Displaying publications 161 - 180 of 403 in total

Abstract:
Sort:
  1. Wang D, Wong SI, Sunarso J, Xu M, Wang W, Ran R, et al.
    ACS Appl Mater Interfaces, 2021 May 05;13(17):20105-20113.
    PMID: 33886260 DOI: 10.1021/acsami.1c02502
    Hydrocarbon-fueled solid oxide fuel cells (SOFCs) that can operate in the intermediate temperature range of 500-700 °C represent an attractive SOFC device for combined heat and power applications in the industrial market. One of the ways to realize such a device relies upon exploiting an in situ steam reforming process in the anode catalyzed by an anti-carbon coking catalyst. Here, we report a new Ni and Ru bimetal-doped perovskite catalyst, Ba(Zr0.1Ce0.7Y0.1Yb0.1)0.9Ni0.05Ru0.05O3-δ (BZCYYbNRu), with enhanced catalytic hydrogen production activity on n-butane (C4H10), which can resist carbon coking over extended operation durations. Ru in the perovskite lattice inhibits Ni precipitation from perovskite, and the high water adsorption capacity of proton conducting perovskite improves the coking resistance of BZCYYbNRu. When BZCYYbNRu is used as a steam reforming catalyst layer on a Ni-YSZ-supported anode, the single fuel cell not only achieves a higher power density of 1113 mW cm-2 at 700 °C under a 10 mL min-1 C4H10 continuous feed stream at a steam to carbon (H2O/C) ratio of 0.5 but also shows a much better operational stability for 100 h at 600 °C compared with those reported in the literature.
    Matched MeSH terms: Oxides
  2. Shah M, Ayob MTM, Rosdan R, Yaakob N, Embong Z, Othman NK
    ScientificWorldJournal, 2020;2020:3989563.
    PMID: 32774180 DOI: 10.1155/2020/3989563
    H2S gas when exposed to metal can be responsible for both general and localized corrosion, which depend on several parameters such as H2S concentration and the corrosion product layer formed. Therefore, the formation of passive film on 316L steel when exposed to H2S environment was investigated using several analysis methods such as FESEM and STEM/EDS analyses, which identified a sulfur species underneath the porous structure of the passive film. X-ray photoelectron spectroscopy analysis demonstrated that the first layer of CrO3 and Cr2O3 was dissolved, accelerated by the presence of H2S-Cl-. An FeS2 layer was formed by incorporation of Fe and sulfide; then, passivation by Mo took place by forming a MoO2 layer. NiO, Ni(OH)2, and NiS barriers are formed as final protection for 316L steel. Therefore, Ni and Mo play an important role as a dual barrier to maintain the stability of 316L steel in high pH2S environments. For safety concern, this paper is aimed to point out a few challenges dealing with high partial pressure of H2S and limitation of 316L steel under highly sour condition for the oil and gas production system.
    Matched MeSH terms: Oxides
  3. Taib MAA, Alias N, Jaafar M, Razak KA, Tan WK, Shahbudin IP, et al.
    Nanotechnology, 2020 Oct 23;31(43):435605.
    PMID: 32640434 DOI: 10.1088/1361-6528/aba3d8
    Arrays of TiO2 nanotubes (TiO2 NTs) with grassy surfaces were observed on titanium foil anodised at 60 V in fluorinated ethylene glycol (EG) with added hydrogen peroxide (H2O2). The grassy surface was generated by the chemical etching and dissolution of the surface of the TiO2 NTs walls, which was accelerated by the temperature increase on the addition of H2O2 . Upon annealing at 600 °C, the grassy part of the TiO2 NTs was found to consist of mostly anatase TiO2 whereas the bottom part of the anodic oxide comprised a mixture of anatase and rutile TiO2. The TiO2 NTs were then used to reduce hexavalent chromium (Cr(VI)) under ultraviolet radiation. They exhibited a rather efficient photocatalytic effect, with 100% removal of Cr(VI) after 30 min of irradiation. The fast removal of Cr(VI) was due to the anatase dominance at the grassy part of the TiO2 NTs as well as the higher surface area the structure may have. This work provides a novel insight into the photocatalytic reduction of Cr(VI) on grassy anatase TiO2 NTs.
    Matched MeSH terms: Oxides
  4. Hisham NAN, Zaid MHM, Aziz SHA, Muhammad FD
    Materials (Basel), 2021 Jan 26;14(3).
