dry weight). Palmitic (C16:0) and oleic (C18:1) acids as the predominant fatty acids in this microalgae constituted between 82 and 87% of the total oil content and were relatively consistent throughout all nitrate concentrations tested. The expression of SAD, ω-6 FAD, and ω-3 FADi2 genes increased under nitrate limitation, especially at 0.11 mM nitrate. The ω-3 FADi1 demonstrated a binary up-regulation pattern of expression under both nitrate-deficient (0.11 mM) and -excess (3.55 mM) conditions. Thus, findings from this study suggested that limited or excess nitrate could be used as part of a cultivation strategy to increase oil and PUFA content following media optimisation and more efficient culture methodology. Data obtained from the expression of desaturase genes would provide valuable insights into their roles under excess and limited nitrate conditions in M. gracile, potentially paving the way for future genetic modifications.
    Matched MeSH terms: Fatty Acids/analysis*; Fatty Acids, Unsaturated/metabolism
  13. Hajar-Azhari S, Hafiz Abd Rahim M, Razid Sarbini S, Muhialdin BJ, Olusegun L, Saari N
    Food Res Int, 2021 11;149:110677.
    PMID: 34600679 DOI: 10.1016/j.foodres.2021.110677
    Fructooligosaccharides can be produced by direct enzymatic conversion from sucrose-rich sugarcane syrup (SS) consisting of 58.93% sucrose yielding 21.28 g FOS/100 g sucrose. This study evaluated the prebiotic effect of unpurified/purified SS containing FOS for the modulation of the human intestinal microbial composition and short-chain fatty acid production. The unpurified and purified FOS substrates, which were a mixture of 1-kestose, nystose and 1F-fructosylnystose, were supplemented into human faecal culture using a pH-controlled batch fermentation system and significantly increased the Bifidobacterium counts after 5 h fermentation, while Bacteroides/Prevotella counts were highest throughout 24 h fermentation. Meanwhile, Lactobacillus/Enterococcus exhibited a slight increase after 5 h fermentation before reaching a plateau afterwards. The steady Bacteroides/Prevotella growth and increased Bifidobacterium population promoted an increase in the production of short-chain fatty acids acetate (58 ± 2.70 mM), propionate (9.19 ± 5.94 mM) and butyrate (7.15 ± 2.28 mM). These results provide evidence that representative gut microbiota could utilise the enzymatically synthesised FOS to generate short-chain fatty acids as metabolites in pH-controlled conditions, thus FOS from SS are a potential prebiotic ingredient for foods and health drinks.
    Matched MeSH terms: Fatty Acids, Volatile
  14. Chaijan M, Panpipat W, Cheong LZ
    Molecules, 2022 Nov 14;27(22).
    PMID: 36431934 DOI: 10.3390/molecules27227833
    Concerns have been raised about the safety and tolerability of phytosterol esters due to their vulnerability to oxidation. Herein, oxidation of the unsaturated fatty acid-phytosterol ester, namely β-sitosteryl oleate, was observed in comparison to native β-sitosterol after accelerated storage at 65 °C for 35 days in a bulk oil model system. Depending on the sterol structure, various chemical indices of lipid oxidation, including hydroperoxide value (HPV), thiobarbituric acid reactive substances (TBARS), p-anisidine value (AnV), and 7-keto derivatives, changed at varying rates in both samples. Such indicators for β-sitosteryl oleate appeared to be obtained at higher concentrations than those for β-sitosterol. The first order kinetic was used to describe the losses of β-sitosteryl oleate and β-sitosterol in bulk oil. It was discovered that the β-sitosteryl oleate (k = 0.0202 day-1) underwent oxidative alteration more rapidly than β-sitosterol (k = 0.0099 day-1). Results indicated that physical structure was the principal factor in the determination of storage stability of phytosterol and its ester. Research on antioxidants and storage techniques can be expanded in order to reduce the oxidative loss of phytosterol esters during storage and improve the safety and tolerability of phytosterol esters.
    Matched MeSH terms: Fatty Acids
  15. Aziz AA, Nordin FNM, Zakaria Z, Abu Bakar NK
    J Cosmet Dermatol, 2022 Jan;21(1):71-84.
    PMID: 34658114 DOI: 10.1111/jocd.14402
    BACKGROUND: The use of cosmetic products is considered a necessity for beautification in our daily lives. Cosmetic products composed of natural oils or fats as a main ingredient for various beneficial properties. Fats and oils are composed of various type of fatty acids with different compositions. Hence, fatty acids profile can be an effective chemical fingerprint for authentication analysis of cosmetic products.

    OBJECTIVE: This systematic review aims to enlighten the current detection tools developing for fatty acids profile authentication analyses of cosmetic ingredients based on the effectiveness, halal status, safety, advantages and disadvantages of the methods.

    METHODOLOGY: The data were extracted from the scientific literatures published between October 2015 and 2020 in the Web of Science, Scopus and Google Scholar databases, and analyzed with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA).

    FINDINGS: Based on the systemic literature reviews, essential oil, argan oil, mineral oil, vegetable oil, and jojoba oil were among the mostly studied ingredients in cosmetics. Furthermore, a combination of more than one analytical instrument was utilized to profile fatty acids while the determination of the origin of the fatty acids is under scrutiny. The portable mass spectrometer combined with a direct inlet membrane (DIM) probe seems to be the best tool in terms of time consumption, cost, requires no sample preparation with high efficiency. The current review showed that the best cosmetic base is when the oil is composed of high concentration of fatty acids such as linoleic, oleic, stearic acid, and palmitic acids with concentration range from 19.7 - 46.30%, which offers various beneficial properties to cosmetic products.

