METHODS: A total of 128 (64 males, 64 females) non-smoking healthy young subjects were randomly sampled for the study from the Kelantanese students' population of the University Sains Malaysia, Kota Bharu Campus, Kelantan, Malaysia. The study population (20-25 yr age group) had similar socio-economic background. Each subject filled up the ATS (1978) questionnaire to record their personal demographic data, health status and consent to participate in the study. Subjects with any history of pulmonary diseases were excluded from the study.
RESULTS: The pulmonary function measurements exhibited significantly higher values among males than the females. FEV 1% did not show any significant inter-group variation probably because the parameter expresses FEV 1 as a percentage of FVC. FVC and FEV 1 exhibited significant correlations with body height and body mass among males whereas in the females exhibited significant correlation with body mass, body weight and also with age. FEV 1% exhibited significant correlation with body height and body mass among males and with body height in females. FEF 25-75% did not show any significant correlation except with body height among females. However, PEFR exhibited significant positive correlation with all the physical parameters except with age among the females. On the basis of the existence of significant correlation between different physical parameters and pulmonary function variables, simple and multiple regression norms have been computed.
INTERPRETATION & CONCLUSIONS: From the present investigation it can be concluded that Kelantanese Malaysian youths have normal range of pulmonary function in both the sexes and the computed regression norms may be used to predict the pulmonary function values in the studied population.
MATERIALS AND METHODS: This was a retrospective study using computed tomography (CT) scans from 3 hospitals. Inclusion criteria were scans with 1-5 nodules of diameter ≥5 mm; exclusion criteria were poor-quality scans or those with nodules measuring <5mm in diameter. In the lesion detection phase, 2,147 nodules from 219 scans were used to develop and train the deep learning 3D-CNN to detect lesions. The 3D-CNN was validated with 235 scans (354 lesions) for sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) analysis. In the path planning phase, Bayesian optimization was used to propose possible needle trajectories for lesion biopsy while avoiding vital structures. Software-proposed needle trajectories were compared with actual biopsy path trajectories from intraprocedural CT scans in 150 patients, with a match defined as an angular deviation of <5° between the 2 trajectories.
RESULTS: The model achieved an overall AUC of 97.4% (95% CI, 96.3%-98.2%) for lesion detection, with mean sensitivity of 93.5% and mean specificity of 93.2%. Among the software-proposed needle trajectories, 85.3% were feasible, with 82% matching actual paths and similar performance between supine and prone/oblique patient orientations (P = .311). The mean angular deviation between matching trajectories was 2.30° (SD ± 1.22); the mean path deviation was 2.94 mm (SD ± 1.60).
CONCLUSIONS: Segmentation, lesion detection, and path planning for CT-guided lung biopsy using an AI-guided software showed promising results. Future integration with automated robotic systems may pave the way toward fully automated biopsy procedures.
MATERIAL AND METHODS: Thirty Sprague Dawley rats (3-monthold, 200 to 300 gm) were randomly divided into six groups, namely control (C), 4 weeks diabetes mellitus (DM1), 8 weeks DM (DM2) and three DM1 groups (VD1, VD2, and VD3) who received Vitamin D doses of 0.125, 0.25 and 0.50 μg/kg BW, respectively. After 4 weeks, daily VD was administered intraperitoneally for 30 days. Lung tissues were taken for IL- 6, MCP-1, NFKB and CD68 mRNA expression analysis and paraffin embedding. Immunohistochemical staining against CD68 and MCP-1 was conducted. Data were analysed using one-way ANOVA. p < 0.05 was considered statistically significant.
RESULTS: DM2 group represented significantly higher IL6, MCP1, NFKB and CD68 mRNA expression than Control group (p < 0.05). Meanwhile, VD2 and VD3 groups revealed significantly lower mRNA expression of IL-6, MCP1, NFKB and CD68 than DM2 (p < 0.05). Immunostaining revealed the spreading of MCP1 protein expression in lung tissue along with macrophage infiltration in the DM2 group, which was reduced in the VD2 and the VD3 groups.
CONCLUSION: VD shows a protective effect on diabetesinduced lung damage by regulating inflammation factors.
METHODS: A six-year retrospective review at our institution on adult patients with TB and malignant-PPL diagnosed from rEBUS procedure from October 1, 2016, to December 31, 2022. Clinical, radiological, procedural, histological and microbiological data were extracted and analysed.
RESULTS: 387 PPLs were included in our cohort, 32 % were TB-PPL and 68 % were malignant-PPL. The median age was 63 (IQR 55-70) years, with the TB-PPL group significantly younger. The median size of the target lesion was 2.90 (IQR 2.26-4.00) cm. The overall rEBUS diagnostic yield was 85.3 %, with a 1.3 % pneumothorax risk. Multivariate analysis identified independent predictors for TB-PPL, including age <60 years (adj OR 2.635), target lesion size <2 cm (adj OR 2.385), upper lobe location (adj OR 2.020), presence of a cavity on pre-procedural CT (adj OR 4.186), and presence of rEBUS bronchogram (adj OR 2.722). These variables achieved an area under the curve of 0.729 (95 % CI 0.673-0.795) with a diagnostic accuracy of 75.49 % (95 % CI 70.68-79.88).
