Displaying publications 1821 - 1840 of 2186 in total

Abstract:
Sort:
  1. Sainudeen S, Nair VS, Zarbah M, Abdulla AM, Najeeb CM, Ganapathy S
    J Pharm Bioallied Sci, 2020 Aug;12(Suppl 1):S423-S429.
    PMID: 33149499 DOI: 10.4103/jpbs.JPBS_127_20
    Aim: The purpose of this study was to evaluate the antimicrobial efficacy of Tylophora indica, Curcumin longa, and Phyllanthus amarus on Enterococcus faecalis biofilms formed on the tooth substrate. Sodium hypochlorite was used as a positive control. DMSO (dimethyl sulfoxide), the vehicle for the herbal extracts, was used as the negative control.

    Materials and Methods: Extracted human teeth were biomechanically prepared, vertically sectioned, placed in the tissue culture wells exposing the root canal surface to E. faecalis to form a biofilm. At the end of the third week, all groups were treated for 15 min with the test solutions and the control. The results were analyzed both quantitatively and qualitatively.

    Results: Statistical analysis was performed by using one-way analysis of variance and compared by the Mann-Whitney test using the Statistical Package for the Social Sciences (SPSS) software, version 20.0. The qualitative assay with the 3-week biofilm on the canal portion showed complete inhibition of bacterial growth for NaOCl, whereas samples treated with herbal solutions showed significant reduction of bacterial growth compared to control group, which showed 139.9 × 109 CFU/mL among the experimental herbal solutions groups. P. amarus has shown maximum bacterial count followed by C. longa and T. indica.

    Conclusion: NaOCl 5% showed maximum antibacterial activity against 3-week biofilm on tooth substrate. T. indica, P. amarus, and C. longa showed statistically significant antibacterial activity against 3-week biofilm. The use of herbal alternatives might prove to be advantageous considering the several undesirable characteristics of NaOCl.

    Matched MeSH terms: Anti-Bacterial Agents
  2. Takkinsatian P, Silpskulsuk C, Prommalikit O
    Med J Malaysia, 2020 11;75(6):672-676.
    PMID: 33219176
    INTRODUCTION: Salmonella is a common organism, causing intestinal and extraintestinal infections among Thai children, especially infants, and leading to overwhelming antibiotic use.

    MATERIALS AND METHODS: In this retrospective review, data collected during 2006-2015 from the medical charts of patients with evidence of infection, caused by any Salmonella serogroup or clinical form, were examined. We aimed to assess the clinical manifestations, antibiotic susceptibility, and antibiotic use in children with Salmonella gastroenteritis over the ten years' period.

    RESULTS: A total of 419 patients had non-typhoidal Salmonella infection. Four-hundred (95.5%) patients were diagnosed with acute gastroenteritis, which was common in children aged <12 months (72.3%). The clinical features of patients with gastroenteritis included fever (74.5%), diarrhoea with bloody mucus (60.5%), watery diarrhoea (39.5%), and vomiting (19.8%). Serogroup B was most commonly detected in the stool specimens. The susceptibility of non-typhoidal Salmonella to ampicillin, norfloxacin, and co-trimoxazole was 36.3%, 98.0%, and 80.5%, respectively. Serogroup B was the most resistant strain, which was sensitive to ampicillin in only 21.6% of specimens, while it showed high susceptibility to norfloxacin and co-trimoxazole (98.1 and 84.0%, respectively). Third-generation cephalosporin and fluoroquinolone were most commonly prescribed.

    CONCLUSIONS: Acute gastroenteritis is the most common form of Salmonella infection. Gastroenteritis caused by serogroup B is still the most common infection, which mostly occurs among infants under one year of age. The majority of stool specimens were still susceptible to antimicrobial agents, especially fluoroquinolone and cotrimoxazole; however, there was an overuse of antibiotics without proper indications.

    Matched MeSH terms: Anti-Bacterial Agents
  3. Sundaram CS, Kumar JS, Kumar SS, Ramesh PLN, Zin T, Rao USM
    Med J Malaysia, 2020 11;75(6):677-684.
    PMID: 33219177
    INTRODUCTION: Brassica oleracea var acephala was studied for preliminary phytochemical screening. The results showed that the ethanolic crude extract of the leaf contain high phytochemical activity hence B.oleracea var acephala is rich in flavonoids, phenolic compounds, carbohydrates and phytosterols.

