Displaying publications 1 - 20 of 24 in total

Abstract:
Sort:
  1. Al-Ghaili, Abbas M., Syamsiah Mashohor, Abdul Rahman Ramli, Alyani Ismail
    MyJurnal
    Recently, license plate detection has been used in many applications especially in transportation systems. Many methods have been proposed in order to detect license plates, but most of them work under restricted conditions such as fixed illumination, stationary background, and high resolution images. License plate detection plays an important role in car license plate recognition systems because it affects the accuracy and processing time of the system. This work aims to build a Car License Plate Detection (CLPD) system at a lower cost of its hardware devices and with less complexity of algorithms’ design, and then compare its performance with the local CAR Plate Extraction Technology (CARPET). As Malaysian plates have special design and they differ from other international plates, this work tries to compare two likely-design methods. The images are taken using a web camera for both the systems. One of the most important contributions in this paper is that the proposed CLPD method uses Vertical Edge Detection Algorithm (VEDA) to extract the vertical edges of plates. The proposed CLPD method can work to detect the region of car license plates. The method shows the total time of processing one 352x288 image is 47.7 ms, and it meets the requirement of real time processing. Under the experiment datasets, which were taken from real scenes, 579 out of 643 images were successfully detected. Meanwhile, the average accuracy of locating car license plate was 90%. In this work, a comparison between CARPET and the proposed CLPD method for the same tested images was done in terms of detection rate and efficiency. The results indicated that the detection rate was 92% and 84% for the CLPD method and CARPET, respectively. The results also showed that the CLPD method could work using dark images to detect license plates, whereas CARPET had failed to do so.
  2. Abbas M, Abd Majid A, Ali JM
    ScientificWorldJournal, 2014;2014:391568.
    PMID: 24757421 DOI: 10.1155/2014/391568
    We present the smooth and visually pleasant display of 2D data when it is convex, which is contribution towards the improvements over existing methods. This improvement can be used to get the more accurate results. An attempt has been made in order to develop the local convexity-preserving interpolant for convex data using C(2) rational cubic spline. It involves three families of shape parameters in its representation. Data dependent sufficient constraints are imposed on single shape parameter to conserve the inherited shape feature of data. Remaining two of these shape parameters are used for the modification of convex curve to get a visually pleasing curve according to industrial demand. The scheme is tested through several numerical examples, showing that the scheme is local, computationally economical, and visually pleasing.
  3. Pit S, Jamal F, Cheah FK, Abbas MA
    Ann Saudi Med, 1991 Jul;11(4):424-8.
    PMID: 17590760
    Forty cases of cerebral abscesses were studied prospectively to establish the microbial agents implicated in these cases. Chronic otitis media (14 patients, 35%), congenital heart disease (five patients, 12.5%),a and meningitis (five patients, 12.5%) were among the important predisposing factors. Streptococcus (14 patients, 35%) was the most common causative pre-isolated, the predominant species being Streptococcus milleri (11 patients, 27.5%). Other organisms isolated included Proteus mirabilis in six patients (15%) and Staphylococcus aureus in five patients (12.5%). Anaerobes (12 patients, 30%), predominantly Bacteroides sp. (eight patients, 20%), played an important role in these cases, the majority of which were isolated in mixed cultures. Gas-liquid chromatographic analysis of pus detected the presence of anaerobes in another 11 cases of cerebral abscess, in which cultures of anaerobes were negative. Therefore, gas-liquid chromotography is useful as an adjunct to conventional bacteriological methods in providing a rapid and sensitive means of detecting anaerobes in pus obtained especially from patients who had received antibiotic therapy prior to hospitalization.
  4. Mat Zin S, Abbas M, Majid AA, Ismail AI
    PLoS One, 2014;9(5):e95774.
    PMID: 24796483 DOI: 10.1371/journal.pone.0095774
    The generalized nonlinear Klien-Gordon equation plays an important role in quantum mechanics. In this paper, a new three-time level implicit approach based on cubic trigonometric B-spline is presented for the approximate solution of this equation with Dirichlet boundary conditions. The usual finite difference approach is used to discretize the time derivative while cubic trigonometric B-spline is applied as an interpolating function in the space dimension. Several examples are discussed to exhibit the feasibility and capability of the approach. The absolute errors and L∞ error norms are also computed at different times to assess the performance of the proposed approach and the results were found to be in good agreement with known solutions and with existing schemes in literature.