    Matched MeSH terms: Fatty Acids
  16. Abu Sepian NR, Mat Yasin NH, Zainol N, Rushan NH, Ahmad AL
    Environ Technol, 2019 Apr;40(9):1110-1117.
    PMID: 29161985 DOI: 10.1080/09593330.2017.1408691
    The immobilisation of Chlorella vulgaris 211/11B entrapped in combinations of natural matrices to simplify the harvesting process was demonstrated in this study. Three combinations of matrices composed of calcium alginate (CA) and sodium alginate (SA), sodium carboxymethyl cellulose (CMC) and SA, and mixed matrices (SA, CA, and CMC) were investigated. The number of cells grown for each immobilised matrix to microalgae volume ratios (0.2:1-1:1) were explored and compared with using SA solely as a control. The optimum volume ratios obtained were 1:1 for SA, 0.3:1 for CA and SA, 1:1 for CMC and SA, and 0.3:1 for mixed matrices. The immobilised microalgae of mixed matrices exhibited the highest number of cells with 1.72 × 109 cells/mL at day 10 and 30.43% of oil extraction yield followed by CA and SA (24.29%), CMC and SA (13.00%), and SA (6.71%). Combining SA, CA, and CMC had formed a suitable structure which improved the growth of C. vulgaris and increased the lipid production compared to the immobilisation using single matrix. Besides, the fatty acids profile of the oil extracted indicates a high potential for biodiesel production.
    Matched MeSH terms: Fatty Acids
  17. Roiaini, M., Ardiannie, T., Norhayai, H.
    MyJurnal
    Oil blending has been recognized as one of the most potent solution in producing vegetable oils with good storage stabilities and optimum fatty acids compositions. This study was conducted to identify the best oil blends in terms of physicochemical properties between canola, olive and palm olein oil. Canola and olive oils were blended at different ratios of 80:20, 60:40, 50:50, 40:60, and 20:80. Palm olein is stable against rancidity and oxidation thus the above blends were mixed with 20% palm olein. The 80:20 canola: olive blend shows the best properties after being mixed with 20% palm olein compared to other blends. It passed the cold stability test and has significantly the lowest cloud point of 6.0oC (p
    Matched MeSH terms: Fatty Acids
  18. Hui GT, Meng TK, Kassim MA
    Bioprocess Biosyst Eng, 2023 Oct;46(10):1499-1512.
    PMID: 37580470 DOI: 10.1007/s00449-023-02917-x
    Conventionally, microalgal lipid extraction uses volatile organic compounds as an extraction solvent. However, these solvents are harmful to human and environmental health. Therefore, this study evaluated the feasibility of alternative green solvents, namely, ethanol, dimethyl carbonate (DMC), cyclopentyl methyl ether (CPME), and 2-methyltetrahydrofuran (2-MeTHF) in lipid extraction from Chlorella sp. via ultrasound-assisted extraction (UAE). This study indicated that extraction parameters, such as ethanol-to-2-MeTHF ratio, solvent-to-biomass ratio, temperature, and time, significantly affected the crude lipid yield (P 
    Matched MeSH terms: Fatty Acids
  19. Zulfakar MH, Pubadi H, Ibrahim SI, Hairul NM
    J Oleo Sci, 2024;73(3):293-310.
    PMID: 38432994 DOI: 10.5650/jos.ess23204
    Medium-chain triacylglycerol (MCT) is a type of triacylglycerol that has six or seven to twelve carbon chains. It consists of three molecules of fatty acids attached to one molecule of glycerol. Drug delivery system (DDS) is defined as a formulation to distribute drugs into the human body. The unique properties of MCTs have garnered interest in using them as excipients in DDS. Even though there are many significant effects attributed to the use of MCTs, especially in modulating the rate of drug delivery in various DDS, they are all limited and intermittent. This warrants a detailed summary of the previous studies on the use of MCTs in various DDS. Therefore, this review focuses on presenting a systematic review of previous studies on the use of MCTs in the last six years and explores the types and effects of MCTs on DDS that employ various types of delivery routes. A systematic search through PubMed, Science Direct and Scopus was performed. Keywords like "medium-chain triglycerides", "medium-chain fatty acids", "medium-chain triglycerides and their fractions", "medium-chain fatty acids and their fractions", "MCTs", "MCFA", "in drug delivery", "in drug delivery system" and their combinations were used. The synonyms of the words were also used to extend the search. A total of 17 articles that met the inclusion criteria were identified. Findings from this review have identified the several MCTs and their fractions used in DDS that employed the oral/enteral, topical, transdermal, parenteral, and pulmonary routes of drug delivery. The review also highlights that the usage of MCTs in DDS results in a better transportation of drugs into the human body.
    Matched MeSH terms: Fatty Acids
  20. Qamaruz-Zaman N, Kun Y, Rosli RN
    Waste Manag, 2015 Jan;35:187-90.
    PMID: 25445259 DOI: 10.1016/j.wasman.2014.09.017
    Food wastes with high moisture and organic matter content are likely to emit odours as a result of the decomposition process. The management of odour from decomposing wastes is needed to sustain the interest of residents and local councils in the source separation of kitchen wastes. This study investigated the potential of baking soda (at 50 g, 75 g and 100g per kg food waste) to control odour from seven days stored food waste. It was found that 50 g of baking soda, spread at the bottom of 8l food wastes bin, can reduce the odour by about 70%. A higher amount (above 100g) is not advised as a pH higher than 9.0 may be induced leading to the volatilization of odorous ammonia. This research finding is expected to benefit the waste management sector, food processing industries as well as the local authorities where malodour from waste storage is a pressing issue.
    Matched MeSH terms: Fatty Acids, Volatile/analysis; Fatty Acids, Volatile/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links