    MATERIALS AND METHODS: The ethanolic extract was used to synthesise copper nanoparticles. The copper nanoparticles were successfully synthesised from copper sulphate solution which was identified by the colour change from dark green colour of the extract. Thus the B.oleracea var acephala is a good source to synthesis copper nanoparticles. The synthesised copper nanoparticles were characterised using Scanning Electron Microscope (SEM) analysis. The SEM image displayed the high-density nanoparticles synthesised by leaf extracts and that the nanoparticles were crystals in shape.

    RESULTS: The copper nanoparticles (CNP) bind to the leaf extract. B.oleracea var acephala also has shown the antimicrobial and antioxidant activity. A comparative study was done between ethanolic its crude extract and nanoparticles. Both extracts exhibited zone of inhibition and better antioxidant potential but the CuNPs shows major zone of inhibition and showed more antioxidant activity. Anticancer activity of B.oleracea var acephala against Cervical HeLa cell line was confirmed using ethanolic crude extract and CNP. The results showed that HeLa cells proliferation was inhibited with increasing concentration of ethanolic crude extract and copper nanoparticles. From the results, it was seen that percentage viability of the cancer cells decreased with increased concentration of the samples whereas cytotoxicity against HeLa cell lines increased with the increased concentration of the samples.

    CONCLUSION: Thus B.oleracea var acephala possesses anticancer activity against HeLa cell lines.

    Matched MeSH terms: Anti-Bacterial Agents
  4. De Castro JA, Kesavelu D, Lahiri KR, Chaijitraruch N, Chongsrisawat V, Jog PP, et al.
    PMID: 33110611 DOI: 10.1186/s40794-020-00120-4
    This paper proposes recommendations for probiotics in pediatric gastrointestinal diseases in the Asia-Pacific region. Evidence-based recommendations and randomized controlled trials in the region are included. Cultural aspects, health management issues and economic factors were also considered. Final recommendations were approved by utilizing a modified Delphi process and applying the Likert scale in an electronic voting process. Bacillus clausii was recommended as an adjunct treatment with oral rehydration solution for acute viral diarrhea. B. clausii may also be considered for prevention of antibiotic-associated diarrhea, Clostridium difficile-induced diarrhea, and as adjunct treatment of Helicobacter pylori. There is insufficient evidence for recommendations in other conditions. Despite a diversity of epidemiological, socioeconomical and health system conditions, similar recommendations currently apply to most Asia-Pacific countries. Ideally, these need to be validated with local randomized-controlled trials.
    Matched MeSH terms: Anti-Bacterial Agents
  5. Tey MS, Govindasamy G, Vendargon FM
    J Ophthalmic Inflamm Infect, 2020 Nov 16;10(1):31.
    PMID: 33191467 DOI: 10.1186/s12348-020-00224-0
    BACKGROUND: Cat scratch disease (CSD) is a systemic illness caused by the gram-negative bacillus, Bartonella henselea, which can occasionally involve the ocular structures. The objective of this study is to evaluate the various clinical presentations of ocular bartonellosis at our institution. A retrospective review of the clinical records of 13 patients (23 eyes) with ocular manifestations of Bartonella infections over a 3-year period between January 2016 to December 2018 was undertaken at our institution.

    RESULTS: The diagnosis was made based on clinical findings and in addition, with the support of the evidence of Bartonella hensalae IgG and/or IgM. Small retinal white lesions were the most common ocular findings in this series of patients (82.6% of eyes, 76.9% of patients). Neuroretinitis was the second most common finding (47.8% of eyes, 69.2% of patients), followed by exudative retinal detachment involving the macula (34.8% of eyes, 53.8% of patients) and Parinaud's oculoglandular syndrome (17.4% of eyes, 23.1% of patients). Other findings like isolated optic disc oedema without macular star (8.7% of eyes, 15.4% of patients) and vitritis (4.3% of eyes, 7.7% of patients) were also observed. Ten patients (76.9%) had bilateral ocular involvement. Most of the patients were young, immunocompetent and had systemic symptoms like fever prior to their ocular symptoms. The visual acuity (VA) at initial presentation ranged from 6/6 to hand movement (mean, 6/20), and at final visit 6/6 to 6/60, (mean, 6/9). 91.7% of patients were treated with antibiotics. Only 2 patients received oral corticosteroids together with antibiotics due to very poor vision on presentation. The visual prognosis of ocular bartonellosis is generally good with 16 (88.9%) of 23 eyes having VA of 6/12 or better at final follow-up visit.