  5. Abbas M, Majid AA, Md Ismail AI, Rashid A
    PLoS One, 2014;9(1):e83265.
    PMID: 24427270 DOI: 10.1371/journal.pone.0083265
    In this paper, a numerical method for the solution of a strongly coupled reaction-diffusion system, with suitable initial and Neumann boundary conditions, by using cubic B-spline collocation scheme on a uniform grid is presented. The scheme is based on the usual finite difference scheme to discretize the time derivative while cubic B-spline is used as an interpolation function in the space dimension. The scheme is shown to be unconditionally stable using the von Neumann method. The accuracy of the proposed scheme is demonstrated by applying it on a test problem. The performance of this scheme is shown by computing L∞ and L2 error norms for different time levels. The numerical results are found to be in good agreement with known exact solutions.
  6. Abbas M, Alkaff M, Jilani A, Alsehli H, Damiati L, Kotb M, et al.
    Tissue Eng Regen Med, 2018 Oct;15(5):661-671.
    PMID: 30603587 DOI: 10.1007/s13770-018-0131-0
    BACKGROUND: Mesenchymal stem cells (MSCs) and/or biological scaffolds have been used to regenerate articular cartilage with variable success. In the present study we evaluated cartilage regeneration using a combination of bone marrow (BM)-MSCs, HyalofastTM and/or native cartilage tissue following full thickness surgical cartilage defect in rabbits.

    METHODS: Full-thickness surgical ablation of the medial-tibial cartilage was performed in New Zealand white (NZW) rabbits. Control rabbits (Group-I) received no treatment; Animals in other groups were treated as follows. Group-II: BM-MSCs (1 × 106 cells) + HyalofastTM; Group-III: BMMSCs (1 × 106 cells) + cartilage pellet (CP); and Group-IV: BM-MSCs (1 × 106 cells) + HyalofastTM + CP. Animals were sacrificed at 12 weeks and cartilage regeneration analyzed using histopathology, International Cartilage Repair Society (ICRS-II) score, magnetic resonance observation of cartilage repair tissue (MOCART) score and biomechanical studies.

    RESULTS: Gross images showed good tissue repair (Groups IV > III > Group II) and histology demonstrated intact superficial layer, normal chondrocyte arrangement, tidemark and cartilage matrix staining (Groups III and IV) compared to the untreated control (Group I) respectively. ICRS-II score was 52.5, 65.0, 66 and 75% (Groups I-IV) and the MOCART score was 50.0, 73.75 and 76.25 (Groups II-IV) respectively. Biomechanical properties of the regenerated cartilage tissue in Group IV closed resembled that of a normal cartilage.

    CONCLUSION: HyalofastTM together with BM-MSCs and CP led to efficient cartilage regeneration following full thickness surgical ablation of tibial articular cartilage in vivo in rabbits. Presence of hyaluronic acid in the scaffold and native microenvironment cues probably facilitated differentiation and integration of BM-MSCs.

  7. Bashir MA, Khan A, Shah SI, Ullah M, Khuda F, Abbas M, et al.
    Drug Des Devel Ther, 2023;17:261-272.
    PMID: 36726738 DOI: 10.2147/DDDT.S377686
    BACKGROUND: Self-emulsifying drug-delivery systems (SEDDSs) are designed to improve the oral bioavailability of poorly water-soluble drugs. This study aimed at formulating and characterization of SEDDS-based tablets for simvastatin using castor and olive oils as solvents and Tween 60 as surfactant.

    METHODS: The liquids were adsorbed on microcrystalline cellulose, and all developed formulations were compressed using 10.5 mm shallow concave round punches.

    RESULTS: The resulting tablets were evaluated for different quality-control parameters at pre- and postcompression levels. Simvastatin showed better solubility in a mixture of oils and Tween 60 (10:1). All the developed formulations showed lower self-emulsification time (˂200 seconds) and higher cloud point (˃60°C). They were free of physical defects and had drug content within the acceptable range (98.5%-101%). The crushing strength of all formulations was in the range of 58-96 N, and the results of the friability test were within the range of USP (≤1). Disintegration time was within the official limits (NMT 15 min), and complete drug release was achieved within 30 min.