    PMID: 33530370 DOI: 10.3390/ma14030570
    Soda lime silica (SLS) waste as the source of silica (SiO2) and ark clamshell (ACS) as the foaming agent has been utilized to fabricate the low-cost and lightweight foam glass-ceramics. A series of 1 and 6 wt% foam glass-ceramics were successfully prepared by the conventional solid-state sintering method at various sintering temperatures for 60 min. The bulk density of the samples has achieved minimum density (1.014 g/cm3) with maximum expansion (62.31%) at 6 wt% of the ACS content sintered at 800 °C for 60 min. The bulk density increases while the linear shrinkage and total porosity decrease with the progression of ACS contents and sintering temperature, where the results correspond with the FESEM micrograph. The result of XRD and FTIR transmittance spectra have shown that the formation of wollastonite crystal has occurred starting at 6 wt% of the ACS content sintered at 800 °C for 30 min. The highest mechanical performance (3.90 MPa) with an average total porosity (8.04%) is observed for the sample containing 1 wt% of ACS. It can be concluded that the composition of foam glass-ceramics (1 and 6 wt%) and sintering temperatures give significant results to the structural, physical, and mechanical properties of the fabricated foam glass-ceramics.
    Matched MeSH terms: Oxides
  5. Bin Rafiq MKS, Amin N, Alharbi HF, Luqman M, Ayob A, Alharthi YS, et al.
    Sci Rep, 2020 Jan 21;10(1):771.
    PMID: 31964954 DOI: 10.1038/s41598-020-57596-5
    Radio frequency (RF) magnetron sputtering was used to deposit tungsten disulfide (WS2) thin films on top of soda lime glass substrates. The deposition power of RF magnetron sputtering varied at 50, 100, 150, 200, and 250 W to investigate the impact on film characteristics and determine the optimized conditions for suitable application in thin-film solar cells. Morphological, structural, and opto-electronic properties of as-grown films were investigated and analyzed for different deposition powers. All the WS2 films exhibited granular morphology and consisted of a rhombohedral phase with a strong preferential orientation toward the (101) crystal plane. Polycrystalline ultra-thin WS2 films with bandgap of 2.2 eV, carrier concentration of 1.01 × 1019 cm-3, and resistivity of 0.135 Ω-cm were successfully achieved at RF deposition power of 200 W. The optimized WS2 thin film was successfully incorporated as a window layer for the first time in CdTe/WS2 solar cell. Initial investigations revealed that the newly incorporated WS2 window layer in CdTe solar cell demonstrated photovoltaic conversion efficiency of 1.2% with Voc of 379 mV, Jsc of 11.5 mA/cm2, and FF of 27.1%. This study paves the way for WS2 thin film as a potential window layer to be used in thin-film solar cells.
    Matched MeSH terms: Oxides
  6. Atarod P, Khlaife E, Aghbashlo M, Tabatabaei M, Hoang AT, Mobli H, et al.
    J Hazard Mater, 2021 04 05;407:124369.
    PMID: 33160782 DOI: 10.1016/j.jhazmat.2020.124369
    This study was set up to model and optimize the performance and emission characteristics of a diesel engine fueled with carbon nanoparticle-dosed water/‎diesel emulsion fuel using a combination of soft computing techniques. Adaptive neuro-fuzzy inference system tuned by particle ‎swarm algorithm was used for modeling the performance and emission parameters of the engine, while optimization of the engine operating parameters and the fuel composition was conducted via multiple-objective particle ‎swarm algorithm. The model input variables were: injection timing (35-41° CA BTDC), engine load (0-100%), nanoparticle dosage (0-150 μM), and water content (0-3 wt%). The model output variables included: brake specific fuel consumption, brake thermal efficiency, as well as carbon monoxide, carbon dioxide, nitrogen oxides, and unburned hydrocarbons emission concentrations. The training and testing of the modeling system were performed on the basis of 60 data patterns obtained from the experimental trials. The effects of input variables on the performance and emission characteristics of the engine were thoroughly analyzed and comprehensively discussed as well. According to the experimental results, injection timing and engine load could significantly affect all the investigated performance and emission parameters. Water and nanoparticle addition to diesel could markedly affect some performance and emission parameters. The modeling system could predict the output parameters with an R2 > 0.93, MSE 
    Matched MeSH terms: Nitrogen Oxides
  7. Nugraha MW, Zainal Abidin NH, Supandi, Sambudi NS
    Chemosphere, 2021 Aug;277:130300.