    CONCLUSION: Small foci of retinal white lesions were the most common manifestation of ocular bartonellosis in this series, followed by neuroretinitis, though an array of other ocular findings may also occur. Therefore, we should consider bartonella infection as a possible differential diagnosis in those patients.

    Matched MeSH terms: Anti-Bacterial Agents
  6. Rai SK, Sud AD, Kashid M, Gogoi B
    Malays Orthop J, 2020 Nov;14(3):66-72.
    PMID: 33403064 DOI: 10.5704/MOJ.2011.011
    Introduction: Osteosynthesis by plate fixation of humeral shaft fractures as a gold standard for fracture fixation has been proven beyond doubt. However, during conventional anterolateral plating Radial nerve injury may occur which can be avoided by applying plate on the medial flat surface. The aim of this study was to evaluate the results of application of plate on the flat medial surface of humerus rather than the conventional anterolateral surface.

    Materials and Methods: This study was conducted between Oct 2010 to Dec 2015. One-hundred-fifty fracture shafts of the humerus were treated with the anteromedial plating through the anterolateral approach.

    Results: One-hundred-fifty patients with a fracture shaft of the humerus were treated with anteromedial plating. Twenty were female (mean ±SD,28 years±4.5) and 130 were male (mean ± SD, 38 years±5.6). One hundred and forty-eight out of 150 (98.6%) patients achieved union at 12 months. Two of three patients developed a superficial infection, both of which were treated successfully by antibiotics and one developed a deep infection, which was treated by wound debridement, prolonged antibiotics with the removal of the plate and subsequently by delayed plating and bone grafting.

    Conclusion: In the present study, we applied plate on the anteromedial flat surface of humerus using the anterolateral approach. It is an easier and quicker fixation as compared to anterolateral plating because later involved much more dissection than a medial application of the plate and this application of plate on a medial flat surface, does not required Radial nerve exposure and palsy post-operatively. The significant improvement in elbow flexion without brachialis dissection is also a potential benefit of this approach. Based on our results, we recommend the application of an anteromedial plate for treatment of midshaft fractures humerus.