    CONCLUSION: Using commonly available excipients and machinery, SEDDS-based tablets with better dissolution profile and bioavailability can be prepared by direct compression. These S-SEDDSs could be a better alternative to conventional tablets of simvastatin.

  8. Abbas M, Aslam S, Abdullah FA, Riaz MB, Gepreel KA
    Heliyon, 2023 Sep;9(9):e19307.
    PMID: 37810099 DOI: 10.1016/j.heliyon.2023.e19307
    Spline curves are very prominent in the mathematics due to their simple construction, accuracy of assessment and ability to approximate complicated structures into interactive curved designs. A spline is a smooth piece-wise polynomial function. The primary goal of this study is to use extended cubic B-spline (ExCuBS) functions with a new second order derivative approximation to obtain the numerical solution of the weakly singular kernel (SK) non-linear fractional partial integro-differential equation (FPIDE). The spatial and temporal fractional derivatives are discretized by ExCuBS and the Caputo finite difference scheme, respectively. The present study found that it is stable and convergent. The validity of the current approach is examined on a few test problems, and the obtained outcomes are compared with those that have previously been reported in the literature.
  9. Mahmood A, Srivastava HM, Abbas M, Abdullah FA, Othman Mohammed P, Baleanu D, et al.
    Heliyon, 2023 Oct;9(10):e20852.
    PMID: 37916109 DOI: 10.1016/j.heliyon.2023.e20852
    The analytical soliton solutions place a lot of value on birefringent fibres. The major goal of this study is to generate novel forms of soliton solutions for the Radhakrishnan-Kundu-Lakshmanan equation, which depicts unstable optical solitons that arise from optical propagations using birefringent fibres. The (presumably new) extended direct algebraic (EDA) technique is used here to extract a large number of solutions for RKLE. It gives soliton solutions up to thirty-seven, which essentially correspond to all soliton families. This method's ability to determine many sorts of solutions through a single process is one of its key advantages. Additionally, it is simple to infer that the technique employed in this study is really straightforward yet one of the quite effective approaches to solving nonlinear partial differential equations so, this novel extended direct algebraic (EDA) technique may be regarded as a comprehensive procedure. The resulting solutions are found to be hyperbolic, periodic, trigonometric, bright and dark, combined bright-dark, and W-shaped soliton, and these solutions are visually represented by means of 2D, 3D, and density plots. The present study can be extended to investigate several other nonlinear systems to understand the physical insights of the optical propagations through birefringent fibre.
  10. Yousaf MZ, Abbas M, Nazir T, Abdullah FA, Birhanu A, Emadifar H
    Sci Rep, 2024 Mar 17;14(1):6410.
    PMID: 38494490 DOI: 10.1038/s41598-024-55786-z
    The present research investigates the double-chain deoxyribonucleic acid model, which is important for the transfer and retention of genetic material in biological domains. This model is composed of two lengthy uniformly elastic filaments, that stand in for a pair of polynucleotide chains of the deoxyribonucleic acid molecule joined by hydrogen bonds among the bottom combination, demonstrating the hydrogen bonds formed within the chain's base pairs. The modified extended Fan sub equation method effectively used to explain the exact travelling wave solutions for the double-chain deoxyribonucleic acid model. Compared to the earlier, now in use methods, the previously described modified extended Fan sub equation method provide more innovative, comprehensive solutions and are relatively straightforward to implement. This method transforms a non-linear partial differential equation into an ODE by using a travelling wave transformation. Additionally, the study yields both single and mixed non-degenerate Jacobi elliptic function type solutions. The complexiton, kink wave, dark or anti-bell, V, anti-Z and singular wave shapes soliton solutions are a few of the creative solutions that have been constructed utilizing modified extended Fan sub equation method that can offer details on the transversal and longitudinal moves inside the DNA helix by freely chosen parameters. Solitons propagate at a consistent rate and retain their original shape. They are widely used in nonlinear models and can be found everywhere in nature. To help in understanding the physical significance of the double-chain deoxyribonucleic acid model, several solutions are shown with graphics in the form of contour, 2D and 3D graphs using computer software Mathematica 13.2. All of the requisite constraint factors that are required for the completed solutions to exist appear to be met. Therefore, our method of strengthening symbolic computations offers a powerful and effective mathematical tool for resolving various moderate nonlinear wave problems. The findings demonstrate the system's potentially very rich precise wave forms with biological significance. The fundamentals of double-chain deoxyribonucleic acid model diffusion and processing are demonstrated by this work, which marks a substantial development in our knowledge of double-chain deoxyribonucleic acid model movements.