CONCLUSIONS: Despite non-specific radiological findings in TB-PPL, our study identifies younger age, target lesion size less than 2 cm, upper lobe location, the presence of cavitation, and rEBUS bronchogram were independent clinical predictors for TB-PPL. This prediction model potentially helps mitigate the risk of accidental TB exposure during bronchoscopic procedures. A future prospective cohort study to validate these findings is essential to allow proper triaging of patient planning for rEBUS procedure.
MATERIALS AND METHODS: In this prospective study, EGFR mutations in exons 18, 19, 20 and 21 in formalin-fixed paraffin-embedded biopsy specimens of consecutive NSCLC patients were asessed by real-time polymerase chain reaction.
RESULTS: EGFR mutations were detected in NSCLCs from 55 (36.4%) of a total of 151 patients, being significantly more common in females (62.5%) than in males (17.2%) [odds ratio (OR), 8.00; 95% confidence interval (CI), 3.77-16.98; p<0.001] and in never smokers (62.5%) than in ever smokers (12.7%) (OR, 11.50; 95%CI, 5.08-26.03; p<0.001). Mutations were more common in adenocarcinoma (39.4%) compared to non-adenocarcinoma NSCLCs (15.8%) (p=0.072). The mutation rates in patients of different ethnicities were not significantly different (p=0.08). Never smoking status was the only clinical feature that independently predicted the presence of EGFR mutations (adjusted OR, 5.94; 95%CI, 1.94- 18.17; p=0.002).
CONCLUSIONS: In Malaysian patients with NSCLC, the EGFR mutation rate was similar to that in other Asian populations. EGFR mutations were significantly more common in female patients and in never smokers. Never smoking status was the only independent predictor for the presence of EGFR mutations.
MATERIALS AND METHODS: Contrast enhanced computed tomography (CT) images of 194 multi-racial NSCLC patients (79 EGFR mutants and 115 wildtypes) were collected from three different countries using 5 manufacturers' scanners with a variety of scanning parameters. Ninety-nine cases obtained from the University of Malaya Medical Centre (UMMC) in Malaysia were used for training and validation procedures. Forty-one cases collected from the Kyushu University Hospital (KUH) in Japan and fifty-four cases obtained from The Cancer Imaging Archive (TCIA) in America were used for a test procedure. Radiomic features were obtained from BN maps, which represent topologically invariant heterogeneous characteristics of lung cancer on CT images, by applying histogram- and texture-based feature computations. A BN-based signature was determined using support vector machine (SVM) models with the best combination of features that maximized a robustness index (RI) which defined a higher total area under receiver operating characteristics curves (AUCs) and lower difference of AUCs between the training and the validation. The SVM model was built using the signature and optimized in a five-fold cross validation. The BN-based model was compared to conventional original image (OI)- and wavelet-decomposition (WD)-based models with respect to the RI between the validation and the test.
RESULTS: The BN-based model showed a higher RI of 1.51 compared with the models based on the OI (RI: 1.33) and the WD (RI: 1.29).
CONCLUSION: The proposed model showed higher robustness than the conventional models in the identification of EGFR mutations among NSCLC patients. The results suggested the robustness of the BN-based approach against variations in image scanner/scanning parameters.
METHODS: Eligible Asian patients (enrolled at Asian sites) who were at least 18 years of age (≥20 years in Japan) and had untreated EGFR-mutated advanced NSCLC were randomized 1:1 to receive osimertinib (80 mg, orally once daily) or an SoC EGFR TKI (gefitinib, 250 mg, or erlotinib, 150 mg, orally once daily). The primary end point was investigator-assessed progression-free survival (PFS). The key secondary end points were overall survival, objective response rate, central nervous system efficacy, and safety.
RESULTS: The median PFS was 16.5 versus 11.0 months for the osimertinib and SoC EGFR TKI groups, respectively (hazard ratio = 0.54, 95% confidence interval: 0.41-0.72, p < 0.0001). The overall survival data were immature (24% maturity). The objective response rates were 80% for osimertinib and 75% for an SoC EGFR TKI. The median central nervous system PFS was not calculable for the osimertinib group and was 13.8 months for the SoC EGFR TKI group (hazard ratio = 0.55, 95% confidence interval: 0.25-1.17, p = 0.118). Fewer adverse events of grade 3 or higher (40% versus 48%) and fewer adverse events leading to treatment discontinuation (15% versus 21%) were reported with osimertinib versus with an SoC EGFR TKI, respectively.
CONCLUSION: In this Asian population, first-line osimertinib demonstrated a clinically meaningful improvement in PFS over an SoC EGFR TKI, with a safety profile consistent with that for the overall FLAURA study population.