    Matched MeSH terms: Anti-Bacterial Agents
  7. Mukheem A, Shahabuddin S, Akbar N, Anwar A, Sarih NM, Sudesh K, et al.
    Appl Microbiol Biotechnol, 2020 Apr;104(7):3121-3131.
    PMID: 32060693 DOI: 10.1007/s00253-020-10416-2
    Antibiotic resistance in pathogenic bacteria is a major health challenge, as Infectious Diseases Society of America (IDSA) has recognized that the past simply drugs susceptible pathogens are now the most dangerous pathogens due to their nonstop growing resistance towards conventional antibiotics. Therefore, due to the emergence of multi-drug resistance, the bacterial infections have become a serious global problem. Acute infections feasibly develop into chronic infections because of many factors; one of them is the failure of effectiveness of antibiotics against superbugs. Modern research of two-dimensional nanoparticles and biopolymers are of great interest to attain the intricate bactericidal activity. In this study, we fabricated an antibacterial nanocomposite consisting of representative two-dimensional molybdenum disulfide (2D MoS2) nanoparticles. Polyhydroxyalkanoate (PHA) and chitosan (Ch) are used to encapsulate MoS2 nanoparticles into their matrix. This study reports the in vitro antibacterial activity and host cytotoxicity of novel PHA-Ch/MoS2 nanocomposites. PHA-Ch/MoS2 nanocomposites were subjected to time-dependent antibacterial assays at various doses to examine their antibacterial activity against multi-drug-resistant Escherichia coli K1 (Malaysian Type Culture Collection 710859) and methicillin-resistant Staphylococcus aureus (MRSA) (Malaysian Type Culture Collection 381123). Furthermore, the cytotoxicity of nanocomposites was examined against spontaneously immortalized human keratinocyte (HaCaT) cell lines. The results indicated significant antibacterial activity (p value
    Matched MeSH terms: Anti-Bacterial Agents
  8. Tagiling N, Mohd-Rohani MF, Wan-Sohaimi WF, Faisham WI, Nawi NM
    Malays Orthop J, 2020 Nov;14(3):188-193.
    PMID: 33403085 DOI: 10.5704/MOJ.2011.032
    Megaprosthesis is used to restore the form and function of massive skeletal defects, but it is accompanied by risks of failure, mainly due to perimegaprosthetic infection (PMI). In practice, the diagnosis of infected megaprosthesis among patients with a high index of clinical suspicion, elevated serological markers, and multiple negative or inconclusive imaging can be very challenging and poses a diagnostic conundrum to many orthopaedic surgeons. We present the case of a symptomatic 26-year-old female with large B-cell lymphoma who developed cellulitis with suspected complication of PMI 15 months post-implantation. The combination of advanced nuclear medicine imaging strategies, i.e., 99mTc-besilesomab/99mTc-sulfur colloid scintigraphy with hybrid single-photon emission computed tomography/computed tomography (SPECT/CT) scanning helps to characterise and delineate both infections. Invasive procedures such as joint aspiration and biopsy were avoided, and the patient was successfully treated with antibiotics. Hence, we report a case where advanced imaging modalities were decisive in the investigation of PMI.
    Matched MeSH terms: Anti-Bacterial Agents
  9. Tham DWJ, Abubakar U, Tangiisuran B
    Eur J Pediatr, 2020 May;179(5):743-748.
    PMID: 31900590 DOI: 10.1007/s00431-019-03560-z
    Inappropriate use of antibiotics in human and animal is one of the causes of antimicrobial resistance. This study evaluates the prevalence and predictors of antibiotic use among pediatric patients visiting the Emergency Department (ED) in Malaysia. A retrospective cross-sectional study was conducted in the ED of a tertiary hospital. Data of children aged 2 to 11 years who visited the ED from January-May 2015 were extracted from the patient's assessment forms. A total of 549 children were included in the analysis (median age 5 years) of which 54.3% were boys. Upper respiratory tract infections (URTI) were the most common diagnosis. Antibiotic was prescribed in 43.5% of the children. Children who visited the ED during the weekend (OR, 1.65; 95% confidence interval (CI) 1.13-2.40, P = 0.009), those diagnosed with URTI (OR 3.81; 95% CI, 2.45-5.93, P 
    Matched MeSH terms: Anti-Bacterial Agents
  10. Jhajharia K, Parolia A, Shetty KV, Mehta LK
    J Int Soc Prev Community Dent, 2015 Jan-Feb;5(1):1-12.
    PMID: 25767760 DOI: 10.4103/2231-0762.151956
    Endodontic disease is a biofilm-mediated infection, and primary aim in the management of endodontic disease is the elimination of bacterial biofilm from the root canal system. The most common endodontic infection is caused by the surface-associated growth of microorganisms. It is important to apply the biofilm concept to endodontic microbiology to understand the pathogenic potential of the root canal microbiota as well as to form the basis for new approaches for disinfection. It is foremost to understand how the biofilm formed by root canal bacteria resists endodontic treatment measures. Bacterial etiology has been confirmed for common oral diseases such as caries and periodontal and endodontic infections. Bacteria causing these diseases are organized in biofilm structures, which are complex microbial communities composed of a great variety of bacteria with different ecological requirements and pathogenic potential. The biofilm community not only gives bacteria effective protection against the host's defense system but also makes them more resistant to a variety of disinfecting agents used as oral hygiene products or in the treatment of infections. Successful treatment of these diseases depends on biofilm removal as well as effective killing of biofilm bacteria. So, the fundamental to maintain oral health and prevent dental caries, gingivitis, and periodontitis is to control the oral biofilms. From these aspects, the formation of biofilms carries particular clinical significance because not only host defense mechanisms but also therapeutic efforts including chemical and mechanical antimicrobial treatment measures have the most difficult task of dealing with organisms that are gathered in a biofilm. The aim of this article was to review the mechanisms of biofilms' formation, their roles in pulpal and periapical pathosis, the different types of biofilms, the factors influencing biofilm formation, the mechanisms of their antimicrobial resistance, techniques to identify biofilms.