  11. Al-Hada NM, Md Kasmani R, Kasim H, Al-Ghaili AM, Saleh MA, Banoqitah EM, et al.
    Nanomaterials (Basel), 2021 Aug 22;11(8).
    PMID: 34443973 DOI: 10.3390/nano11082143
    In the present work, a thermal treatment technique is applied for the synthesis of CexSn1-xO2 nanoparticles. Using this method has developed understanding of how lower and higher precursor values affect the morphology, structure, and optical properties of CexSn1-xO2 nanoparticles. CexSn1-xO2 nanoparticle synthesis involves a reaction between cerium and tin sources, namely, cerium nitrate hexahydrate and tin (II) chloride dihydrate, respectively, and the capping agent, polyvinylpyrrolidone (PVP). The findings indicate that lower x values yield smaller particle size with a higher energy band gap, while higher x values yield a larger particle size with a smaller energy band gap. Thus, products with lower x values may be suitable for antibacterial activity applications as smaller particles can diffuse through the cell wall faster, while products with higher x values may be suitable for solar cell energy applications as more electrons can be generated at larger particle sizes. The synthesized samples were profiled via a number of methods, such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR). As revealed by the XRD pattern analysis, the CexSn1-xO2 nanoparticles formed after calcination reflect the cubic fluorite structure and cassiterite-type tetragonal structure of CexSn1-xO2 nanoparticles. Meanwhile, using FT-IR analysis, Ce-O and Sn-O were confirmed as the primary bonds of ready CexSn1-xO2 nanoparticle samples, whilst TEM analysis highlighted that the average particle size was in the range 6-21 nm as the precursor concentration (Ce(NO3)3·6H2O) increased from 0.00 to 1.00. Moreover, the diffuse UV-visible reflectance spectra used to determine the optical band gap based on the Kubelka-Munk equation showed that an increase in x value has caused a decrease in the energy band gap and vice versa.
  12. Ali G, Nisar J, Iqbal M, Shah A, Abbas M, Shah MR, et al.
    Waste Manag Res, 2019 Aug 13.
    PMID: 31405341 DOI: 10.1177/0734242X19865339
    Due to a huge increase in polymer production, a tremendous increase in municipal solid waste is observed. Every year the existing landfills for disposal of waste polymers decrease and the effective recycling techniques for waste polymers are getting more and more important. In this work pyrolysis of waste polystyrene was performed in the presence of a laboratory synthesized copper oxide. The samples were pyrolyzed at different heating rates that is, 5°Cmin-1, 10°Cmin-1, 15°Cmin-1 and 20°Cmin-1 in a thermogravimetric analyzer in inert atmosphere using nitrogen. Thermogravimetric data were interpreted using various model fitting (Coats-Redfern) and model free methods (Ozawa-Flynn-Wall, Kissinger-Akahira-Sunose and Friedman). Thermodynamic parameters for the reaction were also determined. The activation energy calculated applying Coats-Redfern, Ozawa-Flynn-Wall, Kissinger-Akahira-Sunose and Friedman models were found in the ranges 105-148.48 kJmol-1, 99.41-140.52 kJmol-1, 103.67-149.15 kJmol-1 and 99.93-141.25 kJmol-1, respectively. The lowest activation energy for polystyrene degradation in the presence of copper oxide indicates the suitability of catalyst for the decomposition reaction to take place at lower temperature. Moreover, the obtained kinetics and thermodynamic parameters would be very helpful in determining the reaction mechanism of the solid waste in a real system.