    PMID: 33774232 DOI: 10.1016/j.chemosphere.2021.130300
    In this present study, the tungsten oxide/amino-functionalized sugarcane bagasse derived-carbon quantum dots (WO3/N-CQDs) composite has successfully been prepared through a simple mixing process. The WO3 was synthesized through a precipitation method, and CQDs were amino-functionalized using ethylenedinitrilotetraacetic acid (EDTA) and ethylenediamine (EDA) through one-pot hydrothermal method. It is revealed that N-CQDs incorporation into WO3 alters the bandgap energy, crystallinity, surface area, and photoluminescence (PL) properties. The produced composites exhibit higher monoclinic WO3 crystallinity, larger surface area, lower bandgap energy and quenched photoluminescence intensity. The as-prepared WO3/N-CQDs composites exhibit better adsorption and photocatalytic degradation performance of methylene blue (MB) than the pristine WO3. It shows that the combination of N-CQDs and WO3 enhanced visible light absorption, by lowering the bandgap energy of WO3 from 2.175 to 1.495 eV. The best performance composite is WO3/N-CQDs EDA 2.5% with an efficiency of 96.86%, removal rate constant of 0.02017/min, and chemical oxidation demand (COD) removal efficiency achieved 84.61%. Moreover, the WO3/N-CQDs EDA 2.5% shows a significant photocatalytic activity even at higher MB initial concentration with 92.93% removal for 50 ppm MB. Subsequently, the composite also has good stability after a sequential 3-times cycle of degradation with 86.85% removal. The increasing photocatalytic performance is affected by the quenching effect of PL and lower bandgap energy. The lower intensity of the PL indicates the reduced charge carrier recombination resulting in increased photocatalytic activity. The combination of N-CQDs and WO3 resulted in improved photodegradation, which shows its significant potential to be utilized for wastewater treatment.
    Matched MeSH terms: Oxides
  8. Hoque MIU, Chowdhury AN, Islam MT, Firoz SH, Luba U, Alowasheeir A, et al.
    J Hazard Mater, 2021 04 15;408:124896.
    PMID: 33387722 DOI: 10.1016/j.jhazmat.2020.124896
    Herein, we report the fabrication of highly oxidized silver oxide/silver/tin(IV) oxide (HOSBTO or Ag3+-enriched AgO/Ag/SnO2) nanocomposite under a robust oxidative environment created with the use of concentrated nitric acid. Tin(IV) hydroxide nanofluid is added to the reaction mixture as a stabilizer for the Ag3+-enriched silver oxide in the nanocomposite. The formation of Ag nanoparticles in this nanocomposite originates from the decomposition of silver oxides during calcination at 600 °C. For comparison, poorly oxidized silver oxide/silver/tin(IV) oxide (POSBTO with formula AgO/Ag/SnO2) nanocomposite has also been prepared by following the same synthetic procedures, except for the use of concentrated nitric acid. Finally, we studied in detail the anti-pathogenic capabilities of both nanocomposites against four hazardous pathogens, including pathogenic fish bacterium (Stenotrophomonas maltophilia stain EP10), oomycete (Phytophthora cactorum strain P-25), and two different strains of pathogenic strawberry fungus, BRSP08 and BRSP09 (Collectotrichum siamense). The bioassays reveal that the as-prepared HOSBTO and POSBTO nanocomposites exhibit significant inhibitory activities against the tested pathogenic bacterium, oomycete, and fungus in a dose-dependent manner. However, the degree of dose-dependent effectiveness of the two nanocomposites against each pathogen largely varies.
    Matched MeSH terms: Oxides
  9. Thoniyot P, Tan MJ, Karim AA, Young DJ, Loh XJ
    Adv Sci (Weinh), 2015 02;2(1-2):1400010.
    PMID: 27980900
    New technologies rely on the development of new materials, and these may simply be the innovative combination of known components. The structural combination of a polymer hydrogel network with a nanoparticle (metals, non-metals, metal oxides, and polymeric moieties) holds the promise of providing superior functionality to the composite material with applications in diverse fields, including catalysis, electronics, bio-sensing, drug delivery, nano-medicine, and environmental remediation. This mixing may result in a synergistic property enhancement of each component: for example, the mechanical strength of the hydrogel and concomitantly decrease aggregation of the nanoparticles. These mutual benefits and the associated potential applications have seen a surge of interest in the past decade from multi-disciplinary research groups. Recent advances in nanoparticle-hydrogel composites are herein reviewed with a focus on their synthesis, design, potential applications, and the inherent challenges accompanying these exciting materials.