    Matched MeSH terms: Anti-Bacterial Agents
  11. Harun NH, Mydin RBSMN, Sreekantan S, Saharudin KA, Basiron N, Seeni A
    J Biomater Sci Polym Ed, 2020 10;31(14):1757-1769.
    PMID: 32498665 DOI: 10.1080/09205063.2020.1775759
    The emerging polymer nanocomposites have received industrial interests in diverse fields because of their added value in metal oxide-based nanocomposites, such as titanium (TiO2) and zinc oxide (ZnO). Linear low-density polyethylene (LLDPE)-based polymer has recently generated a huge market in the healthcare industry. TiO2 and ZnO are well known for their instant photocatalytic killing of hospital-acquired infections, especially multidrug-resistant (MDR) pathogens. This study investigated the actions of LLDPE/TiO2/ZnO (1:3) nanocomposites in different weight% against two representative MDR pathogens, namely, methicillin-resistant Staphylococcus aureus (MRSA) and Klebsiella pneumonia (K.pneumoniae). Antibacterial activities were quantified according to international standard guidelines of CLSI MO2-A11 (static condition) and ASTM E-2149 (dynamic condition). Preliminary observation via a scanning electron microscope revealed that LLDPE matrix with TiO2/ZnO nanocomposites changed the bacterial morphology and reduced the bacterial adherence and biofilm formation. Furthermore, a high ZnO weight ratio killed both types of pathogens. The bactericidal potential of the nanocomposite is highlighted by the enhancements in photocatalytic activity, zinc ion release and reactive species, and bacteriostatic/bactericidal activity against bacterial growth. This study provides new insights into the MDR-bactericidal potential of LLDPE with TiO2/ZnO nanocomposites for targeted healthcare applications.
    Matched MeSH terms: Anti-Bacterial Agents
  12. Teng TS, Ishak NL, Subha ST, Bakar SA
    EXCLI J, 2019;18:223-228.
    PMID: 31217785 DOI: 10.17179/excli2018-1971
    CSF leak in penetrating skull base injury is relatively rare compared to close head injury involving skull base fracture. We report a 5-year-old boy presented with epistaxis and impacted pencil into the left nostril. The child was hemodynamically stable without any neurological deficit. Intraoperatively, there was a nasal septal defect posteriorly with anterior skull base fracture associated with CSF leak. The pencil was removed from the left nostril and the CSF leak was repaired using harvested abdominal fat under the same setting. Computed Tomography (CT) of the brain showed right cribriform plate fracture with small pneumocranium. Postoperatively, a prophylactic antibiotic was given for seven days and he was discharged well. Subsequent clinic visits up to one-year postoperative period showed no recurrence of the CSF leak. History taking, physical examination and CT imaging give valuable diagnostic values in managing the penetrating skull base injury. Early intervention for removal of the foreign body and repair of the CSF leak is advocated to prevent catastrophic complication.
    Matched MeSH terms: Anti-Bacterial Agents
  13. Choo, Sulin, Chew, Boon How, Amilia Afzan Mohd. Jamil, Chew, Shu Yih, Hadiza Umar Meleh, Leslie Than Thian Lung
    MyJurnal
    Lactobacilli are well-documented probiotics that exert health benefits on their host. They exhibit characteristics that make them potential alternative treatments to address the antimicrobial resistance conundrum and diseases. Their mechanism of action varies with strain and species. Five lactobacilli strains previously isolated from the anogenital region were subjected to several assessments highlighted in the FAO/WHO document, ‘Guidelines for the Evaluation of Probiotics in Food’ to determine its suitability as potential probiotics. Methods: The five lactobacilli strains were subcultured onto Man de Rogosa agar (MRS). Their ability to auto- and co-aggregate was determined spectrophotometrically. Simultaneously, the cell surface hydrophobic properties of these strains towards xylene and toluene were evaluated using the microbial adhesion to hydrocarbon (MATH) test. The lactobacilli strains were also tested for their ability to withstand acid, bile and spermicide to determine their level of tolerance. Results: Lact. reuteri 29A, L. delbrueckii 45E and L. reuteri 29B exhibited the highest degree of auto- and co-aggregation properties. These lactobacilli strains also demonstrated high cell surface hydrophobicity, with the exception of L. delbrueckii 45E. Further tests to evaluate the isolated lactobacilli tolerance identified L. reuteri 29B as the most tolerant strain towards low pH (pH 2.5 for 4 h), high bile concentration (0.5% for 4 h) and high spermicides concentration (up to 10%). Conclusion: Out of the five lactobacilli strains which possessed high antimicrobial activities, L. reuteri 29B portrayed the best probiotic qualities with good auto- and co-aggregation abilities and high tolerance against acid, bile and spermicide.
    Matched MeSH terms: Anti-Bacterial Agents
  14. Yap WF, Tay V, Tan SH, Yow YY, Chew J
    Antibiotics (Basel), 2019 Sep 17;8(3).
    PMID: 31533237 DOI: 10.3390/antibiotics8030152