  13. Elsafi M, El-Nahal MA, Alrashedi MF, Olarinoye OI, Sayyed MI, Khandaker MU, et al.
    Materials (Basel), 2021 Jul 27;14(15).
    PMID: 34361388 DOI: 10.3390/ma14154194
    In this work, some marble types were collected from Egypt, and their shielding characteristics were estimated. Their rigidity, in addition to their elegant shape, led us to consider their use as a protective shield, in addition to making the workplace more beautiful. The mass attenuation coefficient (μ/ρ) was calculated for three types of marble (Breshia, Galala, and Trista) experimentally, using a narrow gamma ray source and high pure germanium (HPGe). The results obtained were compared with the XCOM program and indicated a very good agreement between the two methods. The linear attenuation coefficient (μ) was evaluated to calculate the half and tenth value layers. The maximum μ value of 1.055, 1.041, and 1.024 cm-1 was obtained for Breshia, Galala, and Trista, respectively, at 0.06 MeV. The mean free path for studying the materials was compared with other shielding materials and showed good results at different energy scales. The energy absorption (EABF) and exposure buildup factors (EBF) were determined at different mean free paths. The fast neutron removal cross section ΣR was calculated and expresses the ability of the marbles to slow down fast neutrons through multiple scattering. This is the ability of the marbles to shield fast neutrons.
  14. Jafri MA, Kalamegam G, Abbas M, Al-Kaff M, Ahmed F, Bakhashab S, et al.
    Front Cell Dev Biol, 2019;7:380.
    PMID: 32010693 DOI: 10.3389/fcell.2019.00380
    Osteoarthritis (OA) is a chronic degenerative joint disorder associated with degradation and decreased production of the extracellular matrix, eventually leading to cartilage destruction. Limited chondrocyte turnover, structural damage, and prevailing inflammatory milieu prevent efficient cartilage repair and restoration of joint function. In the present study, we evaluated the role of secreted cytokines, chemokines, and growth factors present in the culture supernatant obtained from an ex vivo osteochondral model of cartilage differentiation using cartilage pellets (CP), bone marrow stem cells (BM-MSCs), and/or BM-MSCs + CP. Multiplex cytokine analysis showed differential secretion of growth factors (G-CSF, GM-CSF, HGF, EGF, VEGF); chemokines (MCP-1, MIP1α, MIP1β, RANTES, Eotaxin, IP-10), pro-inflammatory cytokines (IL-1β, IL-2, IL-5, IL-6, IL-8, TNFα, IL-12, IL-15, IL-17) and anti-inflammatory cytokines (IL-4, IL-10, and IL-13) in the experimental groups compared to the control. In silico analyses of the role of stem cells and CP in relation to the expression of various molecules, canonical pathways and hierarchical cluster patterns were deduced using the Ingenuity Pathway Analysis (IPA) software (Qiagen, United States). The interactions of the cytokines, chemokines, and growth factors that are involved in the cartilage differentiation showed that stem cells, when used together with CP, bring about a favorable cell signaling that supports cartilage differentiation and additionally helps to attenuate inflammatory cytokines and further downstream disease-associated pro-inflammatory pathways. Hence, the autologous or allogeneic stem cells and local cartilage tissues may be used for efficient cartilage differentiation and the management of OA.
  15. Dennis Quadros J, Khan SA, T P, Iqbal Mogul Y, R H, Abbas M, et al.
    ACS Omega, 2022 Dec 27;7(51):47764-47783.
    PMID: 36591137 DOI: 10.1021/acsomega.2c05397
    Distilled water and aqueous fullerene nanofluids having concentrations of 0.02, 0.2, and 0.4 vol % and titania (titanium dioxide, TiO2) nanofluids of 0.0002, 0.002, and 0.02 vol % were analyzed for heat transfer characteristics. Quenching mediums were stirred at impeller speeds of 0, 500, 1,000, and 1,500 RPMs in a typical Tensi agitation system. During the quenching process, a metal probe made of ISO 9950 Inconel was used to record the temperature history. The inverse heat conduction method was used to calculate the spatial and temporal heat flux. The nanofluid rewetting properties were measured and matched to those of distilled water. The maximum mean heat flux was 3.26 MW/m2, and the quickest heat extraction was 0.2 vol % fullerene nanofluid, according to the results of the heat transfer investigation.