    Matched MeSH terms: Oxides
  10. Gnanamoorthy G, Muthukumaran M, Varun Prasath P, Karthikeyan V, Narayanan V, Sagadevan S, et al.
    J Nanosci Nanotechnol, 2020 09 01;20(9):5426-5432.
    PMID: 32331114 DOI: 10.1166/jnn.2020.17814
    Photocatalysts provide excellent potential for the full removal of organic chemical pollutants as an environmentally friendly technology. It has been noted that under UV-visible light irradiation, nanostructured semiconductor metal oxides photocatalysts can degrade different organic pollutants. The Sn6SiO8/rGO nanocomposite was synthesized by a hydrothermal method. The Sn6SiO8 nanoparticles hexagonal phase was confirmed by XRD and functional groups were analyzed by FT-IR spectroscopy. The bandgap of Sn6SiO8 nanoparticles (NPs) and Sn6SiO8/GO composites were found to be 2.7 eV and 2.5 eV, respectively. SEM images of samples showed that the flakes like morphology. This Sn6SiO8/rGO nanocomposite was testing for photocatalytic dye degradation of MG under visible light illumination and excellent response for the catalysts. The enhancement of photocatalytic performance was mainly attributed to the increased light absorption, charge separation efficiency and specific surface area, proved by UV-vis DRS. Further, the radical trapping experiments revealed that holes (h+) and superoxide radicals (·O-₂) were the main active species for the degradation of MG, and a possible photocatalytic mechanism was discussed.
    Matched MeSH terms: Oxides; Superoxides
  11. Ahmed S, Shahid MM, Bakar SA, Arshed N, Basirun WJ, Fouad H
    J Nanosci Nanotechnol, 2020 12 01;20(12):7705-7709.
    PMID: 32711646 DOI: 10.1166/jnn.2020.18570
    Herein, we report the synthesis of SnO, Cu₂O and SnO-Cu₂O mixed oxide thin films on fluorinedoped tin oxide (FTO) substrate by Aerosol-Assisted Chemical Vapour Deposition (AACVD) process using [Cu (dmae)₂(H₂O)] and [Sn (dmae) (OAc)]₂ as molecular precursors for SnO and Cu₂O, respectively at 400 °C. The X-ray diffraction (XRD) pattern can be ascribed to the tetragonal phase of SnO crystals with space group P4 and cubic phase of Cu₂O crystals with space group Pn- 3m/nmm, respectively. The surface morphology characteristics of SnO, Cu₂O and SnO-Cu₂Omixed oxide have been investigated using Field Emission Scanning Electron Microscope (FESEM) which revealed that the SnO was grown homogeneously in cubical shape while Cu₂O possess nano balls shaped morphologies. The UV band gap values of SnO-Cu₂O mixed oxide thin film was found to be 2.6 eV appropriate for photoelectrochemical (PEC) applications. The synthesized material was proposed for PEC applications and has shown enhanced catalytic performance in the presence of light.
    Matched MeSH terms: Oxides
  12. Lai CW, Sreekantan S
    J Nanosci Nanotechnol, 2012 Apr;12(4):3170-4.
    PMID: 22849082
    Well aligned TiO2 nanotubes were successfully synthesized by anodization of Ti foil at 60 V in a fluorinated bath comprised of ethylene glycol with 5 wt% of NH4F and 5 wt% of H2O2. In order to enhance the visible light absorption and photoelectrochemical response of pure TiO2 nanotube arrays, a mixed oxide system (W-TiO2) was investigated. W-TiO2 nanotube arrays were prepared using radio-frequency (RF) sputtering to incorporate the W into the lattice of TiO2 nanotube arrays. The W atoms occupy the substitutional position within the vacancies of TiO2 nanotube arrays. The as-anodized TiO2 is amorphous in nature while the annealed TiO2 is anatase phase. The mixed oxide (W-TiO2) system in suitable TiO2 phase plays important roles in efficient electron transfers due to the reduction in electron-hole recombination. In this article, the effect of the sputtered W into the as-anodized/annealed TiO2 nanotube arrays on the photoelectrochemical response was presented.
    Matched MeSH terms: Oxides
  13. Peck Yen T, Rohasliney H
    Trop Life Sci Res, 2013 Aug;24(1):19-34.