    Seaweeds are gaining a considerable amount of attention for their antioxidant and antibacterial properties. Caulerpa racemosa and Caulerpa lentillifera, also known as 'sea grapes', are green seaweeds commonly found in different parts of the world, but the antioxidant and antibacterial potentials of Malaysian C. racemosa and C. lentillifera have not been thoroughly explored. In this study, crude extracts of the seaweeds were prepared using chloroform, methanol, and water. Total phenolic content (TPC) and total flavonoid content (TFC) were measured, followed by in vitro antioxidant activity determination using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. Antibacterial activities of these extracts were tested against Methicillin-resistant Staphylococcus aureus (MRSA) and neuropathogenic Escherichia coli K1. Liquid chromatography-mass spectrometry (LCMS) analysis was then used to determine the possible compounds present in the extract with the most potent antioxidant and antibacterial activity. Results showed that C. racemosa chloroform extract had the highest TPC (13.41 ± 0.86 mg GAE/g), antioxidant effect (EC50 at 0.65 ± 0.03 mg/mL), and the strongest antibacterial effect (97.7 ± 0.30%) against MRSA. LCMS analysis proposed that the chloroform extracts of C. racemosa are mainly polyunsaturated and monounsaturated fatty acids, terpenes, and alkaloids. In conclusion, C. racemosa can be a great source of novel antioxidant and antibacterial agents, but isolation and purification of the bioactive compounds are needed to study their mechanism of action.
    Matched MeSH terms: Anti-Bacterial Agents
  15. Ghani Siti-Ilyana, Koh, Yi-Ni, Embong Zunaina
    MyJurnal
    Toxoplasmic optic neuropathy is rare and usually occurs monoocularly. This case report demonstrates a rare presentation of bilateral
    juxtapapillary retinochoroiditis (Jensen disease) due to toxoplasma infection in
    a young healthy patient. A 20-year-old lady presented with bilateral painless
    blurring of central vision for 5 days duration. It was preceded by fever, upper
    respiratory tract symptoms and headache. There was no history of contact or
    being scratched by a cat. Visual acuity was counting fingers for the right eye
    and 6/45 for the left eye. There was presence of relative afferent pupillary
    defect in the right eye. Optic nerve functions were impaired bilaterally which
    was severe in the right eye. Both eyes showed the presence of mild anterior
    segment inflammation and vitritis. Fundus examination revealed juxtapapillary
    retinochoroiditis bilaterally with swollen optic disc. Optical coherence
    tomography (OCT) showed presence of intra-retinal and sub-retinal fluid at
    macular area bilaterally. Serology for anti-toxoplasma Immunoglobulin G (IgG)
    was positive with titre of 1450 IU/ml. Computed tomography scan (CT scan) of
    brain and orbit was normal. A diagnosis of bilateral juxtapapillary
    retinochoroiditis or Jensen disease was made. Oral azithromycin 500 mg daily
    and guttae prednisolone 4 hourly for 6 weeks was commenced. Oral
    prednisolone 50 mg daily (1 mg/kg/day) was added after completion of 1 week
    of antibiotic and was tapered down within 5 weeks. There was improvement of
    vision as early as 3 weeks post initiation of the treatment. Upon 6 weeks
    completing the treatment, her vision has improved to 6/7.5 on both eyes with
    resolution of optic disc swelling and sub-retinal fluid. Early recognition and
    initiation of treatment in toxoplasma infection associated with juxtapapillary
    retinochoroiditis usually result in good visual prognosis.
    Matched MeSH terms: Anti-Bacterial Agents
  16. Yan Q, Li X, Ma B, Zou Y, Wang Y, Liao X, et al.
    Front Microbiol, 2018;9:3129.
    PMID: 30619199 DOI: 10.3389/fmicb.2018.03129
    Antibiotic residues that enter the soil through swine manure could disturb the number, community structure and functions of microbiota which could also degrade antibiotics in soil. Five different concentrations of doxycycline (DOX) incorporated into swine manure were added to soil to explore the effects of DOX on microbiota in soil and degradation itself. The results showed that the soil microbiome evolved an adaptation to the soil containing DOX by generating resistance genes. Moreover, some of the organisms within the soil microbiome played crucial roles in the degradation of DOX. The average degradation half-life of DOX in non-sterile groups was 13.85 ± 0.45 days, which was significantly shorter than the 29.26 ± 0.98 days in the group with sterilized soil (P < 0.01), indicating that the soil microbiome promoted DOX degradation. DOX addition affected the number of tetracycline resistance genes, depending on the type of gene and the DOX concentration. Among these genes, tetA, tetM, tetW, and tetX had significantly higher copy numbers when the concentration of DOX was higher. In contrast, a lower concentration of DOX had an inhibitory effect on tetG. At the same time, the microbial compositions were affected by the initial concentration of DOX and the different experimental periods. The soil chemical indicators also affected the microbial diversity changes, mainly because some microorganisms could survive in adversity and become dominant bacterial groups, such as the genera Vagococcus and Enterococcus (which were associated with electrical conductivity) and Caldicoprobacter spp. (which were positively correlated with pH). Our study mainly revealed soil microbiota and DOX degradation answered differently under variable concentrations of DOX mixed with swine manure in soil.
    Matched MeSH terms: Anti-Bacterial Agents
  17. Sadiq MA, Hassan L, Aziz SA, Zakaria Z, Musa HI, Amin MM
    Vet World, 2018 Nov;11(10):1404-1408.
    PMID: 30532493 DOI: 10.14202/vetworld.2018.1404-1408
    Background: Melioidosis is a fatal emerging infectious disease of both man and animal caused by bacteria Burkholderia pseudomallei. Variations were suggested to have existed among the different B. pseudomallei clinical strains/genotypes which may implicate bacterial susceptibility and resistance toward antibiotics.