  16. Umar U, Ahmed S, Iftikhar A, Iftikhar M, Majeed W, Liaqat A, et al.
    Molecules, 2023 Jul 17;28(14).
    PMID: 37513325 DOI: 10.3390/molecules28145453
    Diabetes mellitus is a chronic metabolic disorder defined as hyperglycemia and pancreatic β-cell deterioration, leading to other complications such as cardiomyopathy. The current study assessed the therapeutic effects of phenolic acids extracted from Jasminum sambac phenols of leaves (JSP) against diabetes-induced cardiomyopathy in rats. The rats were divided into four groups, with each group consisting of 20 rats. The rats were given intraperitoneal injections of alloxan monohydrate (150 mg/kg) to induce diabetes. The diabetes-induced groups (III and IV) received treatment for six weeks that included 250 and 500 mg/kg of JSP extract, respectively. In the treated rats, the results demonstrated that JSP extract restored fasting glucose, serum glucose, and hyperlipidemia. Alloxan induced cardiomyopathy, promoted oxidative stress, and altered cardiac function biomarkers, including cardiac troponin I, proBNP, CK-MB, LDH, and IMA. The JSP extract-treated rats showed improved cardiac function indicators, apoptosis, and oxidative stress. In diabetic rats, the mRNA expression of caspase-3, BAX, and Bcl-2 was significantly higher, while Bcl-2, Nrf-2, and HO-,1 was significantly lower. In the treated groups, the expression levels of the BAX, Nrf-2, HO-1, Caspase-3, and Bcl-2 genes were dramatically returned to normal level. According to our findings, the JSP extract prevented cardiomyopathy and heart failure in the hyperglycemic rats by improving cardiac biomarkers and lowering the levels of hyperlipidemia, oxidative stress, apoptosis, hyperglycemia, and hyperlipidemia.
  17. Abbas M, Kashmiri K, Rehman IU, Ali Z, Rahman AU, Khalil A, et al.
    J Pharm Policy Pract, 2023 Nov 27;16(1):154.
    PMID: 38012805 DOI: 10.1186/s40545-023-00674-6
    INTRODUCTION: Fluoroquinolones (FQs) is a distinct class of antibiotics which are prescribed and used quite frequently worldwide, despite the box warnings (BW) issued by Food and Drug Administration (FDA). Literature has shown in spite of BWs related to FQs there is minimal impact on health care professionals (HCPs) prescribing habits, potentially attributing towards limited and insufficient awareness. In Pakistan, FQs are mostly prescribed antibiotics for microbial treatments, therefore the purpose of this study was to determine the level of knowledge about the safety profile, use, and BW of FQs among HCPs working in Pakistan.

    METHODS: A cross-sectional study was undertaken among the HCPs of Khyber Pakhtunkhwa province of Pakistan from October 2022 to December 2022. A validated questionnaire was used to assess the knowledge of HCPs regarding FQs, its safety profile and BW. A random convenient sample technique was used while recruiting HCPs in this study. As the HCPs comprised physicians, dentists, pharmacist and nurses, all were approached in person and the study objective was fully elaborated and explained to them. The statistic test like: one-way ANOVA, independent-t test, multivariate logistic regression were used keeping the p-value 

  18. Safdar ME, Wang X, Abbas M, Ozaslan C, Asif M, Adnan M, et al.
    PLoS One, 2021;16(11):e0258920.