    PMID: 24575239 MyJurnal
    This paper aimed to describe the effects of sand mining on the Kelantan River with respect to physical and chemical parameter analyses. Three replicates of water samples were collected from five stations along the Kelantan River (November 2010 until February 2011). The physical parameters included water temperature, water conductivity, dissolved oxygen (DO), pH, total dissolved solids (TDS), total suspended solids (TSS) and turbidity, whereas the chemical parameters included the concentration of nitrogen nutrients such as ammonia, nitrate and nitrite. The Kelantan River case study revealed that TSS, turbidity and nitrate contents exceed the Malaysian Interim National Water Quality Standard (INWQS) range and are significantly different between Station 1 (KK) and Station 3 (TM). Station 1 has the largest variation of TDS, TSS, turbidity and nitrogen nutrients because of sand mining and upstream logging activities. The extremely high content of TSS and the turbidity have caused poor and stressful conditions for the aquatic life in the Kelantan River.
    Matched MeSH terms: Nitrogen Oxides
  14. Ahmad Saat, Zaini Hamzah, Zaharidah Abu Bakar
    MyJurnal
    Being an imperative material for man either used as building materials, pottery or as components in material industry and technology, knowledge of clays elemental contents is important. In the present study ten clay samples obtained from various locations in North-West Peninsular Malaysia were used. Majority of the clays were economically manufactured to be used as building materials or pottery. The objective of study was to determine the main elemental contents of the samples, and relate the results to the types of minerals, as well as to compare them with clays from other studies. In the study X-ray Fluorescence (XRF) coupled to samples dilution method and standard calibration samples was used. The elements detected in the study were Si, Al, Fe, Ti, K and Ca. Depending on locations, the percentage concentration ranged between 24.8 – 32.4 for Si, 10.8 – 19.0 for Al, 0.09 – 2.12 for Fe, 0.08 – 1.13 for Ti, 0.45 – 3.39 for K and trace amount of Ca and P. However, Mg that normally found in typical clay was not found in the studied samples. Comparing the oxide of the major elements with other studies, it was found that the clay samples contained mixtures of kaolinite (two-layered structure) and illite (three-layered structure).
    Matched MeSH terms: Oxides
  15. Nurlaila Ismail, Mohd Hezri Fazalul Rahiman, Mohd Nasir Taib, Mastura Ibrahim, Seema Zareen, Saiful Nizam Tajuddin
    MyJurnal
    This paper presents the application of Solid Phase Micro Extraction (SPME) coupled with Gas Chromatography - Mass Spectrometry (GC-MS) and Gas Chromatography - Flame Ionization Detector (GC-FID) in characterizing the agarwood incense. The work involved three types of SPME fibres at 30 minute sampling time. The fibres are 50/30 μm divinylbenzene-carboxen-polydimethysiloxane (DVB-CAR-PDMS), 65 μm polydi methylsiloxane-divinylbenzene (PDMS-DVB) and 85 μm carboxen-polydimethyl siloxane (CAR-PDMS). The results showed that among the many compounds extracted by GC-MS coupled with SPME, six compounds were substantially found in high quality agarwood incense due to their high percentage area (%). They are β-maaliene, α-elemol, β-selinene, 10-epi-γ-eudesmol, agarospirol and caryophellene oxide. The finding offers a new approach for establishing the volatile profile of agarwood incense components as well as for agarwood grading and discrimination.
    Matched MeSH terms: Oxides
  16. Zaidan Abdul Wahab, Syaharudin Zaibon, Khamirul Amin Matori, Norfarezah Hanim Edros, Thai, Ming Yeow, Mohd Zul Hilmi Mayzan, et al.
    MyJurnal
    This paper reports an alternative method for making glass-ceramic from disposal waste water
    sludge and soda lime silica (SLS) glass. The glass ceramic samples were prepared from a mixture
    of wastewater sludge and SLS glasses, melted at 1375°C for 3 hours and quenched by pouring into
    water to obtain a coarse frit. The frit glass was then crushed and sieved to 106μm before it was
    pressed to a pellet. The sintering process was performed at various temperatures between 700-
    1000°C for 2 hours and morphologically characterized with XRD, SEM, and EDX. Overall results
    showed the crystalline phase of diopside sodian-critobalite glass-ceramic is depending on thermal
    treatment process and making them attractive to industrial uses such as in construction, tiling, and
    glass-ceramic applications.