    Aim: This study was designed to determine whether the phenotypic antibiotic resistance pattern of B. pseudomallei is associated with the source of isolates and the genotype.

    Materials and Methods: A collection of 111 B. pseudomallei isolates from veterinary cases of melioidosis and the environments (soil and water) were obtained from stock cultures of previous studies and were phylogenetically characterized by multilocus sequence typing (ST). The susceptibility to five antibiotics, namely meropenem (MEM), imipenem, ceftazidime (CAZ), cotrimoxazole (SXT), and co-amoxiclav (AMC), recommended in both acute and eradication phases of melioidosis treatment were tested using minimum inhibitory concentration antibiotics susceptibility test.

    Results: Majority of isolates were susceptible to all antibiotics tested while few resistant strains to MEM, SXT, CAZ, and AMC were observed. Statistically significant association was found between resistance to MEM and the veterinary clinical isolates (p<0.05). The likelihood of resistance to MEM was significantly higher among the novel ST 1130 isolates found in veterinary cases as compared to others.

    Conclusion: The resistance to MEM and SXT appeared to be higher among veterinary isolates, and the novel ST 1130 was more likely to be resistant to MEM as compared to others.

    Matched MeSH terms: Anti-Bacterial Agents
  18. Arushothy R, Ahmad N, Amran F, Hashim R, Samsudin N, Azih CRC
    Int J Infect Dis, 2019 Mar;80:129-133.
    PMID: 30572022 DOI: 10.1016/j.ijid.2018.12.009
    OBJECTIVE: This study was performed to analyze the serotype distribution of Streptococcus pneumoniae causing invasive pneumococcal disease (IPD) in children aged 5 years and under in Malaysia and to assess the antimicrobial resistance.

    METHODS: From 2014 to 2017, a total of 245 invasive S. pneumoniae isolates from children ≤5 years of age were received from hospitals all around Malaysia. All isolates were identified and subjected to serotyping and antimicrobial susceptibility testing.

    RESULTS: Of the 245 isolates, 117 (48.0%) were from children aged <1year, 46 (19.05%) were from children aged 1-2 years, and 82 (33.0%) were from children aged 2-5 years. The most common serotypes were 14 (26.9%), 6B (19.6%), 19A (11.8%), 6A (10.6%), and 19F (6.9%) and vaccine coverage was 88.2% for PCV13, 64.1% for PCV10, and 63.3% for PCV7. Resistance to penicillin was 0.2% for non-meningitis cases and 22.2% for meningitis cases; erythromycin resistance was reported in 42.9%, co-trimoxazole in 35.9%, and tetracycline in 42.9%.