    PMID: 34739485 DOI: 10.1371/journal.pone.0258920
    Weed infestation is a persistent problem for centuries and continues to be major yield reducing issue in modern agriculture. Chemical weed control through herbicides results in numerous ecological, environmental, and health-related issues. Moreover, numerous herbicides have evolved resistance against available herbicides. Plant extracts are regarded as an alternative to herbicides and a good weed management option. The use of plant extracts is environmentally safe and could solve the problem of herbicide resistance. Therefore, laboratory and wire house experiments were conducted to evaluate the phytotoxic potential of three Fabaceae species, i.e., Cassia occidentalis L. (Coffee senna), Sesbania sesban (L.) Merr. (Common sesban) and Melilotus alba Medik. (White sweetclover) against seed germination and seedling growth of some broadleaved weed species. Firstly, N-hexane and aqueous extracts of these species were assessed for their phytotoxic effect against lettuce (Lactuca sativa L.). The extracts found more potent were further tested against germination and seedling growth of four broadleaved weed species, i.e., Parthenium hysterophorus L. (Santa-Maria), Trianthema portulacastrum L. (Pigweed), Melilotus indica L (Indian sweetclover). and Rumex dentatus L. (Toothed dock) in Petri dish and pot experiments. Aqueous extracts of all species were more toxic than their N-hexane forms for seed germination and seedling growth of lettuce; therefore, aqueous extracts were assessed for their phytotoxic potential against four broadleaved weed species. Aqueous extracts of all species proved phytotoxic against T. portulacastrum, P. hysterophorus, M. indica and R. dentatus and retarder their germination by 57, 90, 100 and 58%, respectively. Nevertheless, foliar spray of C. occidentalis extract was the most effective against T. portulacastrum as it reduced its dry biomass by 72%, while M. alba was effective against P. hysterophorus, R. dentatus and M. indica and reduced their dry biomass by 55, 68 and 81%, respectively. It is concluded that aqueous extracts of M. alba, S. sesban and C. occidentalis could be used to retard seed germination of T. portulacastrum, P. hysterophorus, M. indica and R. dentatus. Similarly, aqueous extracts of C. occidentalis can be used to suppress dry biomass of T. portulacastrum, and those of M. alba against P. hysterophorus, R. dentatus. However, use of these extracts needs their thorough testing under field conditions.
  19. Hafeez F, Abbas M, Zia K, Ali S, Farooq M, Arshad M, et al.
    PLoS One, 2021;16(10):e0257952.
    PMID: 34644343 DOI: 10.1371/journal.pone.0257952
    Wheat (Triticum aestivum L.) production is significantly altered by the infestation of sucking insects, particularly aphids. Chemical sprays are not recommended for the management of aphids as wheat grains are consumed soon after crop harvests. Therefore, determining the susceptibility of different wheat genotypes and selecting the most tolerant genotype could significantly lower aphid infestation. This study evaluated the susceptibility of six different wheat genotypes ('Sehar-2006', 'Shafaq-2006', 'Faisalabad-2008', 'Lasani-2008', 'Millat-2011' and 'Punjab-2011') to three aphid species (Rhopalosiphum padi Linnaeus, Schizaphis graminum Rondani, Sitobion avenae Fabricius) at various growth stages. Seed dressing with insecticides and plant extracts were also evaluated for their efficacy to reduce the incidence of these aphid species. Afterwards, an economic analysis was performed to compute cost-benefit ratio and assess the economic feasibility for the use of insecticides and plant extracts. Aphids' infestation was recorded from the seedling stage and their population gradually increased as growth progressed towards tillering, stem elongation, heading, dough and ripening stages. The most susceptible growth stage was heading with 21.89 aphids/tiller followed by stem elongation (14.89 aphids/tiller) and dough stage (13.56 aphids/tiller). The genotype 'Punjab-2011' recorded the lower aphid infestation than 'Faisalabad-2008', 'Sehar-2006', 'Lasani-2008' and 'Shafaq-2006'. Rhopalosiphum padi appeared during mid-February, whereas S. graminum and S. avenae appeared during first week of March. Significant differences were recorded for losses in number of grains/spike and 1000-grain weight among tested wheat genotypes. The aphid population had non-significant correlation with yield-related traits. Hicap proved the most effective for the management of aphid species followed by Hombre and Husk among tested seed dressers, while Citrullus colocynthis L. and Moringa oleifera Lam. plant extracts exhibited the highest efficacy among different plant extracts used in the study. Economic analysis depicted that use of Hombre and Hicap resulted in the highest income and benefit cost ratio. Therefore, use of genotype Punjab-2011' and seed dressing with Hombre and Hicap can be successfully used to lower aphid infestation and get higher economic returns for wheat crop.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links