    Matched MeSH terms: Oxides
  17. R. Abd-Shukor, W.Y. Lim
    ASM Science Journal, 2013;7(1):18-22.
    MyJurnal
    The electron-phonon coupling constant of the copper oxide-based high temperature superconductors in the van Hove scenario was calculated using three known models and by employing various acoustic data. Three expressions for the transition temperature from the models were used to calculate the constants. All three models assumed a logarithmic singularity in the density of states near the Fermi surface. The calculated electron-phonon coupling constant ranged from 0.06 to 0.28. The constants increased with the transition temperature indicating a strong correlation between electron-phonon coupling and superconductivity in these materials. These values were smaller than the values estimated for the conventional three-dimensional BCS theory. The results were compared with previous reports on direct measurements of electron-phonon coupling constants in the copper oxide based superconductors.
    Matched MeSH terms: Oxides
  18. Tin, Ang Gaik, Mohamad Zailani Abu Bakar, Chen, Cheah Mooi
    MyJurnal
    The present investigation deals with the development of ethanol-vapour-sensing materials coated with the semiconducting oxide TiO2. Thick films of anatase TiO2 were deposited using the sol-gel dip-coating technique on alumina substrates by conventional alkoxide sol and modified sol added with Degussa P-25 as the sensing medium. It was shown that crystallised TiO2 anatase was obtained at the annealing temperature of 500oC. The fabricated TiO2 sensors exhibited highest sensitivity at the sensing temperature of 350 ºC. Sensitivity towards the ethanol vapour was further increased with UV light effect. The enhancement of the sensitivity of the modified catalytic pellet can be explained by the crystallite of anatase TiO2 and the effect of the photocatalytic of TiO2. The high sensitivity of the TiO2 film deposited with modified sol revealed that the modified sol could be a new alternative in the development of a TiO2 ethanol sensor.
    Matched MeSH terms: Oxides
  19. Bakar, M. S. A., Ahmad, S., Muchtar, A., Rahman, H. A .
    MyJurnal
    Solid oxide fuel cells (SOFC) are efficient and clean power generation devices. Lowtemperature
    SOFC (LTSOFC) has been developed since high-temperature SOFC (HTSOFC) is not
    feasible to be commercialized due to cost. Lowering the operation temperature reduces its substantial
    performance resulting from cathode polarization resistance and overpotential of cathode. The
    development of composite cathodes regarding mixed ionic-electronic conductor (MIEC) and ceriabased
    materials for LTSOFC minimizes the problems significantly and leads to an increase in
    electrocatalytic activity for the occurrence of oxygen reduction reaction (ORR). Lanthanum-based
    materials such as lanthanum strontium cobalt ferrite (La0.6Sr0.4Co0.2Fe0.8O3-δ) have been discovered
    recently, which offer great compatibility with ceria-based electrolyte to be applied as composite
    cathode materials for LTSOFC. Cell performance at lower operating temperature can be maintained
    and further improved by enhancing the ORR. This paper reviews recent development of various ceriabased
    composite cathodes especially related to the ceria-carbonate composite electrolytes for
    LTSOFC. The influence of the addition of metallic elements such as silver (Ag), platinum (Pt) and
    palladium (Pd) towards the electrochemical properties and performance of LSCF composite cathodes
    are also discussed.
    Matched MeSH terms: Oxides
  20. Hishamuddin Husain, Abdul Razak Daud, Muhamad Daud, Nadira Kamarudin
    MyJurnal
    Heat treatment was introduced onto the aluminum coated low carbon steel to promote the formation of thin layer of oxide for enhancement of oxidation protection of steel. This process has transformed the existing intermetallic layer formed during hot dip aluminizing process. Experiment was conducted on the low carbon steel substrates with 10mm x 10mm x 2mm dimension. Hot dip aluminizing of low carbon steel was carried out at 750 ºC dipping temperature in a molten pure aluminum for 5 minutes. Aluminized samples were heat treated at 600 ºC, 700 ºC, 800 ºC, and 900 ºC for 1 hour. X-ray Diffraction (XRD), Scanning Electron Microscope (SEM) and EDAX were used in investigation. From the observation, it showed the intermetallic thickness increased with the increase in temperature. The result of EDAX analysis revealed the existence of oxide phase and the intermetallics. The XRD identified the intermetallics as Fe2Al5 and FeAl3.
    Matched MeSH terms: Oxides
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links