    CONCLUSIONS: Serotypes 14, 6B, 19A, 6A, and 19F were the most common serotypes isolated from children with IPD in Malaysia during this pre-vaccination era. The lack of reports on the serotype distribution has limited action for the implementation of PCV in the national immunization programme (NIP). The information from this study may benefit future policies for the introduction of PCV in the Malaysian NIP and ultimately may reduce the morbidity and mortality among children in Malaysia.

    Matched MeSH terms: Anti-Bacterial Agents
  19. Tahlan S, Ramasamy K, Lim SM, Shah SAA, Mani V, Narasimhan B
    Chem Cent J, 2018 Dec 19;12(1):139.
    PMID: 30569392 DOI: 10.1186/s13065-018-0513-3
    BACKGROUND: The emergence of bacterial resistance is a major public health problem. It is essential to develop and synthesize new therapeutic agents with better activity. The mode of actions of certain newly developed antimicrobial agents, however, exhibited very limited effect in treating life threatening systemic infections. Therefore, the advancement of multi-potent and efficient antimicrobial agents is crucial to overcome the increased multi-drug resistance of bacteria and fungi. Cancer, which remains as one of the primary causes of deaths and is commonly treated by chemotherapeutic agents, is also in need of novel and efficacious agents to treat resistant cases. As such, a sequence of novel substituted benzamides was designed, synthesized and evaluated for their antimicrobial and anticancer activities.

    METHODOLOGY: All synthesized compounds were characterized by IR, NMR, Mass and elemental analysis followed by in vitro antimicrobial studies against Gram-positive (Staphylococcus aureus), Gram-negative (Salmonella typhi and Klebsiella pneumoniae) bacterial and fungal (Candida albicans and Aspergillus niger) strains by the tube dilution method. The in vitro anticancer evaluation was carried out against the human colorectal carcinoma cell line (HCT116), using the Sulforhodamine B assay.

    RESULTS, DISCUSSION AND CONCLUSION: Compound W6 (MICsa, st, kp = 5.19 µM) emerged as a significant antibacterial agent against all tested bacterial strains i.e. Gram-positive (S. aureus), Gram-negative (S. typhi, K. pneumoniae) while compound W1 (MICca, an = 5.08 µM) was most potent against fungal strains (A. niger and C. albicans) and comparable to fluconazole (MIC = 8.16 µM). The anticancer screening demonstrated that compound W17 (IC50 = 4.12 µM) was most potent amongst the synthesized  compounds and also more potent than the standard drug 5-FU (IC50 = 7.69 µM).

    Matched MeSH terms: Anti-Bacterial Agents
  20. Hasan HA, Abdulmalek E, Rahman MBA, Shaari KB, Yamin BM, Chan KW
    Chem Cent J, 2018 Dec 20;12(1):145.
    PMID: 30570683 DOI: 10.1186/s13065-018-0509-z
    BACKGROUND: Although the development of antibiotic and antioxidant manufacturing, the problem of bacterial resistance and food and/or cosmetics oxidation still needs more efforts to design new derivatives which can help to minimize these troubles. Benzimidazo[1,2-c]quinazolines are nitrogen-rich heterocyclic compounds that possess many pharmaceutical properties such as antimicrobial, anticonvulsant, immunoenhancer, and anticancer.

    RESULTS: A comparative study between two methods, (microwave-assisted and conventional heating approaches), was performed to synthesise a new quinazoline derivative from 2-(2-aminophenyl)-1H-benzimidazole and octanal to produce 6-heptyl-5,6-dihydrobenzo[4,5]imidazo[1,2-c]quinazoline (OCT). The compound was characterised using FTIR, 1H and 13C NMR, DIMS, as well as X-ray crystallography. The most significant peak in the 13C NMR spectrum is C-7 at 65.5 ppm which confirms the cyclisation process. Crystal structure analysis revealed that the molecule grows in the monoclinic crystal system P21/n space group and stabilised by an intermolecular hydrogen bond between the N1-H1A…N3 atoms. The crystal packing analysis showed that the molecule adopts zig-zag one dimensional chains. Fluorescence study of OCT revealed that it produces blue light when expose to UV-light and its' quantum yield equal to 26%. Antioxidant activity, which included DPPH· and ABTS·+ assays was also performed and statistical analysis was achieved via a paired T-test using Minitab 16 software with P 

    Matched MeSH terms: Anti-Bacterial Agents
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links